1
|
Richardson TE, Orr ME, Orr TC, Rohde SK, Ehrenberg AJ, Thorn EL, Christie TD, Flores-Almazan V, Afzal R, De Sanctis C, Maldonado-Díaz C, Hiya S, Canbeldek L, Kulumani Mahadevan LS, Slocum C, Samanamud J, Clare K, Scibetta N, Yokoda RT, Koenigsberg D, Marx GA, Kauffman J, Goldstein A, Selmanovic E, Drummond E, Wisniewski T, White CL, Goate AM, Crary JF, Farrell K, Alosco ML, Mez J, McKee AC, Stein TD, Bieniek KF, Kautz TF, Daoud EV, Walker JM. Spatial proteomic differences in chronic traumatic encephalopathy, Alzheimer's disease, and primary age-related tauopathy hippocampi. Alzheimers Dement 2024. [PMID: 39737785 DOI: 10.1002/alz.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition. METHODS We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5). RESULTS There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders. DISCUSSION These results suggest that there are subregion-specific proteomic differences among the neurons of these disorders, which appear to be influenced to a large degree by the presence of hippocampal Aβ. These proteomic differences may play a role in the differing hippocampal p-tau distribution and pathogenesis of these disorders. HIGHLIGHTS Alzheimer's disease neuropathologic change (ADNC), possible primary age-related tauopathy (PART), definite PART, and chronic traumatic encephalopathy (CTE) can be differentiated based on the proteomic composition of their neurofibrillary tangle (NFT)- and non-NFT-bearing neurons. The proteome of these NFT- and non-NFT-bearing neurons is largely correlated with the presence or absence of amyloid beta (Aβ). Neurons in CTE and definite PART (Aβ-independent pathologies) share numerous proteomic similarities that distinguish them from ADNC and possible PART (Aβ-positive pathologies).
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| | - Timothy C Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Rohde
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Emma L Thorn
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas D Christie
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria Flores-Almazan
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robina Afzal
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia De Sanctis
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satomi Hiya
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Cheyanne Slocum
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jorge Samanamud
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin Clare
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Scibetta
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raquel T Yokoda
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Daniel Koenigsberg
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel A Marx
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Justin Kauffman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam Goldstein
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Enna Selmanovic
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eleanor Drummond
- Brain & Mind Center and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas Wisniewski
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alison M Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Ann C McKee
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Thor D Stein
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Kevin F Bieniek
- Department of Pathology & Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jamie M Walker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Almeida FC, Santos A, Jesus T, Coelho A, Quintas-Neves M, Gauthreaux K, Mock CN, Kukull WA, Crary JF, Oliveira TG. Lewy body co-pathology in Alzheimer's disease and primary age-related tauopathy contributes to differential neuropathological, cognitive, and brain atrophy patterns. Alzheimers Dement 2024. [PMID: 39711133 DOI: 10.1002/alz.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) co-pathology with Lewy bodies (LB) is frequent and influences clinical manifestations and outcomes. Its significance in primary age-related tauopathy (PART) is unknown. We investigated the influence of LB on cognition and brain atrophy in AD and PART. METHODS We performed a retrospective cohort study in a large sample of autopsied participants with AD neuropathological change (ADNC) with and without LB and PART with and without LB, with corresponding ante mortem magnetic resonance imaging (MRI) data from the National Alzheimer's Coordinating Center dataset. RESULTS LB co-pathology worsened cognitive impairment in both PART and ADNC. On longitudinal follow-up, LB impacted cognitive decline in multiple domains. Additionally, LB influenced brain atrophy on MRI across groups and LB regional staging was different in PART and ADNC, accompanying tauopathy progression. DISCUSSION These results suggest that LB co-pathology is associated with divergent patterns of cognitive impairment, brain atrophy, and regional pathological distribution in PART and AD. HIGHLIGHTS Lewy body (LB) co-pathology is frequent in Alzheimer's disease (AD) with important clinical implications. LB co-pathology is also present in primary age-related tauopathy (PART), but its significance is still understudied. In PART and AD, LB leads to higher cognitive impairment and brain regional atrophy. In PART and AD, LB tends to accompany neurofibrillary tangle progression, suggesting amyloid pathology might be a trigger for regional pathology progression.
Collapse
Affiliation(s)
- Francisco C Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Alexandra Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Tiago Jesus
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Center Algoritmi, LASI, University of Minho, Campus Gualtar, Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Miguel Quintas-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Neuroradiology, Hospital de Braga, ULS Braga, Braga, Portugal
| | - Kathryn Gauthreaux
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Charles N Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - John F Crary
- Neuropathology Brain Bank & Research Core, Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Neuroradiology, Hospital de Braga, ULS Braga, Braga, Portugal
| |
Collapse
|
3
|
Ryniejska M, El-Hachami H, Mrzyglod A, Liu J, Thom M. The prevalence of chronic traumatic encephalopathy in a historical epilepsy post-mortem collection. Brain Pathol 2024:e13317. [PMID: 39528258 DOI: 10.1111/bpa.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Previous post-mortem epilepsy series showed phosphorylated tau (pTau) accumulation in relation to traumatic brain injury (TBI) rather than driven by seizure frequency. The Corsellis Epilepsy Collection, established in the mid-20th century, represents brain samples collected from patients living with a range of epilepsies from the 1880s to 1990s. Our aim was to interrogate this historical archive to explore relationships between epilepsy, trauma and tau pathology. AT8 immunohistochemistry for pTau was carried out in 102 cases (55% male, with mean age at death of 62 years) on frontal, temporal, amygdala, hippocampal and lesional cortical regions and evaluated using current NINDS criteria for chronic traumatic encephalopathy (CTE) and Braak staging with beta-amyloid, AT8-GFAP and other pTau markers (CP13, PHF1, AT100, AT180) in selected cases. CTE-neuropathologic change (CTE-NC) was identified in 15.7% and was associated with the presence of astroglial tau, a younger age of onset of epilepsy, evidence of TBI and institutionalisation for epilepsy compared to cases without CTE-NC, but not for seizure type or frequency. Memory impairment was noted in 43% of cases with CTE-NC, and a significantly younger age of death; more frequent reports of sudden and unexpected death (p <0.05-0.001) were noted in cases with CTE-NC. In contrast, a higher Braak stage was associated with late-onset epilepsy and cognitive decline. Of note, 9% of cases showed no pTau, including cases with long epilepsy duration, poor seizure control and a history of prior TBI. In summary, this cohort includes patients with more severe and diverse forms of epilepsy, with CTE-NC observed more frequently than reported in non-epilepsy community-based studies (0%-8%) but lower than published series from contact sports participants (32%-87%). Although the literature does not report increased epilepsy occurring in CTE syndrome, our findings support an increased risk of CTE in epilepsy syndromes, likely primarily related to increased TBI.
Collapse
Affiliation(s)
- Maritchka Ryniejska
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Hanaa El-Hachami
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Alicja Mrzyglod
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Joan Liu
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
- School of Life Sciences, University of Westminster, London, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| |
Collapse
|
4
|
Alexander A, Alvarez VE, Huber BR, Alosco ML, Mez J, Tripodis Y, Nicks R, Katz DI, Dwyer B, Daneshvar DH, Martin B, Palmisano J, Goldstein LE, Crary JF, Nowinski C, Cantu RC, Kowall NW, Stern RA, Delalle I, McKee AC, Stein TD. Cortical-sparing chronic traumatic encephalopathy (CSCTE): a distinct subtype of CTE. Acta Neuropathol 2024; 147:45. [PMID: 38407651 PMCID: PMC11348287 DOI: 10.1007/s00401-024-02690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p = 0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.
Collapse
Affiliation(s)
- Abigail Alexander
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palmisano
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Nowinski
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ivana Delalle
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA.
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- , 150 S. Huntington Avenue, Boston, MA, 02130, USA.
| |
Collapse
|
5
|
Saltiel N, Tripodis Y, Menzin T, Olaniyan A, Baucom Z, Yhang E, Palmisano JN, Martin B, Uretsky M, Nair E, Abdolmohammadi B, Shah A, Nicks R, Nowinski C, Cantu RC, Daneshvar DH, Dwyer B, Katz DI, Stern RA, Alvarez V, Huber B, Boyle PA, Schneider JA, Mez J, McKee A, Alosco ML, Stein TD. Relative Contributions of Mixed Pathologies to Cognitive and Functional Symptoms in Brain Donors Exposed to Repetitive Head Impacts. Ann Neurol 2024; 95:314-324. [PMID: 37921042 PMCID: PMC10842014 DOI: 10.1002/ana.26823] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Exposure to repetitive head impacts (RHI) is associated with later-life cognitive symptoms and neuropathologies, including chronic traumatic encephalopathy (CTE). Cognitive decline in community cohorts is often due to multiple pathologies; however, the frequency and contributions of these pathologies to cognitive impairment in people exposed to RHI are unknown. Here, we examined the relative contributions of 13 neuropathologies to cognitive symptoms and dementia in RHI-exposed brain donors. METHODS Neuropathologists examined brain tissue from 571 RHI-exposed donors and assessed for the presence of 13 neuropathologies, including CTE, Alzheimer disease (AD), Lewy body disease (LBD), and transactive response DNA-binding protein 43 (TDP-43) inclusions. Cognitive status was assessed by presence of dementia, Functional Activities Questionnaire, and Cognitive Difficulties Scale. Spearman rho was calculated to assess intercorrelation of pathologies. Additionally, frequencies of pathological co-occurrence were compared to a simulated distribution assuming no intercorrelation. Logistic and linear regressions tested associations between neuropathologies and dementia status and cognitive scale scores. RESULTS The sample age range was 18-97 years (median = 65.0, interquartile range = 46.0-76.0). Of the donors, 77.2% had at least one moderate-severe neurodegenerative or cerebrovascular pathology. Stage III-IV CTE was the most common neurodegenerative disease (43.1%), followed by TDP-43 pathology, AD, and hippocampal sclerosis. Neuropathologies were intercorrelated, and there were fewer unique combinations than expected if pathologies were independent (p < 0.001). The greatest contributors to dementia were AD, neocortical LBD, hippocampal sclerosis, cerebral amyloid angiopathy, and CTE. INTERPRETATION In this sample of RHI-exposed brain donors with wide-ranging ages, multiple neuropathologies were common and correlated. Mixed neuropathologies, including CTE, underlie cognitive impairment in contact sport athletes. ANN NEUROL 2024;95:314-324.
Collapse
Affiliation(s)
- Nicole Saltiel
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Talia Menzin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Aliyah Olaniyan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Zach Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eukyung Yhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N. Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Evan Nair
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | | | - Robert C. Cantu
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Daniel H. Daneshvar
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Douglas I. Katz
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor Alvarez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Bertrand Huber
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann McKee
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Nader S, Karlovich E, Cortes EP, Insausti R, Meloni G, Jacobs M, Crary JF, Morgello S. Predictors of hippocampal tauopathy in people with and at risk for human immunodeficiency virus infection. J Neurovirol 2023; 29:647-657. [PMID: 37926797 DOI: 10.1007/s13365-023-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Combination antiretroviral therapy (cART) has extended lifespans of people living with HIV (PWH), increasing both the risk for age-related neuropathologies and the importance of distinguishing effects of HIV and its comorbidities from neurodegenerative disorders. The accumulation of hyperphosphorylated tau (p-tau) in hippocampus is a common degenerative change, with specific patterns of hippocampal subfield vulnerability observed in different disease contexts. Currently, associations between chronic HIV, its comorbidities, and p-tau burden and distribution in the hippocampus are unexplored. We used immunohistochemistry with antibody AT8 to analyze hippocampal p-tau in brain tissues of PWH (n = 71) and HIV negative controls (n = 25), for whom comprehensive clinical data were available. Using a morphology-based neuroanatomical segmentation protocol, we annotated digital slide images to measure percentage p-tau areas in the hippocampus and its subfields. Factors predicting p-tau burden and distribution were identified in univariate analyses, and those with significance at p ≤ 0.100 were advanced to multivariable regression. The patient sample had a mean age of 61.5 years. Age predicted overall hippocampal p-tau burden. Subfield p-tau predictors were for Cornu Ammonis (CA)1, age; for CA2 and subiculum, seizure history; for CA3, seizure history and head trauma; and for CA4/dentate, history of hepatitis C virus (HCV) infection. In this autopsy sample, hippocampal p-tau burden and distribution were not predicted by HIV, viral load, or immunologic status, with viral effects limited to associations between HCV and CA4/dentate vulnerability. Hippocampal p-tau pathologies in cART-era PWH appear to reflect age and comorbidities, but not direct effects of HIV infection.
Collapse
Affiliation(s)
- Sophie Nader
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esma Karlovich
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etty P Cortes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo Insausti
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
| | - Gregory Meloni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Jacobs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Susan Morgello
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Williams EM, Rosenblum EW, Pihlstrom N, Llamas-Rodríguez J, Champion S, Frosch MP, Augustinack JC. Pentad: A reproducible cytoarchitectonic protocol and its application to parcellation of the human hippocampus. Front Neuroanat 2023; 17:1114757. [PMID: 36843959 PMCID: PMC9947247 DOI: 10.3389/fnana.2023.1114757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The hippocampus is integral for learning and memory and is targeted by multiple diseases. Neuroimaging approaches frequently use hippocampal subfield volumes as a standard measure of neurodegeneration, thus making them an essential biomarker to study. Collectively, histologic parcellation studies contain various disagreements, discrepancies, and omissions. The present study aimed to advance the hippocampal subfield segmentation field by establishing the first histology based parcellation protocol, applied to n = 22 human hippocampal samples. Methods The protocol focuses on five cellular traits observed in the pyramidal layer of the human hippocampus. We coin this approach the pentad protocol. The traits were: chromophilia, neuron size, packing density, clustering, and collinearity. Subfields included were CA1, CA2, CA3, CA4, prosubiculum, subiculum, presubiculum, parasubiculum, as well as the medial (uncal) subfields Subu, CA1u, CA2u, CA3u, and CA4u. We also establish nine distinct anterior-posterior levels of the hippocampus in the coronal plane to document rostrocaudal differences. Results Applying the pentad protocol, we parcellated 13 subfields at nine levels in 22 samples. We found that CA1 had the smallest neurons, CA2 showed high neuronal clustering, and CA3 displayed the most collinear neurons of the CA fields. The border between presubiculum and subiculum was staircase shaped, and parasubiculum had larger neurons than presubiculum. We also demonstrate cytoarchitectural evidence that CA4 and prosubiculum exist as individual subfields. Discussion This protocol is comprehensive, regimented and supplies a high number of samples, hippocampal subfields, and anterior-posterior coronal levels. The pentad protocol utilizes the gold standard approach for the human hippocampus subfield parcellation.
Collapse
Affiliation(s)
- Emily M. Williams
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Emma W. Rosenblum
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Nicole Pihlstrom
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Josué Llamas-Rodríguez
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Samantha Champion
- Department of Neuropathology, Massachusetts General Hospital, Boston, MA, United States
| | - Matthew P. Frosch
- Department of Neuropathology, Massachusetts General Hospital, Boston, MA, United States
| | - Jean C. Augustinack
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|