1
|
Melzer N, Weber K, Räuber S, Rosenow F. [(Auto)immunity in focal epilepsy: mechanisms of (auto‑)immune-inflammatory epileptogenic neurodegeneration]. DER NERVENARZT 2024; 95:932-937. [PMID: 38953922 PMCID: PMC11427648 DOI: 10.1007/s00115-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE While the neuronal mechanisms of epileptic hyperexcitability (HE) have been studied in detail, recent findings suggest that extraneuronal, mainly immune-mediated inflammatory and vascular mechanisms play an important role in the development and progression of HE in epilepsy and the cognitive and behavioral comorbidities. MATERIAL AND METHODS Narrative review. RESULTS As in autoimmune (limbic) encephalitis (ALE/AIE) or Rasmussen's encephalitis (RE), the primary adaptive and innate immune responses and associated changes in the blood-brain barrier (BBB) and neurovascular unit (NVU) can cause acute cortical hyperexcitability (HE) and the development of hippocampal sclerosis (HS) and other structural cortical lesions with chronic HE. Cortical HE, which is associated with malformation of cortical development (MCD) and low-grade epilepsy-associated tumors (LEAT), for example, can be accompanied by secondary adaptive and innate immune responses and alterations in the BBB and NVU, potentially modulating the ictogenicity and epileptogenicity. These associations illustrate the influence of adaptive and innate immune mechanisms and associated changes in the BBB and NVU on cortical excitability and vice versa, suggesting a dynamic and complex interplay of these factors in the development and progression of epilepsy in general. DISCUSSION The described concept of a neuro-immune-vascular interaction in focal epilepsy opens up new possibilities for the pathogenetic understanding and thus also for the selective therapeutic intervention.
Collapse
Affiliation(s)
- Nico Melzer
- Klinik für Neurologie, Medizinische Fakultät und Universitätsklinikum, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Deutschland.
| | - Katharina Weber
- Neurologisches Institut (Edinger Institut), Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland
- Frankfurt Cancer Institute (FCI), Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland
- Partnerstätte Frankfurt, Frankfurt am Main und Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Deutschland
- Universitäres Centrum für Tumorerkrankungen Frankfurt (UCT), Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland
| | - Saskia Räuber
- Klinik für Neurologie, Medizinische Fakultät und Universitätsklinikum, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Deutschland
| | - Felix Rosenow
- Epilepsiezentrum Frankfurt Rhein-Main, Klinik für Neurologie, Zentrum für Neurologie und Neurochirurgie, Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-Universität Frankfurt, Frankfurt am Main, Deutschland.
| |
Collapse
|
2
|
Khan T, McFall DJ, Hussain AI, Frayser LA, Casilli TP, Steck MC, Sanchez-Brualla I, Kuehn NM, Cho M, Barnes JA, Harris BT, Vicini S, Forcelli PA. Senescent cell clearance ameliorates temporal lobe epilepsy and associated spatial memory deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605784. [PMID: 39211239 PMCID: PMC11360968 DOI: 10.1101/2024.07.30.605784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Current therapies for the epilepsies only treat the symptoms, but do not prevent epileptogenesis (the process in which epilepsy develops). Many cellular responses during epileptogenesis are also common hallmarks of cellular senescence , which halts proliferation of damaged cells. Clearing senescent cells (SCs) restores function in several age-associated and neurodegenerative disease models. It is unknown whether SC accumulation contributes to epileptogenesis and associated cognitive impairments. To address this question, we used a mouse model of temporal lobe epilepsy (TLE) and characterized the senescence phenotype throughout epileptogenesis. SCs accumulated 2 weeks after SE and were predominantly microglia. We ablated SCs and reduced (and in some cases prevented) the emergence of spontaneous seizures and normalized cognitive function in mice. Suggesting that this is a translationally-relevant target we also found SC accumulation in resected hippocampi from patients with TLE. These findings indicate that SC ablation after an epileptogenic insult is a potential anti-epileptogenic therapy.
Collapse
|
3
|
Che XQ, Zhan SK, Song JJ, Deng YL, Wei-Liu, Peng-Huang, Jing-Zhang, Sun ZF, Che ZQ, Liu J. Altered immune pathways in patients of temporal lobe epilepsy with and without hippocampal sclerosis. Sci Rep 2024; 14:13661. [PMID: 38871732 PMCID: PMC11176392 DOI: 10.1038/s41598-024-63541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Over the past decades, the immune responses have been suspected of participating in the mechanisms for epilepsy. To assess the immune related pathway in temporal lobe epilepsy (TLE), we explored the altered immune pathways in TLE patients with and without hippocampal sclerosis (HS). We analyzed RNA-seq data from 3 TLE-HS and 3 TLE-nonHS patients, including identification of differentially expressed RNA, function pathway enrichment, the protein-protein interaction network and construction of ceRNA regulatory network. We illustrated the immune related landscape of molecules and pathways on human TLE-HS. Also, we identified several differential immune related genes like HSP90AA1 and SOD1 in TLE-HS patients. Further ceRNA regulatory network analysis found SOX2-OT connected to miR-671-5p and upregulated the target gene SPP1 in TLE-HS patients. Also, we identified both SOX2-OT and SPP1 were significantly upregulated in five different databases including TLE-HS patients and animal models. Our findings established the first immune related genes and possible regulatory pathways in TLE-HS patients and animal models, which provided a novel insight into disease pathogenesis in both patients and animal models. The immune related SOX2-OT/miR-671-5p/SPP1 axis may be the potential therapeutic target for TLE-HS.
Collapse
Affiliation(s)
- Xiang-Qian Che
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Kun Zhan
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Jiao Song
- Department of Teaching Office, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Lei Deng
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Liu
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Huang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Zhang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan-Fang Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zai-Qian Che
- Department of Emergency, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jun Liu
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Milano C, Montali M, Barachini S, Burzi IS, Pratesi F, Petrozzi L, Chico L, Morganti R, Gambino G, Rossi L, Ceravolo R, Siciliano G, Migliorini P, Petrini I, Pizzanelli C. Increased production of inflammatory cytokines by circulating monocytes in mesial temporal lobe epilepsy: A possible role in drug resistance. J Neuroimmunol 2024; 386:578272. [PMID: 38160122 DOI: 10.1016/j.jneuroim.2023.578272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
We analyzed peripheral blood mononuclear cells (PBMCs) and serum inflammatory biomarkers in patients with mesial temporal lobe epilepsy (drug-resistant - DR, vs. drug-sensitive - DS). Patients with epilepsy showed higher levels of serum CCL2, CCL3, IL-8 and AOPP, and lower levels of FRAP and thiols compared to healthy controls (HC). Although none of the serum biomarkers distinguished DR from DS patients, when analysing intracellular cytokines after in vitro stimulation, DR patients presented higher percentages of IL-1β and IL-6 positive monocytes compared to DS patients and HC. Circulating innate immune cells might be implicated in DR epilepsy and constitute potential new targets for treatments.
Collapse
Affiliation(s)
- C Milano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| | - M Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - I S Burzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Pratesi
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - L Petrozzi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - L Chico
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - R Morganti
- Section of Statistics, University of Pisa, Pisa, Italy
| | - G Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Ceravolo
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - P Migliorini
- Department of Clinical and Experimental Medicine, Clinical Immunology and Allergy Unit, University of Pisa, Pisa, Italy
| | - I Petrini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - C Pizzanelli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Peng S, Wu X, Zheng Q, Xu J, Xie D, Zhou M, Wang M, Cheng Y, Ye L, Mo X, Feng Z. Downregulating NHE-1 decreases the apoptosis of hippocampal cells in epileptic model rats based on the NHE-1/calpain1 pathway. Heliyon 2023; 9:e18336. [PMID: 37539113 PMCID: PMC10395532 DOI: 10.1016/j.heliyon.2023.e18336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Seizure is associated with pathological changes of hippocampus, but the mechanism by which hippocampal neuronal apoptosis promotes epilepsy is unclear. Our previous study showed that the expression of NHE-1 was increased in epileptic model rats. Therefore, this study further explores the effect of NHE-1 on hippocampal cells apoptosis and seizure in lithium chloride-pilocarpine epileptic model rats. First, we established a lithium chloride-pilocarpine induced epileptic rat model and detected the expression of NHE-1, calpain1 and apoptosis in the hippocampus. Then, we further down-regulated NHE-1 to observe the expression of calpain1 and apoptosis in the hippocampus, as well as its effect on seizures in rats. We found that the expression of NHE-1 and calpain1 and apoptosis in the hippocampus was significant increased in the model group. After down-regulating NHE-1, the expression of calpain1 was decreased, and hippocampal cell apoptosis was alleviated. In addition, down-regulation of NHE-1 reduced the frequency and duration of seizures in epileptic rats. Therefore, hippocampal NHE-1 overexpression is closely related to the development of neuronal apoptosis in a rat model of epilepsy, and downregulating NHE-1 expression can reduce cell apoptosis. Moreover, the NHE-1/calpain1 signaling pathway may be an important mechanism leading to hippocampal cell apoptosis.
Collapse
Affiliation(s)
- Shuang Peng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Xuling Wu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Qian Zheng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, School of Basic Medicine,Guizhou Medical University, Guiyang, China
| | - Dongjun Xie
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lan Ye
- The Medical Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangang Mo
- Comprehensive Ward, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhanhui Feng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University. Guiyang, China
| |
Collapse
|
6
|
Gallus M, Roll W, Dik A, Barca C, Zinnhardt B, Hicking G, Mueller C, Naik VN, Anstötz M, Krämer J, Rolfes L, Wachsmuth L, Pitsch J, van Loo KM, Räuber S, Okada H, Wimberley C, Strippel C, Golombeck KS, Johnen A, Kovac S, Groß CC, Backhaus P, Seifert R, Lewerenz J, Surges R, Elger CE, Wiendl H, Ruck T, Becker AJ, Faber C, Jacobs AH, Bauer J, Meuth SG, Schäfers M, Melzer N. Translational imaging of TSPO reveals pronounced innate inflammation in human and murine CD8 T cell-mediated limbic encephalitis. SCIENCE ADVANCES 2023; 9:eabq7595. [PMID: 37294768 PMCID: PMC10256169 DOI: 10.1126/sciadv.abq7595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/08/2023] [Indexed: 06/11/2023]
Abstract
Autoimmune limbic encephalitis (ALE) presents with new-onset mesial temporal lobe seizures, progressive memory disturbance, and other behavioral and cognitive changes. CD8 T cells are considered to play a key role in those cases where autoantibodies (ABs) target intracellular antigens or no ABs were found. Assessment of such patients presents a clinical challenge, and novel noninvasive imaging biomarkers are urgently needed. Here, we demonstrate that visualization of the translocator protein (TSPO) with [18F]DPA-714-PET-MRI reveals pronounced microglia activation and reactive gliosis in the hippocampus and amygdala of patients suspected with CD8 T cell ALE, which correlates with FLAIR-MRI and EEG alterations. Back-translation into a preclinical mouse model of neuronal antigen-specific CD8 T cell-mediated ALE allowed us to corroborate our preliminary clinical findings. These translational data underline the potential of [18F]DPA-714-PET-MRI as a clinical molecular imaging method for the direct assessment of innate immunity in CD8 T cell-mediated ALE.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurosurgery, University of Münster, Münster, Germany
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Wolfgang Roll
- Department of Nuclear Medicine, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Biomarkers and Translational Technologies (BTT), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Gordon Hicking
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christoph Mueller
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Venu Narayanan Naik
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Max Anstötz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Krämer
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Leoni Rolfes
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Julika Pitsch
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Karen M. J. van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn, Bonn, Germany
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Saskia Räuber
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Christine Strippel
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S. Golombeck
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Andreas Johnen
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C. Groß
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Philipp Backhaus
- Department of Nuclear Medicine, University of Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University of Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn, Bonn, Germany
| | | | - Heinz Wiendl
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Tobias Ruck
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Albert J. Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sven G. Meuth
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University of Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
8
|
Zhao G, Fu Y, Yang C, Yang X, Hu X. Exploring the pathogenesis linking traumatic brain injury and epilepsy via bioinformatic analyses. Front Aging Neurosci 2022; 14:1047908. [PMID: 36438009 PMCID: PMC9686289 DOI: 10.3389/fnagi.2022.1047908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2024] Open
Abstract
Traumatic brain injury (TBI) is a serious disease that could increase the risk of epilepsy. The purpose of this article is to explore the common molecular mechanism in TBI and epilepsy with the aim of providing a theoretical basis for the prevention and treatment of post-traumatic epilepsy (PTE). Two datasets of TBI and epilepsy in the Gene Expression Omnibus (GEO) database were downloaded. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and hub gene identification were performed based on the cross-talk genes of aforementioned two diseases. Another dataset was used to validate these hub genes. Moreover, the abundance of infiltrating immune cells was evaluated through Immune Cell Abundance Identifier (ImmuCellAI). The common microRNAs (miRNAs) between TBI and epilepsy were acquired via the Human microRNA Disease Database (HMDD). The overlapped genes in cross-talk genes and target genes predicted through the TargetScan were obtained to construct the common miRNAs-mRNAs network. A total of 106 cross-talk genes were screened out, including 37 upregulated and 69 downregulated genes. Through the enrichment analyses, we showed that the terms about cytokine and immunity were enriched many times, particularly interferon gamma signaling pathway. Four critical hub genes were screened out for co-expression analysis. The miRNA-mRNA network revealed that three miRNAs may affect the shared interferon-induced genes, which might have essential roles in PTE. Our study showed the potential role of interferon gamma signaling pathway in pathogenesis of PTE, which may provide a promising target for future therapeutic interventions.
Collapse
Affiliation(s)
- Gengshui Zhao
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| | - Yongqi Fu
- Department of Endocrinology, The People’s Hospital of Hengshui City, Hengshui, China
| | - Chao Yang
- Department of Orthopedics, The People’s Hospital of Hengshui City, Hengshui, China
| | - Xuehui Yang
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| | - Xiaoxiao Hu
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| |
Collapse
|
9
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
10
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
11
|
Wang Z, Zhao M, Gao S. Epileptic Seizures After Allogeneic Hematopoietic Stem Cell Transplantation. Front Neurol 2021; 12:675756. [PMID: 34335446 PMCID: PMC8322618 DOI: 10.3389/fneur.2021.675756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Technique in allogeneic hematopoietic stem cell transplantation has greatly advanced over the past decades, which has led to an increase in the number of patients receiving transplantation, but the complex procedure places these transplant recipients at high risk of a large spectrum of complications including neurologic involvement. As a common manifestation of neurological disorders, epileptic seizures after transplantation have been of great concern to clinicians because it seriously affects the survival rate and living quality of those recipients. The aim of this review is to elucidate the incidence of seizures after allogeneic hematopoietic stem cell transplantation, and to further summarize in detail its etiologies, possible mechanisms, clinical manifestations, therapeutic schedule, and prognosis, hoping to improve doctors' understandings of concurrent seizures following transplantation, so they can prevent, process, and eventually improve the survival and outlook for patients in a timely manner and correctly.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Munan Zhao
- Department of Oncology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Tröscher AR, Sakaraki E, Mair KM, Köck U, Racz A, Borger V, Cloppenborg T, Becker AJ, Bien CG, Bauer J. T cell numbers correlate with neuronal loss rather than with seizure activity in medial temporal lobe epilepsy. Epilepsia 2021; 62:1343-1353. [PMID: 33954995 DOI: 10.1111/epi.16914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Medial temporal lobe epilepsy (MTLE) is a drug-resistant focal epilepsy that can be caused by a broad spectrum of different inciting events, including tumors, febrile seizures, and viral infections. In human epilepsy surgical resections as well as in animal models, an involvement of the adaptive immune system was observed. We here analyzed the presence of T cells in various subgroups of MTLE. We aimed to answer the question of how much inflammation was present and whether the presence of T cells was associated with seizures or associated with hippocampal neurodegeneration. METHODS We quantified the numbers of CD3+ T cells and CD8+ cytotoxic T cells in the hippocampus of patients with gangliogliomas (GGs; intrahippocampal and extrahippocampal, with and without sclerosis), febrile seizures, and postinfectious encephalitic epilepsy and compared this with Rasmussen encephalitis, Alzheimer disease, and normal controls. RESULTS We could show that T cell numbers were significantly elevated in MTLE compared to healthy controls. CD3+ as well as CD8+ T cell numbers, however, varied highly among MTLE subgroups. By comparing GG patients with and without hippocampal sclerosis (HS), we were able to show that T-cell numbers were increased in extrahippocampal GG patients with hippocampal neuronal loss and HS, whereas extrahippocampal GG cases without hippocampal neuronal loss (i.e., absence of HS) did not differ from healthy controls. Importantly, T cell numbers in MTLE correlated with the degree of neuronal loss, whereas no correlation with seizure frequency or disease duration was found. Finally, we found that in nearly all MTLE groups, T cell numbers remained elevated even years after the inciting event. SIGNIFICANCE We here provide a detailed histopathological investigation of the involvement of T cells in various subgroups of MTLE, which suggests that T cell influx correlates to neuronal loss rather than seizure activity.
Collapse
Affiliation(s)
- Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eirini Sakaraki
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katharina M Mair
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Attila Racz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094395. [PMID: 33922369 PMCID: PMC8122797 DOI: 10.3390/ijms22094395] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain, along with these responses, is implicitly involved in epilepsy. This review explored the current literature on the association between the peripheral and central nervous systems in the pathogenesis of epilepsy, and highlights novel research directions for therapeutic interventions targeting these reactions. Previous experimental and human studies have demonstrated the activation of the innate and adaptive immune responses in the brain. The time required for monocytes (responsible for innate immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a seizure varies. Moreover, the time between the leakage associated with blood–brain barrier (BBB) failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differentiation between peripheral monocytes and resident microglia, which was previously considered difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis of seizures.
Collapse
|
14
|
Zhang W, Wang H, Liu B, Jiang M, Gu Y, Yan S, Han X, Hou AY, Tang C, Jiang Z, Shen H, Na M, Lin Z. Differential DNA Methylation Profiles in Patients with Temporal Lobe Epilepsy and Hippocampal Sclerosis ILAE Type I. J Mol Neurosci 2021; 71:1951-1966. [PMID: 33403589 DOI: 10.1007/s12031-020-01780-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023]
Abstract
Hippocampal sclerosis (HS) is one of the most prevalent pathological types of temporal lobe epilepsy (TLE), and it significantly affects patient prognoses. The methylation of DNA plays an important role in the development of epilepsy. However, few studies have focused on HS subtypes to determine DNA methylation profiles in TLE. This study aimed to determine the pathogenesis of TLE from an epigenetic perspective in patients with TLE-HS type I (TLE-HSTI) and TLE without HS (TLE-nHS) using whole-genome bisulfite sequencing (WGBS). We defined 1171 hypermethylated and 2537 hypomethylated regions and found 632 differentially methylated genes (DMG) in the promoter region that were primarily involved in the regulation of various aspects of epilepsy development. Twelve DMG overlapped with differentially expressed genes (DEG) in the promoter region, and RT-qPCR findings revealed significant overexpression of the SBNO2, CBX3, RASAL3, and TMBIM4 genes in TLE-HSTI. We present the first systematic analysis of methylation profiles of TLE-HSTI and TLE-nHS from an epigenetic perspective using WGBS. Overall, our preliminary data highlight the underlying mechanism of TLE-HSTI, providing a new perspective for guiding treatment of TLE.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Haiyang Wang
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Binchao Liu
- Department of Neurosurgery of Xing Tai People's Hospital, Xing Tai, China
| | - Miaomiao Jiang
- Department of Pathology of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Yifei Gu
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Xian Han
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Alicia Y Hou
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Chongyang Tang
- SanboBrain Hospital Capital Medical University, Beijing, China
| | - Zhenfeng Jiang
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China.
| | - Zhiguo Lin
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
Langenbruch L, Bleß L, Schulte-Mecklenbeck A, Sundermann B, Brix T, Elger CE, Melzer N, Wiendl H, Meuth SG, Gross CC, Kovac S. Blood and cerebrospinal fluid immune cell profiles in patients with temporal lobe epilepsy of different etiologies. Epilepsia 2020; 61:e153-e158. [PMID: 32893887 DOI: 10.1111/epi.16688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Inflammation plays a role in the pathogenesis of immune-mediated epilepsy, but also in epilepsy of other etiology such as hippocampal sclerosis. This study aimed to characterize immune cell signatures in the peripheral blood (PB) and cerebrospinal fluid (CSF) in temporal lobe epilepsy (TLE) of different etiologies. We retrospectively evaluated CSF routine parameters and immune cell profiles using flow cytometry in a cohort of 51 patients and 45 age-matched controls with functional disorders. Groups were comprised of patients with nonlesional TLE (n = 26), TLE due to hippocampal sclerosis (n = 14), or limbic encephalitis with antibodies against the 65-kDa isoform of glutamic acid decarboxylase (GAD65-LE; n = 11). TLE patients showed increased proportions of human leukocyte antigen-DR isotype (HLA-DR)-expressing CD4+ T lymphocytes in the CSF. Furthermore, they were characterized by a shift in monocyte subsets toward immature CD14low CD16+ cells in the PB and blood/CSF-barrier dysfunction. Whereas TLE patients in general showed similar immune cell profiles, patients with GAD65-LE differed from other TLE patients by increased proportions of HLA-DR-expressing CD8+ T lymphocytes and type 2/3 oligoclonal bands. These findings point to a role of innate and adaptive immunity in TLE. CSF parameters may help to discriminate epilepsy patients from controls and different forms of TLE from each other.
Collapse
Affiliation(s)
- Lisa Langenbruch
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Laurens Bleß
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Benedikt Sundermann
- Institute of Clinical Radiology, Medical Faculty, University of Münster and University Hospital Münster, Münster, Germany.,Institute of Radiology and Neuroradiology, Evangelical Hospital, University of Oldenburg, Oldenburg, Germany
| | - Tobias Brix
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Christian E Elger
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Immunohistochemical Markers in the Diagnosis of Calcifying Pseudoneoplasm of the Neuraxis. Can J Neurol Sci 2020; 48:259-266. [PMID: 32800010 DOI: 10.1017/cjn.2020.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Calcifying pseudoneoplasm of the neuraxis (CAPNON) is a rare tumor-like lesion with unknown pathogenesis. It is likely under-reported due to diagnostic challenges including the nonspecific radiographic features, lack of diagnostic markers, and often asymptomatic nature of the lesions. METHODS We performed detailed examination of 11 CAPNON specimens diagnosed by histopathology, with the help of electron microscopy and immunohistochemistry. RESULTS Electron microscopy revealed the presence of fibrillary materials consistent with neurofilaments. In addition to some entrapped axons at the periphery of CAPNONs, we discovered that all specimens stained positive for neurofilament-light (NF-L) within the granular amorphous cores, but not neurofilament-phosphorylated (NF-p). CAPNONs also showed variable infiltration of CD8+ T-cells and a decreased ratio of CD4/CD8+ T-cells, suggesting an immune-mediated process in the pathogenesis of CAPNON. CONCLUSION NF-L and CD4/CD8 immunostains may serve as diagnostic markers for CAPNON and shed light on its pathogenesis.
Collapse
|
17
|
The Immune Cell Landscape in Different Anatomical Structures of Knee in Osteoarthritis: A Gene Expression-Based Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9647072. [PMID: 32258161 PMCID: PMC7106908 DOI: 10.1155/2020/9647072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/10/2019] [Accepted: 01/04/2020] [Indexed: 01/10/2023]
Abstract
Background Immunological mechanisms play a vital role in the pathogenesis of knee osteoarthritis (KOA). Moreover, the immune phenotype is a relevant prognostic factor in various immune-related diseases. In this study, we used CIBERSORT for deconvolution of global gene expression data to define the immune cell landscape of different structures of knee in osteoarthritis. Methods and Findings. By applying CIBERSORT, we assessed the relative proportions of immune cells in 76 samples of knee cartilage, 146 samples of knee synovial tissue, 40 samples of meniscus, and 50 samples of knee subchondral bone. Enumeration and activation status of 22 immune cell subtypes were provided by the obtained immune cell profiles. In synovial tissues, the differences in proportions of plasma cells, M1 macrophages, M2 macrophages, activated dendritic cells, resting mast cells, and eosinophils between normal tissues and osteoarthritic tissues were statistically significant (P < 0.05). The area under the curve was relatively large in resting mast cells, dendritic cells, and M2 macrophages in receiver operating characteristic analyses. In subchondral bones, the differences in proportions of resting master cells and neutrophils between normal tissues and osteoarthritic tissues were statistically significant (P < 0.05). In subchondral bones, the proportions of immune cells, from the principle component analyses, displayed distinct group-bias clustering. Resting mast cells and T cell CD8 were the major component of first component. Moreover, we revealed the potential interaction between immune cells. There was almost no infiltration of immune cells in the meniscus and cartilage of the knee joint. Conclusions The immune cell composition in KOA differed substantially from that of healthy joint tissue, while it also differed in different anatomical structures of the knee. Meanwhile, activated mast cells were mainly associated with high immune cell infiltration in OA. Furthermore, we speculate M2 macrophages in synovium and mast cells in subchondral bone may play an important role in the pathogenesis of OA.
Collapse
|
18
|
Low CSF CD4/CD8+ T-cell proportions are associated with blood-CSF barrier dysfunction in limbic encephalitis. Epilepsy Behav 2020; 102:106682. [PMID: 31846897 DOI: 10.1016/j.yebeh.2019.106682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/10/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Investigating immune cells in autoimmune limbic encephalitis (LE) will contribute to our understanding of its pathophysiology and may help to develop appropriate therapies. The aim of the present study was to analyze immune cells to reveal underlying immune signatures in patients with temporal lobe epilepsy (TLE) with LE. METHODS We investigated 68 patients with TLE with LE compared with 7 control patients with TLE with no signs of LE screened from 154 patients with suspected LE. From the patients with TLE-LE, we differentiated early seizure onset (<20 years, n = 9) and late seizure onset group (≥20 years, n = 59) of patients. Patients underwent neuropsychological assessment, electroencephalography (EEG), brain magnetic resonance imaging (MRI), and peripheral blood (PB) and cerebrospinal fluid (CSF) analysis including flow cytometry. RESULTS We identified a higher CD4/8+ T-cell ratio in the PB in all patients with TLE-LE and in patients with late-onset TLE-LE each compared with controls (Kruskal-Wallis one-way ANOVA (analysis of variance) with Dunn's test, p < 0.05). Moreover, a lower CD4/CD8+ T-cell ratio is detected in all patients with TLE-LE with blood-CSF barrier dysfunction, unlike in those with none (Kruskal-Wallis one-way ANOVA with Dunn's test, p < 0.05). CONCLUSIONS These findings suggest that the proportion of CD4+ and CD8+ T-cells in the CSF of patients with LE associated with blood-CSF barrier dysfunction plays a potential role in CNS (central nervous system) inflammation in these patients. Thus, flow cytometry as a methodology reveals novel insights into LE's genesis and symptomatology. The CD4/8+ T-cell ratio in PB as a biomarker for LE requires further investigation.
Collapse
|
19
|
Krishnan A, Bhavanam S, Zochodne D. An Intimate Role for Adult Dorsal Root Ganglia Resident Cycling Cells in the Generation of Local Macrophages and Satellite Glial Cells. J Neuropathol Exp Neurol 2019; 77:929-941. [PMID: 30169768 DOI: 10.1093/jnen/nly072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The intricate interactions between neurons, glial, and inflammatory cells within peripheral ganglia are physiologically important, but not well explored. Here, we show that adult dorsal root ganglia (DRG) contain populations of self-renewing cells, collectively referred as DRG resident cycling cells (DRCCs), that are active not only in "quiescent" ganglia but also accelerate their turnover in response to distal axotomy. An unexpected proportion of DRCCs were resident macrophages. These cells closely accompanied, and aligned with recycling satellite glial cells (SGCs) that were juxtaposed to sensory neurons and possessed stem cell-like properties. Selective inhibition of colony stimulating factor 1 receptor prevented the local proliferation of macrophages. Interestingly, DRCC turnover was accompanied by apoptosis at later intervals indicating a balanced cellular milieu in the DRGs. These findings identify a complex interactive multicellular DRG microenvironment supporting self-renewal of both macrophages and SGCs and its potential implications in the overall response of adult DRGs to injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Neuroscience and Mental Health Institute.,Division of Neurology, Department of Medicine.,Alberta Diabetes Institute
| | - Sudha Bhavanam
- Division of Laboratory Medicine and Pathology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas Zochodne
- Neuroscience and Mental Health Institute.,Division of Neurology, Department of Medicine.,Alberta Diabetes Institute
| |
Collapse
|
20
|
Simões PSR, Zanelatto AO, Assis MC, Varella PPV, Yacubian EM, Carrete H, Centeno R, Araujo MS, Cavalheiro EA, Tersariol ILS, Motta G, Naffah-Mazzacoratti MDG. Plasma kallikrein-kinin system contributes to peripheral inflammation in temporal lobe epilepsy. J Neurochem 2019; 150:296-311. [PMID: 31206169 DOI: 10.1111/jnc.14793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is a chronic disease, characterized by severe and refractory seizures, triggered in the hippocampus and/or amygdala, disrupting the blood-brain barrier. This disruption can sustain, or aggravate, the epileptic condition. The aim of this study was to evaluate the activation of the kallikrein-kinin system in patients with TLE, as it relates to the maintenance of blood-brain barrier. Human hippocampal sclerotic tissues removed after surgery for seizure control, plasma, and serum were used in the following assays: immunostaining for white blood cells in the TLE hippocampus, C-reactive protein in serum, quantification of plasma kallikrein (PKal) and cathepsin B (CatB) activity in serum and plasma, quantification of C1-inhibitor, analysis of high-molecular-weight kininogen (H-kininogen) fragments, and activation of plasma prekallikrein for comparison with healthy controls. Infiltration of white blood cells in the sclerotic hippocampus and a significant increase in the neutrophil/lymphocyte ratio in the blood of TLE patients were observed. High levels of C-reactive protein (TLE = 1.4 ± 0.3 µg/mL), PKal (TLE = 5.4 ± 0.4 U/mL), and CatB (TLE = 4.9 ± 0.4 U/mL) were also evident in the serum of TLE patients comparing to controls. A strong linear correlation was observed between active CatB and PKal in the serum of TLE patients (r = 0.88). High levels of cleaved H-kininogen and free PKal, and low levels of C1-inhibitor (TLE = 188 ± 12 µg/mL) were observed in the serum of TLE patients. Our data demonstrated that the plasma kallikrein-kinin system is activated in patients with TLE. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Priscila S R Simões
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Alexia O Zanelatto
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Mirian C Assis
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Pedro Paulo V Varella
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil.,Diagnóstico da América Sociedade Anônima (DASA), Barueri, SP, Brasil
| | - Elza Marcia Yacubian
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Henrique Carrete
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Ricardo Centeno
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Mariana S Araujo
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Esper A Cavalheiro
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | | | - Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| | - Maria da Graça Naffah-Mazzacoratti
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil.,Departamento de Bioquímica, Escola Paulista de Medicina (UNIFESP), São Paulo, SP, Brasil
| |
Collapse
|
21
|
Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proc Natl Acad Sci U S A 2018; 115:E8929-E8938. [PMID: 30181265 PMCID: PMC6156634 DOI: 10.1073/pnas.1806754115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viral encephalitis is a major risk factor for the development of seizures, epilepsy, and hippocampal damage with associated cognitive impairment, markedly reducing quality of life in survivors. The mechanisms underlying seizures and hippocampal neurodegeneration developing during and after viral encephalitis are only incompletely understood, hampering the development of preventive treatments. Recent findings suggest that brain invasion of blood-born monocytes may be critically involved in both seizures and brain damage in response to encephalitis, whereas the relative role of microglia, the brain's resident immune cells, in these processes is not clear. CCR2 and CX3CR1 are two chemokine receptors that regulate the responses of myeloid cells, such as monocytes and microglia, during inflammation. We used Ccr2-KO and Cx3cr1-KO mice to understand the role of these receptors in viral encephalitis-associated seizures and neurodegeneration, using the Theiler's virus model of encephalitis in C57BL/6 mice. Our results show that CCR2 as well as CX3CR1 plays a key role in the accumulation of myeloid cells in the CNS and activation of hippocampal myeloid cells upon infection. Furthermore, by using Cx3cr1-creER+/-tdTomatoSt/Wt reporter mice, we show that, with regard to CD45 and CD11b expression, some microglia become indistinguishable from monocytes during CNS infection. Interestingly, the lack of CCR2 or CX3CR1 receptors was associated with almost complete prevention of hippocampal damage but did not prevent seizure development after viral CNS infection. These data are compatible with the hypothesis that CNS inflammatory mechanism(s) other than the infiltrating myeloid cells trigger the development of seizures during viral encephalitis.
Collapse
|
22
|
Neumann AM, Abele J, Kirschstein T, Engelmann R, Sellmann T, Köhling R, Müller-Hilke B. Mycophenolate mofetil prevents the delayed T cell response after pilocarpine-induced status epilepticus in mice. PLoS One 2017; 12:e0187330. [PMID: 29182639 PMCID: PMC5705158 DOI: 10.1371/journal.pone.0187330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023] Open
Abstract
Growing clinical and laboratory evidence corroborates a role for the immune system in the pathophysiology of epilepsy. In order to delineate the immune response following pilocarpine-induced status epilepticus (SE) in the mouse, we monitored the kinetics of leukocyte presence in the hippocampus over the period of four weeks. SE was induced following a ramping protocol of pilocarpine injection into 4–5 weeks old C57BL/6 mice. Brains were removed at days 1–4, 14 or 28 after SE, and the hippocampi were analyzed via flow cytometry, via quantitative reverse transcriptase PCR (qRT-PCR) and via immunohistochemistry. Epileptogenesis was confirmed by Timm staining of mossy fiber sprouting in the inner molecular layer of the dentate gyrus. The flow cytometry data revealed a biphasic immune response following pilocarpine-induced SE with a transient increase in activated CD11b+ and F4/80+ macrophages within the first four days replaced by an increase in CD3+ T-lymphocytes around day 28. This delayed T cell response was confirmed via qRT-PCR and via immunohistochemistry. In addition, qRT-PCR data could show that the delayed T cell response was associated with an increased CD8/CD4 ratio indicating a cytotoxic T cell response after SE. Intriguingly, early intervention with mycophenolate mofetil administration on days 0–3 after SE prevented this delayed T cell response. These results show an orchestrated immunological sequela and provide evidence that the delayed T cell response is sensitive to early immunomodulatory intervention.
Collapse
Affiliation(s)
- Anne-Marie Neumann
- Institute of Immunology, University of Rostock, Rostock, Germany
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Julia Abele
- Institute of Immunology, University of Rostock, Rostock, Germany
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Robby Engelmann
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | | |
Collapse
|