1
|
Donadio V, Liguori R. Skin nerve phosphorylated α-synuclein in the elderly. Authors' response. J Neuropathol Exp Neurol 2024; 83:988-989. [PMID: 39118196 DOI: 10.1093/jnen/nlae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
3
|
Janarthanam C, Clabaugh G, Wang Z, Melvin BR, Scheibe I, Jin H, Anantharam V, Urbauer RJB, Urbauer JL, Ma J, Kanthasamy A, Huang X, Donadio V, Zou W, Kanthasamy AG. High-Yield α-Synuclein Purification and Ionic Strength Modification Pivotal to Seed Amplification Assay Performance and Reproducibility. Int J Mol Sci 2024; 25:5988. [PMID: 38892177 PMCID: PMC11172462 DOI: 10.3390/ijms25115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Alpha-synuclein seed amplification assays (αSyn-SAAs) have emerged as promising diagnostic tools for Parkinson's disease (PD) by detecting misfolded αSyn and amplifying the signal through cyclic shaking and resting in vitro. Recently, our group and others have shown that multiple biospecimens, including CSF, skin, and submandibular glands (SMGs), can be used to seed the aggregation reaction and robustly distinguish between patients with PD and non-disease controls. The ultrasensitivity of the assay affords the ability to detect minute quantities of αSyn in peripheral tissues, but it also produces various technical challenges of variability. To address the problem of variability, we present a high-yield αSyn protein purification protocol for the efficient production of monomers with a low propensity for self-aggregation. We expressed wild-type αSyn in BL21 Escherichia coli, lysed the cells using osmotic shock, and isolated αSyn using acid precipitation and fast protein liquid chromatography (FPLC). Following purification, we optimized the ionic strength of the reaction buffer to distinguish the fluorescence maximum (Fmax) separation between disease and healthy control tissues for enhanced assay performance. Our protein purification protocol yielded high quantities of αSyn (average: 68.7 mg/mL per 1 L of culture) and showed highly precise and robust αSyn-SAA results using brain, skin, and SMGs with inter-lab validation.
Collapse
Affiliation(s)
- Chelva Janarthanam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Griffin Clabaugh
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Bradley R. Melvin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA;
| | - Ileia Scheibe
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Ramona J. B. Urbauer
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; (R.J.B.U.); (J.L.U.)
| | - Jeffrey L. Urbauer
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; (R.J.B.U.); (J.L.U.)
| | - Jiyan Ma
- Chinese Institute for Brain Research, Beijing 102206, China;
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, Complex Operational Unit Clinica Neurologica, 40138 Bologna, Italy;
| | - Wenquan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Anumantha G. Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (C.J.); (G.C.); (I.S.); (H.J.); (V.A.); (A.K.)
| |
Collapse
|
4
|
Donadio V, Fadda L, Incensi A, Furia A, Parisini S, Colaci F, Defazio G, Liguori R. Skin nerve phosphorylated α-synuclein in the elderly. J Neuropathol Exp Neurol 2024; 83:245-250. [PMID: 38408377 PMCID: PMC10951970 DOI: 10.1093/jnen/nlae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
To determine the incidence of phosphorylated α-synuclein (p-syn) in skin nerves in very old subjects who are prone to developing incidental Lewy bodies, we prospectively performed skin biopsies on 33 elderly subjects, including 13 (>85 years old) and 20 patients (>70 years) suspected of having an acquired small fiber neuropathy. All subjects underwent neurological examination prior to the biopsy. Two screened female subjects (ages 102 and 98 years) were excluded from the study because they showed evidence of a slight bradykinetic-rigid extrapyramidal disorder on neurological examination and were not considered healthy; both showed p-syn in skin nerves. We did not identify p-syn in skin nerves in the remaining 31 subjects. A PubMed analysis of publications from 2013 to 2023 disclosed 490 healthy subjects tested for skin p-syn; one study reported p-syn in 4 healthy subjects, but the remaining subjects tested negative. Our data underscore the virtual absence of p-syn in skin nerves of healthy controls, including those who are very elderly. These data support skin biopsy as a highly specific tool for identifying an underlying synucleinopathy in patients in vivo.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Laura Fadda
- Azienda Ospedaliero Universitaria di Cagliari, SC Neurologia, Cagliari, Italy
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alessandro Furia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Sara Parisini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Francesco Colaci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Giovanni Defazio
- Department of Biomedicine and Translational Neuroscience, Aldo Moro University of Bari, Bari, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Ebina J, Mizumura S, Morioka H, Shibukawa M, Nagasawa J, Yanagihashi M, Hirayama T, Ishii N, Kobayashi Y, Inaba A, Orimo S, Kano O. Clinical characteristics of patients with Parkinson's disease with reduced 123I-metaiodobenzylguanidine uptake in the major salivary glands and heart. J Neurol Sci 2024; 458:122932. [PMID: 38401301 DOI: 10.1016/j.jns.2024.122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Parkinson's disease (PD) shows cardiac sympathetic denervation (SD) in 123I-metaiodobezylguanidine (MIBG) scintigraphy. Recently, SD in the major salivary glands (MSG-SD) was introduced as a possible radiological feature of PD. OBJECTIVE To identify the clinical characteristics of patients with PD with reduced MSG and cardiac MIBG uptake (dual-SD) compared with those with reduced MSG or cardiac MIBG uptake only (single-SD). METHODS We recruited 90 patients with PD and 30 controls and evaluated their non-motor (e.g., hyposmia, autonomic dysfunction) and motor (e.g., Movement Disorder Society-Unified Parkinson's Disease Rating Scale) features. We also assessed MIBG uptake in the MSG and heart using a quantitative semi-automatic method, and compared MIBG uptakes between PD and controls. We set cut-off values for optimal sensitivity and specificity, and compared the clinical characteristics of patients with PD between dual- and single-SD groups. RESULTS MSG and cardiac MIBG uptakes were significantly reduced in PD. Sixty-one patients had dual-SD, 25 had single-SD, and four had non-SD. In patients with PD with normal cardiac SD, 76.5% (13/17) of whom showed abnormalities only in MSG-SD. When clinical characteristics were compared between the dual-SD and single-/non-SD groups, patients in the dual-SD group were older and had more severe hyposmia and autonomic dysfunction, except motor features. Multiple logistic regression analysis identified age as an important confounder. CONCLUSIONS Patients with PD with dual-SD have more severe non-motor features than other patients. Autonomic dysfunction might progress independently from dopaminergic degeneration. Furthermore, our findings indicate that aging is a crucial factor in PD progression.
Collapse
Affiliation(s)
- Junya Ebina
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Sunao Mizumura
- Department of Radiology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Harumi Morioka
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Mari Shibukawa
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Junpei Nagasawa
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Masaru Yanagihashi
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Takehisa Hirayama
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Nobutomo Ishii
- Central Radiology Division, Department of Radiology, Toho University Omori Medical Center, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Radiological Technology, Kanto Central Hospital, 6-25-1, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Akira Inaba
- Department of Neurology, Kanto Central Hospital, 6-25-1, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Satoshi Orimo
- Kamiyoga Setagaya Street Clinic, 6-31-15, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Waqar S, Khan H, Zulfiqar SK, Ahmad A. Skin Biopsy as a Diagnostic Tool for Synucleinopathies. Cureus 2023; 15:e47179. [PMID: 38022110 PMCID: PMC10652148 DOI: 10.7759/cureus.47179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Studies published in the last decade identified skin biopsies as a promising source of material for detecting alpha-synuclein (αSN). Alpha-synuclein gets deposited in the skin of patients with synucleinopathies, and therefore, a skin biopsy can be used to diagnose and confirm these diseases histopathologically. A skin biopsy can also be helpful for studies focusing on the nature of αSN deposits. The most important aspects of a biomarker are sensitivity, specificity, and technical feasibility. The potential for a skin biopsy to become the clinical tool of choice as a reliable biomarker for diagnosing synucleinopathies appears to be high, with consistently high sensitivity (>80%) and specificity approaching 100%. The review aims to provide an overview of the factors impacting skin biopsy's sensitivity, specificity, and feasibility in detecting dermal αSN deposits.
Collapse
Affiliation(s)
- Sara Waqar
- Pathology, Geisinger Health System, Danville, USA
| | - Hajra Khan
- Medicine, Rawalpindi Medical University, Rawalpindi, PAK
| | | | - Adeel Ahmad
- Dermatopathology/Dermatology/Pathology, Private Practice, Beckley, USA
| |
Collapse
|
7
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Santos-García D, Martínez-Valbuena I, Agúndez JAG. Alpha-Synuclein in Peripheral Tissues as a Possible Marker for Neurological Diseases and Other Medical Conditions. Biomolecules 2023; 13:1263. [PMID: 37627328 PMCID: PMC10452242 DOI: 10.3390/biom13081263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The possible usefulness of alpha-synuclein (aSyn) determinations in peripheral tissues (blood cells, salivary gland biopsies, olfactory mucosa, digestive tract, skin) and in biological fluids, except for cerebrospinal fluid (serum, plasma, saliva, feces, urine), as a marker of several diseases, has been the subject of numerous publications. This narrative review summarizes data from studies trying to determine the role of total, oligomeric, and phosphorylated aSyn determinations as a marker of various diseases, especially PD and other alpha-synucleinopathies. In summary, the results of studies addressing the determinations of aSyn in its different forms in peripheral tissues (especially in platelets, skin, and digestive tract, but also salivary glands and olfactory mucosa), in combination with other potential biomarkers, could be a useful tool to discriminate PD from controls and from other causes of parkinsonisms, including synucleinopathies.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Diego Santos-García
- Department of Neurology, CHUAC—Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain;
| | - Iván Martínez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - José A. G. Agúndez
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
8
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Kuzkina A, Panzer C, Seger A, Schmitt D, Rößle J, Schreglmann SR, Knacke H, Salabasidou E, Kohl A, Sittig E, Barbe M, Berg D, Volkmann J, Sommer C, Oertel WH, Schaeffer E, Sommerauer M, Janzen A, Doppler K. Dermal Real-Time Quaking-Induced Conversion Is a Sensitive Marker to Confirm Isolated Rapid Eye Movement Sleep Behavior Disorder as an Early α-Synucleinopathy. Mov Disord 2023; 38:1077-1082. [PMID: 36750755 DOI: 10.1002/mds.29340] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Skin biopsy is a potential tool for the premortem confirmation of an α-synucleinopathy. OBJECTIVE The aim was to assess the aggregation assay real-time quaking-induced conversion (RT-QuIC) of skin biopsy lysates to confirm isolated rapid eye movement sleep behavior disorder (iRBD) as an α-synucleinopathy. METHODS Skin biopsies of patients with iRBD, Parkinson's disease (PD), and controls were analyzed using RT-QuIC and immunohistochemical detection of phospho-α-synuclein. RESULTS α-Synuclein aggregation was detected in 97.4% of iRBD patients (78.4% of iRBD biopsies), 87.2% of PD patients (70% of PD biopsies), and 13% of controls (7.9% of control biopsies), with a higher seeding activity in iRBD compared to PD. RT-QuIC was more sensitive but less specific than immunohistochemistry. CONCLUSIONS Dermal RT-QuIC is a sensitive method to detect α-synuclein aggregation in iRBD, and high seeding activity may indicate a strong involvement of dermal nerve fibers in these patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anastasia Kuzkina
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Celine Panzer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Aline Seger
- Department of Neurology, University Hospital Cologne, University of Cologne, Köln, Germany
| | - Daniela Schmitt
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jonas Rößle
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | | | - Henrike Knacke
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Elena Salabasidou
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Antonia Kohl
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elisabeth Sittig
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Michael Barbe
- Department of Neurology, University Hospital Cologne, University of Cologne, Köln, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Marburg, Germany
- Helmholtz Center for Health and Environment, Institute for Neurogenomics, München-Neuherberg, Germany
| | - Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michael Sommerauer
- Department of Neurology, University Hospital Cologne, University of Cologne, Köln, Germany
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Annette Janzen
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Gibbons C, Wang N, Rajan S, Kern D, Palma JA, Kaufmann H, Freeman R. Cutaneous α-Synuclein Signatures in Patients With Multiple System Atrophy and Parkinson Disease. Neurology 2023; 100:e1529-e1539. [PMID: 36657992 PMCID: PMC10103107 DOI: 10.1212/wnl.0000000000206772] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/17/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Multiple system atrophy (MSA) is a progressive neurodegenerative disorder caused by the abnormal accumulation of α-synuclein in the nervous system. Clinical features include autonomic and motor dysfunction, which overlap with those of Parkinson disease (PD), particularly at early disease stages. There is an unmet need for accurate diagnostic and prognostic biomarkers for MSA and, specifically, a critical need to distinguish MSA from other synucleinopathies, particularly PD. The purpose of the study was to develop a unique cutaneous pathologic signature of phosphorylated α-synuclein that could distinguish patients with MSA from patients with PD and healthy controls. METHODS We studied 31 patients with MSA and 54 patients with PD diagnosed according to current clinical consensus criteria. We also included 24 matched controls. All participants underwent neurologic examinations, autonomic testing, and skin biopsies at 3 locations. The density of intraepidermal, sudomotor, and pilomotor nerve fibers was measured. The deposition of phosphorylated α-synuclein was quantified. Results were compared with clinical rating assessments and autonomic function test results. RESULTS Patients with PD had reduced nerve fiber densities compared with patients with MSA (p < 0.05, all fiber types). All patients with MSA and 51/54 with PD had evidence of phosphorylated α-synuclein in at least one skin biopsy. No phosphorylated α-synuclein was detected in controls. Patients with MSA had greater phosphorylated α-synuclein deposition (p < 0.0001) and more widespread peripheral distribution (p < 0.0001) than patients with PD. These results provided >90% sensitivity and specificity in distinguishing between the 2 disorders. DISCUSSION α-synuclein is present in the peripheral autonomic nerves of patients with MSA and when combined with synuclein distribution accurately distinguishes MSA from PD. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that measurement of phosphorylated α-synuclein in skin biopsies can differentiate patients with MSA from those with PD.
Collapse
Affiliation(s)
- Christopher Gibbons
- From the Department of Neurology (C.G., N.W., R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology (S.R.), NIH, Bethesda, MD; Department of Neurology (D.K.), University of Colorado, Aurora, CO; and Department of Neurology (J.-A.P., H.K.), NYU Grossman School of Medicine, New York, NY
| | - Ningshan Wang
- From the Department of Neurology (C.G., N.W., R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology (S.R.), NIH, Bethesda, MD; Department of Neurology (D.K.), University of Colorado, Aurora, CO; and Department of Neurology (J.-A.P., H.K.), NYU Grossman School of Medicine, New York, NY
| | - Sharika Rajan
- From the Department of Neurology (C.G., N.W., R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology (S.R.), NIH, Bethesda, MD; Department of Neurology (D.K.), University of Colorado, Aurora, CO; and Department of Neurology (J.-A.P., H.K.), NYU Grossman School of Medicine, New York, NY
| | - Drew Kern
- From the Department of Neurology (C.G., N.W., R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology (S.R.), NIH, Bethesda, MD; Department of Neurology (D.K.), University of Colorado, Aurora, CO; and Department of Neurology (J.-A.P., H.K.), NYU Grossman School of Medicine, New York, NY
| | - Jose-Alberto Palma
- From the Department of Neurology (C.G., N.W., R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology (S.R.), NIH, Bethesda, MD; Department of Neurology (D.K.), University of Colorado, Aurora, CO; and Department of Neurology (J.-A.P., H.K.), NYU Grossman School of Medicine, New York, NY
| | - Horacio Kaufmann
- From the Department of Neurology (C.G., N.W., R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology (S.R.), NIH, Bethesda, MD; Department of Neurology (D.K.), University of Colorado, Aurora, CO; and Department of Neurology (J.-A.P., H.K.), NYU Grossman School of Medicine, New York, NY
| | - Roy Freeman
- From the Department of Neurology (C.G., N.W., R.F.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Pathology (S.R.), NIH, Bethesda, MD; Department of Neurology (D.K.), University of Colorado, Aurora, CO; and Department of Neurology (J.-A.P., H.K.), NYU Grossman School of Medicine, New York, NY.
| |
Collapse
|
11
|
Liguori R, Donadio V, Wang Z, Incensi A, Rizzo G, Antelmi E, Biscarini F, Pizza F, Zou W, Plazzi G. A comparative blind study between skin biopsy and seed amplification assay to disclose pathological α-synuclein in RBD. NPJ Parkinsons Dis 2023; 9:34. [PMID: 36871045 PMCID: PMC9985591 DOI: 10.1038/s41531-023-00473-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
To compare the diagnostic accuracy of the immunofluorescence (IF) technique and aSyn-seed amplification assay (aSyn-SAA) of skin and cerebrospinal fluid (CSF) in disclosing pathological α-syn in idiopathic idiopathic REM sleep behavior disorder (iRBD) as early phase of a synucleinopathy. We prospectively recruited 41 patients with iRBD and 40 matched clinical controls including RBD associated with type 1 Narcolepsy (RBD-NT1, 21 patients), iatrogenic causes (2 pt) or OSAS (6 pt) and 11 patients with peripheral neuropathies. IF from samples taken by skin biopsy and aSyn-SAA from skin and CSF samples were analysed blinded to the clinical diagnosis. IF showed a good diagnostic accuracy (89%) that was lower in the case of skin and CSF-based aSyn-SAA (70% and 69%, respectively) because of a lower sensitivity and specificity. However, IF showed a significant agreement with CSF aSyn-SAA. In conclusion, our data may favor the use of skin biopsy and aSyn-SAA as diagnostic tools for a synucleinopathy in iRBD.
Collapse
Affiliation(s)
- R Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - V Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Z Wang
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - A Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - G Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - E Antelmi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - F Biscarini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - F Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Wq Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - G Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| |
Collapse
|
12
|
Chen DD, Jiao L, Huang Y, Xiao K, Gao LP, Chen C, Shi Q, Dong XP. Application of α-Syn Real-Time Quaking-Induced Conversion for Brain and Skin Specimens of the Chinese Patients With Parkinson’s Disease. Front Aging Neurosci 2022; 14:898516. [PMID: 35847665 PMCID: PMC9283982 DOI: 10.3389/fnagi.2022.898516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The real-time quaking-induced conversion (RT-QuIC) assay has been developed and used as an in vitro diagnostic tool for Parkinson’s disease (PD). In this study, we established α-Syn RT-QuIC using recombinant human α-Syn as the substrate. All 5 brain homogenates of neuropathological PD cases and 13 skin homogenates of clinical PD cases showed positive results, whereas all the samples of negative controls remain negative. Meantime, randomly selected 6 skin samples of PD cases and 6 skin samples of sCJD cases showed negative in opposite prion RT-QuIC and α-Syn RT-QuIC. Our α-Syn RT-QuIC showed dose-dependent manner between the lag times and peak ThT fluorescent values. Additionally, the detecting limitation was about 10–7 dilution for brain tissues and 10–6 for skins. Those data indicate a reliable specificity and good sensitivity of the established α-Syn RT-QuIC in identifying and amplifying the misfolded α-Syn in brain and skin tissues of patients with PD.
Collapse
Affiliation(s)
- Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
| | - Ling Jiao
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yue Huang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qi Shi,
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Zhejiang University, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- China Academy of Chinese Medical Sciences, Beijing, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China
- Xiao-Ping Dong,
| |
Collapse
|
13
|
Donadio V, Incensi A, Rizzo G, Fileccia E, Ventruto F, Riva A, Tiso D, Recchia M, Vacchiano V, Infante R, Petrangolini G, Allegrini P, Avino S, Pantieri R, Mostacci B, Avoni P, Liguori R. The Effect of Curcumin on Idiopathic Parkinson Disease: A Clinical and Skin Biopsy Study. J Neuropathol Exp Neurol 2022; 81:545-552. [PMID: 35556131 PMCID: PMC9210322 DOI: 10.1093/jnen/nlac034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
There are currently no standardized therapies for Parkinson disease (PD). Curcumin shows anti-amyloidogenic properties in vitro and may be a promising treatment for PD. We evaluated the effects of curcumin supplementation on clinical scales and misfolded, phosphorylated α-synuclein (p-syn) accumulation in skin biopsies in 19 PD patients who received curcumin supplementation for 12 months and 14 PD patients to treated with curcumin. The patients underwent autonomic (COMPASS-31), motor (MDS-UPDRS and H&Y) and nonmotor (NMSS) questionnaires and skin biopsies to evaluate clinical involvement and p-syn load in skin nerves at the beginning and the end of study. Curcumin and curcuminoid levels were assayed in plasma and CSF. Supplemented patients showed detectable CSF curcuminoid levels that were lower than those in plasma. They showed a decrease of COMPASS-31 and NMSS scores, and a slight p-syn load decrease versus untreated patients who displayed a worsening of these parameters despite increased levodopa doses. Multiple regression models showed a significant effect of curcumin supplementation in decreasing the worsening of the clinical parameters and p-syn load at after curcumin treatment. These data suggest that curcumin can cross the blood-brain barrier, that it is effective in ameliorating clinical parameters and that it shows a tendency to decrease skin p-syn accumulation in PD patients.
Collapse
Affiliation(s)
- Vincenzo Donadio
- Send correspondence to: Vincenzo Donadio, MD, PhD, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italia, via Altura 3, 40139 Bologna, Italy; E-mail:
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Enrico Fileccia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Francesco Ventruto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | | | | | | | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rossella Infante
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | | | | | | | - Roberta Pantieri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neurologia, Bologna, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Patrizia Avoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy
| |
Collapse
|
14
|
Han Y, Wu D, Wang Y, Xie J, Zhang Z. Skin alpha-synuclein deposit patterns: A predictor of Parkinson's disease subtypes. EBioMedicine 2022; 80:104076. [PMID: 35644126 PMCID: PMC9148991 DOI: 10.1016/j.ebiom.2022.104076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by the formation of Lewy bodies comprised mainly of α-synuclein. Assessment of skin synuclein has the potential as an excellent diagnostic method with high sensitivity, specificity, and reproducibility that is also convenient and acceptable to patients. In this review, we summarize findings regarding the characteristics of cutaneous nerve p-α-syn or α-syn deposits and their correlations with clinical phenotypes in PD patients with and without orthostatic hypotension and LRRK2, GBA, and SNCA gene mutations. This review can serve as a reference for the diagnosis and classification of PD based on α-syn deposit patterns and to deeply explore its pathogenesis. Funding statement The work was partly supported by the National Natural Science Key Foundation of China (No. 81830040 and No 82130042) and the Program of Excellent Talents in Medical Science of Jiangsu Province (No. JCRCA2016006) .
Collapse
|
15
|
Association between probable REM sleep behavior disorder and increased dermal alpha-synuclein deposition in Parkinson's disease. Parkinsonism Relat Disord 2022; 99:58-61. [PMID: 35605512 DOI: 10.1016/j.parkreldis.2022.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Many patients with Parkinson's disease suffer from REM sleep behavior disorder, potentially preceding the onset of motor symptoms. Phospho-alpha-synuclein is detectable in skin biopsies of patients with isolated REM sleep behavior disorder several years prior to the onset of manifest PD, but information on the association between dermal phospho-alpha-synuclein deposition and REM sleep behavior disorder in patients with manifest PD is limited. We therefore aimed to investigate the alpha-synuclein burden in dermal peripheral nerve fibers in patients with Parkinson's disease with and without REM sleep behavior disorder. METHODS Patients with Parkinson's disease (n = 43) who had undergone skin biopsy for the immunohistochemical detection of phosphorylated alpha-synuclein were screened for REM sleep behavior disorder using RBDSQ and Mayo Sleep Questionnaire. Skin biopsies from 43 patients with isolated polysomnography-confirmed REM sleep behavior disorder were used as comparators. RESULTS Dermal alpha-synuclein deposition was more frequently found (81.8% vs. 52.4%, p = 0.05) and was more abundant (p = 0.01) in patients with Parkinson's disease suffering from probable REM sleep behavior disorder compared to patients without REM sleep behavior disorder and was similar to patients with isolated REM sleep behavior disorder (79.1%). CONCLUSION The phenotype of REM sleep behavior disorder is associated with high amounts of dermal alpha-synuclein deposition, demonstrating a strong involvement of peripheral nerves in patients with this non-motor symptom and may argue in favor of REM sleep behavior disorder as an indicator of a "body-predominant" subtype of Parkinson's disease.
Collapse
|
16
|
Gibbons CH, Freeman R, Bellaire B, Adler CH, Moore D, Levine T. Synuclein-One study: skin biopsy detection of phosphorylated α-synuclein for diagnosis of synucleinopathies. Biomark Med 2022; 16:499-509. [PMID: 35272481 PMCID: PMC9169016 DOI: 10.2217/bmm-2021-0646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
Finding an easily accessible and reliable tool to diagnose the diseases collectively defined as 'synucleinopathies' is an urgent, unmet priority. The synucleinopathies include Parkinson's disease, multiple system atrophy, pure autonomic failure and dementia with Lewy bodies. There are millions of people who have a diagnosis of a synucleinopathy, with more diagnosed every year. With accessibility, ease of implementation, consistently high sensitivity (>80%) and specificity approaching 100%, skin biopsy has great potential as the clinical test of choice for the diagnosis of synucleinopathies. The large, multi-center Synuclein-One study will determine the sensitivity, specificity, accuracy and precision of α-synuclein detection within punch skin biopsies in patients with clinically established synucleinopathies using standardized, robust methods suitable for large-scale analysis. Clinical Trial Registration: NCT04700722 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02446, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02446, USA
| | | | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Dan Moore
- Calico Computing, Livermore, CA 94550, USA
| | - Todd Levine
- Department of Neurology, Honorhealth, Phoenix, AZ 85251, USA
| |
Collapse
|
17
|
Srivastava A, Alam P, Caughey B. RT-QuIC and Related Assays for Detecting and Quantifying Prion-like Pathological Seeds of α-Synuclein. Biomolecules 2022; 12:biom12040576. [PMID: 35454165 PMCID: PMC9030929 DOI: 10.3390/biom12040576] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Various disease-associated forms or strains of α-synuclein (αSynD) can spread and accumulate in a prion-like fashion during synucleinopathies such as Parkinson’s disease (PD), Lewy body dementia (DLB), and multiple system atrophy (MSA). This capacity for self-propagation has enabled the development of seed amplification assays (SAAs) that can detect αSynD in clinical samples. Notably, α-synuclein real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays have evolved as ultrasensitive, specific, and relatively practical methods for detecting αSynD in a variety of biospecimens including brain tissue, CSF, skin, and olfactory mucosa from synucleinopathy patients. However, αSyn SAAs still lack concordance in detecting MSA and familial forms of PD/DLB, and the assay parameters show poor correlations with various clinical measures. End-point dilution analysis in αSyn RT-QuIC assays allows for the quantitation of relative amounts of αSynD seeding activity that may correlate moderately with clinical measures and levels of other biomarkers. Herein, we review recent advancements in α-synuclein SAAs for detecting αSynD and describe in detail the modified Spearman–Karber quantification algorithm used with end-point dilutions.
Collapse
|
18
|
Passive Immunization in Alpha-Synuclein Preclinical Animal Models. Biomolecules 2022; 12:biom12020168. [PMID: 35204668 PMCID: PMC8961624 DOI: 10.3390/biom12020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, but also in other organs. The abnormal accumulation and propagation of pathogenic αsyn across the autonomic connectome is associated with progressive loss of neurons in the brain and peripheral organs, resulting in motor and non-motor symptoms. To date, no cure is available for synucleinopathies, and therapy is limited to symptomatic treatment of motor and non-motor symptoms upon diagnosis. Recent advances using passive immunization that target different αsyn structures show great potential to block disease progression in rodent studies of synucleinopathies. However, passive immunotherapy in clinical trials has been proven safe but less effective than in preclinical conditions. Here we review current achievements of passive immunotherapy in animal models of synucleinopathies. Furthermore, we propose new research strategies to increase translational outcome in patient studies, (1) by using antibodies against immature conformations of pathogenic αsyn (monomers, post-translationally modified monomers, oligomers and protofibrils) and (2) by focusing treatment on body-first synucleinopathies where damage in the brain is still limited and effective immunization could potentially stop disease progression by blocking the spread of pathogenic αsyn from peripheral organs to the brain.
Collapse
|
19
|
Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 164:105626. [PMID: 35031485 DOI: 10.1016/j.nbd.2022.105626] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Braak's hypothesis has been extremely influential over the last two decades. However, neuropathological and clinical evidence suggest that the model does not conform to all patients with Parkinson's disease (PD). To resolve this controversy, a new model was recently proposed; in brain-first PD, the initial α-synuclein pathology arise inside the central nervous system, likely rostral to the substantia nigra pars compacta, and spread via interconnected structures - eventually affecting the autonomic nervous system; in body-first PD, the initial pathological α-synuclein originates in the enteric nervous system with subsequent caudo-rostral propagation to the autonomic and central nervous system. By using REM-sleep behavior disorder (RBD) as a clinical identifier to distinguish between body-first PD (RBD-positive at motor symptom onset) and brain-first PD (RBD-negative at motor symptom onset), we explored the literature to evaluate clinical and imaging differences between these proposed subtypes. Body-first PD patients display: 1) a larger burden of autonomic symptoms - in particular orthostatic hypotension and constipation, 2) more frequent pathological α-synuclein in peripheral tissues, 3) more brainstem and autonomic nervous system involvement in imaging studies, 4) more symmetric striatal dopaminergic loss and motor symptoms, and 5) slightly more olfactory dysfunction. In contrast, only minor cortical metabolic alterations emerge before motor symptoms in body-first. Brain-first PD is characterized by the opposite clinical and imaging patterns. Patients with pathological LRRK2 genetic variants mostly resemble a brain-first PD profile whereas patients with GBA variants typically conform to a body-first profile. SNCA-variant carriers are equally distributed between both subtypes. Overall, the literature indicates that body-first and brain-first PD might be two distinguishable entities on some clinical and imaging markers.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
20
|
Cuenca-Bermejo L, Almela P, Navarro-Zaragoza J, Fernández Villalba E, González-Cuello AM, Laorden ML, Herrero MT. Cardiac Changes in Parkinson's Disease: Lessons from Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:13488. [PMID: 34948285 PMCID: PMC8705692 DOI: 10.3390/ijms222413488] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/18/2023] Open
Abstract
Dysautonomia is a common non-motor symptom in Parkinson's disease (PD). Most dysautonomic symptoms appear due to alterations in the peripheral nerves of the autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. The degeneration of sympathetic nerve fibers and neurons leads to cardiovascular dysfunction, which is highly prevalent in PD patients. Cardiac alterations such as orthostatic hypotension, heart rate variability, modifications in cardiogram parameters and baroreflex dysfunction can appear in both the early and late stages of PD, worsening as the disease progresses. In PD patients it is generally found that parasympathetic activity is decreased, while sympathetic activity is increased. This situation gives rise to an imbalance of both tonicities which might, in turn, promote a higher risk of cardiac damage through tachycardia and vasoconstriction. Cardiovascular abnormalities can also appear as a side effect of PD treatment: L-DOPA can decrease blood pressure and aggravate orthostatic hypotension as a result of a negative inotropic effect on the heart. This unwanted side effect limits the therapeutic use of L-DOPA in geriatric patients with PD and can contribute to the number of hospital admissions. Therefore, it is essential to define the cardiac features related to PD for the monitorization of the heart condition in parkinsonian individuals. This information can allow the application of intervention strategies to improve the course of the disease and the proposition of new alternatives for its treatment to eliminate or reverse the motor and non-motor symptoms, especially in geriatric patients.
Collapse
Affiliation(s)
- Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience Group/Biomedical Research Institute of Murcia (NiCE-IMIB)/Institute for Aging Research, School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (A.-M.G.-C.)
| | - Pilar Almela
- Department of Pharmacology, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, 30100 Murcia, Spain; (P.A.); (J.N.-Z.); (M.-L.L.)
| | - Javier Navarro-Zaragoza
- Department of Pharmacology, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, 30100 Murcia, Spain; (P.A.); (J.N.-Z.); (M.-L.L.)
| | - Emiliano Fernández Villalba
- Clinical and Experimental Neuroscience Group/Biomedical Research Institute of Murcia (NiCE-IMIB)/Institute for Aging Research, School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (A.-M.G.-C.)
| | - Ana-María González-Cuello
- Clinical and Experimental Neuroscience Group/Biomedical Research Institute of Murcia (NiCE-IMIB)/Institute for Aging Research, School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (A.-M.G.-C.)
| | - María-Luisa Laorden
- Department of Pharmacology, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, 30100 Murcia, Spain; (P.A.); (J.N.-Z.); (M.-L.L.)
| | - María-Trinidad Herrero
- Clinical and Experimental Neuroscience Group/Biomedical Research Institute of Murcia (NiCE-IMIB)/Institute for Aging Research, School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (A.-M.G.-C.)
| |
Collapse
|
21
|
Miglis MG, Zitser J, Schneider L, During E, Jaradeh S, Freeman R, Gibbons CH. Cutaneous α-synuclein is correlated with autonomic impairment in isolated rapid eye movement sleep behavior disorder. Sleep 2021; 44:zsab172. [PMID: 34244806 PMCID: PMC8664580 DOI: 10.1093/sleep/zsab172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES To define the clinical implications of cutaneous phosphorylated α-synuclein (p-syn) and its association with subjective and objective measures of autonomic impairment and clinical features including antidepressant use in isolated rapid eye movement (REM) sleep behavior disorder (iRBD). METHODS Twenty-five iRBD patients had quantified neurological and cognitive examinations, olfactory testing, questionnaires, autonomic function testing, and 3 punch skin biopsies (distal thigh, proximal thigh, neck). Skin biopsies were stained for the pan-axonal marker PGP 9.5 and co-stained with p-syn, and results were compared to 28 patients with Parkinson's disease (PD) and 18 healthy controls. Equal numbers of iRBD patients on and off antidepressants were recruited. The composite autonomic severity scale (CASS) was calculated for all patients. RESULTS P-syn was detected in 16/25 (64%) of iRBD patients, compared to 27/28 (96%) of PD and 0/18 controls. The presence of p-syn at any biopsy site was correlated with both sympathetic (CASS adrenergic r = 0.6, p < 0.05) and total autonomic impairment (CASS total r = 0.6, p < 0.05) on autonomic reflex testing in iRBD patients. These results were independent of the density of p-syn at each site. There was no correlation between p-syn and antidepressant use. CONCLUSIONS In patients with iRBD, the presence of cutaneous p-syn was detected in most patients and was associated with greater autonomic dysfunction on testing. Longitudinal follow-up will aid in defining the predictive role of both skin biopsy and autonomic testing in determining phenoconversion rates and future disease status.
Collapse
Affiliation(s)
- Mitchell G Miglis
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Redwood City, CA, USA
| | - Jennifer Zitser
- Department of Neurology, Tel Aviv Sourasky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Logan Schneider
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Redwood City, CA, USA
- Stanford/VA Alzheimer’s Center, Palo Alto VA Health Care System, Palo Alto, CA, USA
- Sierra Pacific Mental Illness Research Education and Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Emmanuel During
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Redwood City, CA, USA
| | - Safwan Jaradeh
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | | |
Collapse
|
22
|
Nakagaki T, Nishida N, Satoh K. Development of α-Synuclein Real-Time Quaking-Induced Conversion as a Diagnostic Method for α-Synucleinopathies. Front Aging Neurosci 2021; 13:703984. [PMID: 34650422 PMCID: PMC8510559 DOI: 10.3389/fnagi.2021.703984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy are characterized by aggregation of abnormal α-synuclein (α-syn) and collectively referred to as α-synucleinopathy. Because these diseases have different prognoses and treatments, it is desirable to diagnose them early and accurately. However, it is difficult to accurately diagnose these diseases by clinical symptoms because symptoms such as muscle rigidity, postural dysreflexia, and dementia sometimes overlap among these diseases. The process of conformational conversion and aggregation of α-syn has been thought similar to that of abnormal prion proteins that cause prion diseases. In recent years, in vitro conversion methods, such as real-time quaking-induced conversion (RT-QuIC), have been developed. This method has succeeded in amplifying and detecting trace amounts of abnormal prion proteins in tissues and central spinal fluid of patients by inducing conversion of recombinant prion proteins via shaking. Additionally, it has been used for antemortem diagnosis of prion diseases. Recently, aggregated α-syn has also been amplified and detected in patients by applying this method and many clinical studies have examined diagnosis using tissues or cerebral spinal fluid from patients. In this review, we discuss the utility and problems of α-syn RT-QuIC for antemortem diagnosis of α-synucleinopathies.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
23
|
Gibbons C, Donadio V, Sommer C, Liguori R, Lauria Pinter G, Lombardi R, Doppler K, Freeman R. Reader Response: In Vivo Distribution of α-Synuclein in Multiple Tissues and Biofluids in Parkinson Disease. Neurology 2021; 96:964-965. [PMID: 34001543 DOI: 10.1212/wnl.0000000000011941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Donadio V, Wang Z, Incensi A, Rizzo G, Fileccia E, Vacchiano V, Capellari S, Magnani M, Scaglione C, Stanzani Maserati M, Avoni P, Liguori R, Zou W. In Vivo Diagnosis of Synucleinopathies: A Comparative Study of Skin Biopsy and RT-QuIC. Neurology 2021; 96:e2513-e2524. [PMID: 33837116 PMCID: PMC8205473 DOI: 10.1212/wnl.0000000000011935] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determine whether (1) immunofluorescence is a reproducible technique in detecting misfolded α-synuclein in skin nerves and subsequently whether (2) immunofluorescence and real-time quaking-induced conversion (RT-QuIC) (both in skin and CSF) show a comparable in vivo diagnostic accuracy in distinguishing synucleinopathies from non-synucleinopathies in a large cohort of patients. METHODS We prospectively recruited 90 patients fulfilling clinical and instrumental diagnostic criteria for all synucleinopathies variants and non-synucleinopathies (mainly including Alzheimer disease, tauopathies, and vascular parkinsonism or dementia). Twenty-four patients with mainly peripheral neuropathies were used as controls. Patients underwent skin biopsy for immunofluorescence and RT-QuIC; CSF was examined in patients who underwent lumbar puncture for diagnostic purposes. Immunofluorescence and RT-QuIC analysis were made blinded to the clinical diagnosis. RESULTS Immunofluorescence showed reproducible results between 2 pairs of neighboring skin samples. Both immunofluorescence and RT-QuIC showed high sensitivity and specificity in discriminating synucleinopathies from non-synucleinopathies and controls but immunofluorescence presented higher diagnostic accuracy. Immunofluorescence presented a good level of agreement with RT-QuIC in both skin and CSF in synucleinopathies. CONCLUSIONS Both immunofluorescence and RT-QuIC showed high diagnostic accuracy, although immunofluorescence displayed the better value as well as optimal reproducibility; they presented a good level of agreement in synucleinopathies, supporting the use of less invasive tests such as skin immunofluorescence or RT-QuIC instead of CSF RT-QuIC as a diagnostic tool for synucleinopathies. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that immunofluorescence or RT-QuIC accurately distinguish synucleinopathies from non-synucleinopathies.
Collapse
Affiliation(s)
- Vincenzo Donadio
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH.
| | - Zerui Wang
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Alex Incensi
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Giovanni Rizzo
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Enrico Fileccia
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Veria Vacchiano
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Sabina Capellari
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Martina Magnani
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Cesa Scaglione
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michelangelo Stanzani Maserati
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Patrizia Avoni
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Rocco Liguori
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| | - Wenquan Zou
- From the IRCCS Istituto delle Scienze Neurologiche di Bologna (V.D., A.I., G.R., E.F., V.V., S.C., M.M., C.S., M.S.M., P.A., R.L.), Italy; and Departments of Pathology and Neurology (Z.W., W.Z.), Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
25
|
Al-Qassabi A, Tsao TS, Racolta A, Kremer T, Cañamero M, Belousov A, Santana MA, Beck RC, Zhang H, Meridew J, Pugh J, Lian F, Robida MD, Ritter M, Czech C, Beach TG, Pestic-Dragovich L, Taylor KI, Zago W, Tang L, Dziadek S, Postuma RB. Immunohistochemical Detection of Synuclein Pathology in Skin in Idiopathic Rapid Eye Movement Sleep Behavior Disorder and Parkinsonism. Mov Disord 2021; 36:895-904. [PMID: 33232556 PMCID: PMC10123546 DOI: 10.1002/mds.28399] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent studies reported abnormal alpha-synuclein deposition in biopsy-accessible sites of the peripheral nervous system in Parkinson's disease (PD). This has considerable implications for clinical diagnosis. Moreover, if deposition occurs early, it may enable tissue diagnosis of prodromal PD. OBJECTIVE The aim of this study was to develop and test an automated bright-field immunohistochemical assay of cutaneous pathological alpha-synuclein deposition in patients with idiopathic rapid eye movement sleep behavior disorder, PD, and atypical parkinsonism and in control subjects. METHODS For assay development, postmortem skin biopsies were taken from 28 patients with autopsy-confirmed Lewy body disease and 23 control subjects. Biopsies were stained for pathological alpha-synuclein in automated stainers using a novel dual-immunohistochemical assay for serine 129-phosphorylated alpha-synuclein and pan-neuronal marker protein gene product 9.5. After validation, single 3-mm punch skin biopsies were taken from the cervical 8 paravertebral area from 79 subjects (28 idiopathic rapid eye movement sleep behavior disorder, 20 PD, 10 atypical parkinsonism, and 21 control subjects). Raters blinded to clinical diagnosis assessed the biopsies. RESULTS The immunohistochemistry assay differentiated alpha-synuclein pathology from nonpathological-appearing alpha-synuclein using combined phosphatase and protease treatments. Among autopsy samples, 26 of 28 Lewy body samples and none of the 23 controls were positive. Among living subjects, punch biopsies were positive in 23 (82%) subjects with idiopathic rapid eye movement sleep behavior disorder, 14 (70%) subjects with PD, 2 (20%) subjects with atypical parkinsonism, and none (0%) of the control subjects. After a 3-year follow-up, eight idiopathic rapid eye movement sleep behavior disorder subjects phenoconverted to defined neurodegenerative syndromes, in accordance with baseline biopsy results. CONCLUSION Even with a single 3-mm punch biopsy, there is considerable promise for using pathological alpha-synuclein deposition in skin to diagnose both clinical and prodromal PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ahmed Al-Qassabi
- Department of Neurology, McGill University–Montreal General Hospital, Montreal, Quebec, Canada
- Sultan Qaboos University Hospital, Muscat
| | | | | | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marta Cañamero
- Roche Pharmaceutical Research and Early Development, Penzberg, Germany
| | - Anton Belousov
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | | | | - Judith Pugh
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | - Fangru Lian
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | | | - Mirko Ritter
- Roche Centralised and Point of Care Solutions, Penzberg, Germany
| | - Christian Czech
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kirsten I. Taylor
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Wagner Zago
- Prothena Biosciences Inc., South San Francisco, California, USA
| | - Lei Tang
- Roche Tissue Diagnostics, Tucson, Arizona, USA
| | - Sebastian Dziadek
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ronald B. Postuma
- Department of Neurology, McGill University–Montreal General Hospital, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- CARSM, CIUSSS-NÎM-Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
26
|
Brumberg J, Kuzkina A, Lapa C, Mammadova S, Buck A, Volkmann J, Sommer C, Isaias IU, Doppler K. Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy. Neurobiol Dis 2021; 153:105332. [PMID: 33722614 DOI: 10.1016/j.nbd.2021.105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022] Open
Abstract
Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [123I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical work-up including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [123I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [123I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 ± 0.63 vs. 2.91 ± 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 ± 0.51 vs. 2.74 ± 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Oberdϋrrbacher Straβe 6, 97080 Würzburg, Germany.
| | - Anastasia Kuzkina
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Oberdϋrrbacher Straβe 6, 97080 Würzburg, Germany; Nuclear Medicine, Medical Faculty, University of Augsburg, Stenglinstraβe 2, 86156 Augsburg, Germany
| | - Sona Mammadova
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Oberdϋrrbacher Straβe 6, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| |
Collapse
|
27
|
Yang J, Wang H, Yuan Y, Fan S, Li L, Jiang C, Mao C, Shi C, Xu Y. Peripheral synucleinopathy in Parkinson disease with LRRK2 G2385R variants. Ann Clin Transl Neurol 2021; 8:592-602. [PMID: 33527742 PMCID: PMC7951097 DOI: 10.1002/acn3.51301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Recent studies demonstrated cutaneous phosphorylated α synuclein (p‐syn) deposition in idiopathic and some monogenetic Parkinson disease (PD) patients, suggesting synucleinopathy identical to that in the brain. Although the LRRK2 Gly2385Arg (G2385R) variant is a common PD risk factor in the Chinese population, the pathogenesis of PD with G2385R variant has not been reported. We investigated whether synucleinopathy and small fiber neuropathy (SFN) are associated with the G2385R variant. Methods We performed genotyping in 59 PD patients and 30 healthy controls from the skin biopsy database. The scale of SFN was assessed, as well as bright‐field immunohistochemistry against antiprotein gene product 9.5 (PGP9.5) and double‐labeling immunofluorescence with anti‐PGP9.5 and anti‐p‐syn. Results (1) p‐syn deposited in the skin nerve fibers of G2385R carrier PD patients, which was a different pattern from noncarriers, without no difference observed between proximal and distal regions; (2) decreased distal intraepidermal nerve fiber density was found in both the G2385R carrier and the noncarrier PD group, and was negatively correlated with composite autonomic symptom score‐31 item (COMPASS‐31) scores; (3) PD patients with the G2385R variant showed a more peculiar clinical profile than noncarriers with a higher nonmotor symptoms scale, COMPASS‐31 score, and levodopa equivalent dose, in addition to an increased prevalence of certain autonomic symptoms or rapid eye movement sleep behavior disorders. Interpretation Synucleinopathy is related to the LRRK2 G2385R genotype and implies a different pathogenesis in G2385R variant carriers and noncarriers. This study also extended the clinical profiles of PD patients with the G2385R variant.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hao Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yanpeng Yuan
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cerebrovascular Disease of Henan Province, Zhengzhou, Henan, 450052, China
| | - Shiheng Fan
- Key Laboratory of Cerebrovascular Disease of Henan Province, Zhengzhou, Henan, 450052, China
| | - Lanjun Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chenyang Jiang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chengyuan Mao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Changhe Shi
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Key Laboratory of Cerebrovascular Disease of Henan Province, Zhengzhou, Henan, 450052, China
| |
Collapse
|
28
|
Borghammer P. The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson's Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline. JOURNAL OF PARKINSON'S DISEASE 2021; 11:455-474. [PMID: 33682732 PMCID: PMC8150555 DOI: 10.3233/jpd-202481] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
A new model of Parkinson's disease (PD) pathogenesis is proposed, the α-Synuclein Origin site and Connectome (SOC) model, incorporating two aspects of α-synuclein pathobiology that impact the disease course for each patient: the anatomical location of the initial α-synuclein inclusion, and α-synuclein propagation dependent on the ipsilateral connections that dominate connectivity of the human brain. In some patients, initial α-synuclein pathology occurs within the CNS, leading to a brain-first subtype of PD. In others, pathology begins in the peripheral autonomic nervous system, leading to a body-first subtype. In brain-first cases, it is proposed that the first pathology appears unilaterally, often in the amygdala. If α-synuclein propagation depends on connection strength, a unilateral focus of pathology will disseminate more to the ipsilateral hemisphere. Thus, α-synuclein spreads mainly to ipsilateral structures including the substantia nigra. The asymmetric distribution of pathology leads to asymmetric dopaminergic degeneration and motor asymmetry. In body-first cases, the α-synuclein pathology ascends via the vagus to both the left and right dorsal motor nuclei of the vagus owing to the overlapping parasympathetic innervation of the gut. Consequently, the initial α-synuclein pathology inside the CNS is more symmetric, which promotes more symmetric propagation in the brainstem, leading to more symmetric dopaminergic degeneration and less motor asymmetry. At diagnosis, body-first patients already have a larger, more symmetric burden of α-synuclein pathology, which in turn promotes faster disease progression and accelerated cognitive decline. The SOC model is supported by a considerable body of existing evidence and may have improved explanatory power.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Gibbons CH, Wang N, Kim JY, Campagnolo M, Freeman R. Skin Biopsy in Evaluation of Autonomic Disorders. Continuum (Minneap Minn) 2020; 26:200-212. [PMID: 31996629 DOI: 10.1212/con.0000000000000814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article provides an up-to-date assessment of the role of skin biopsy in the evaluation of autonomic disorders. The standard methodology for completing a skin biopsy, the anatomic structures of interest detected within a skin biopsy, and the disease states in which skin biopsies may provide valuable information are reviewed. RECENT FINDINGS Several recent advances in the studies of hereditary amyloidosis and the various degenerative synucleinopathies have demonstrated that simple skin biopsies can provide valuable pathologic evidence of neurologic disease. In addition to diagnosis of the underlying disorder, skin biopsies provide a quantitative structural measurement of the associated autonomic damage. SUMMARY Skin biopsies are making great inroads into the study of autonomic and peripheral nerve disorders. Complex immunohistochemical staining protocols are challenging to complete, but the rich data derived from these studies in the diagnosis and monitoring of different disease states suggest that the role of skin biopsies in the study of the autonomic nervous system will continue to expand in the years to come.
Collapse
|
30
|
Infante R, Scaglione C, Incensi A, Rizzo G, Liguori R, Donadio V. A Longitudinal Skin Biopsy Study of Phosphorylated Alpha-Synuclein in a Patient With Parkinson Disease and Orthostatic Hypotension. J Neuropathol Exp Neurol 2020; 79:813-816. [PMID: 32529258 DOI: 10.1093/jnen/nlaa048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of our study was to assess the distribution of phosphorylated α-synuclein (p-syn) deposits in a patient affected by early stage Parkinson disease and orthostatic hypotension through a longitudinal skin biopsy study. We found widespread p-syn spatial diffusion from deep autonomic dermis nerve bundles to autonomic terminals, suggesting a centrifugal spread of p-syn from ganglia to the innervation target structures. Furthermore, the case suggests the possibility of discriminating synucleinopathies at an early stage of disease by means of skin biopsy. If confirmed, these data support skin biopsy as a useful and promising tool for the diagnosis, longitudinal evaluation, and pathological understanding of Parkinson disease.
Collapse
Affiliation(s)
- Rossella Infante
- Department of Biomedical and Neuromotor Sciences, University of Bologna
| | - Cesa Scaglione
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alex Incensi
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanni Rizzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna.,UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna.,UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Donadio
- Department of Biomedical and Neuromotor Sciences, University of Bologna
| |
Collapse
|
31
|
Niemann N, Billnitzer A, Jankovic J. Parkinson's disease and skin. Parkinsonism Relat Disord 2020; 82:61-76. [PMID: 33248395 DOI: 10.1016/j.parkreldis.2020.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is associated with a variety of dermatologic disorders and the study of skin may provide insights into pathophysiological mechanisms underlying this common neurodegenerative disorder. Skin disorders in patients with Parkinson's disease can be divided into two major groups: 1) non-iatrogenic disorders, including melanoma, seborrheic dermatitis, sweating disorders, bullous pemphigoid, and rosacea, and 2) iatrogenic disorders related either to systemic side effects of antiparkinsonian medications or to the delivery system of antiparkinsonian therapy, including primarily carbidopa/levodopa, rotigotine and other dopamine agonists, amantadine, catechol-O-methyl transferase inhibitors, subcutaneous apomorphine, levodopa/carbidopa intestinal gel, and deep brain stimulation. Recent advances in our understanding of the role of α-synuclein in peripheral tissues, including the skin, and research based on induced pluripotent stem cells derived from skin fibroblasts have made skin an important target for the study of Parkinson's disease pathogenesis, drug discovery, novel stem cell therapies, and diagnostics.
Collapse
Affiliation(s)
- Nicki Niemann
- Muhammad Ali Parkinson Center, Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | - Andrew Billnitzer
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Giannoccaro MP, Donadio V, Giannini G, Devigili G, Rizzo G, Incensi A, Cason E, Calandra-Buonaura G, Eleopra R, Cortelli P, Liguori R. Comparison of 123I-MIBG scintigraphy and phosphorylated α-synuclein skin deposits in synucleinopathies. Parkinsonism Relat Disord 2020; 81:48-53. [PMID: 33049589 DOI: 10.1016/j.parkreldis.2020.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cardiac [123I]metaiodobenzylguanidine scintigraphy (123I-MIBG) is considered a useful test in differentiating multiple system atrophy (MSA) and Lewy body disorders (LBD), including idiopathic Parkinson's disease (IPD), dementia with Lewy bodies (DLB) and pure autonomic failure (PAF). The detection of skin nerve phosphorylated α-synuclein (p-α-syn) deposits could be an alternative marker in vivo. We sought to compare 123I-MIBG scintigraphy and skin biopsy findings in α-synucleinopathies. METHODS We studied 54 patients (7 DLB, 21 IPD, 13 PAF, 13 MSA) who underwent 123I-MIBG scintigraphy and skin biopsy to evaluate cardiac innervation and skin p-α-syn deposition, respectively. RESULTS Cardiac denervation was observed in 90.5% IPD, 100% DLB and PAF and in none of the MSA patients (P < 0.0001) whereas p-α-syn deposits were detected in all DLB and PAF, in 95.2% of IPD and 69.2% of MSA patients (P = 0.02). However, the analysis of skin structures disclosed a different distribution of the deposits in somatic subepidermal plexus and autonomic fibers among groups, showing that p-α-syn deposits rarely affected the autonomic fibers in MSA as opposed to LBD. Studying the p-α-syn deposition in autonomic nerves, concordance among I123-MIBG scintigraphy and skin biopsy results was observed in 100% of DLB and PAF, 95.2% IPD and 92.3% MSA patients. I123-MIBG scintigraphy and autonomic p-α-syn deposits analysis both showed a sensitivity of 97.5% and a specificity of 100% and 92.3%, respectively, in distinguishing LBD and MSA. CONCLUSION Skin biopsy and 123-MIBG scintigraphy can be considered alternative tests for the differential diagnosis of IPD, PAF and DLB versus MSA.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Grazia Devigili
- Neurological Unit 1, Fondazione I.R.C.C.S, Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Ernesto Cason
- U.O. di Medicina Nucleare, Azienda AUSL Bologna, Ospedale Maggiore, Italy
| | - Giovanna Calandra-Buonaura
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Roberto Eleopra
- Neurological Unit 1, Fondazione I.R.C.C.S, Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
33
|
Liu X, Yang J, Yuan Y, He Q, Gao Y, Jiang C, Li L, Xu Y. Optimization of the Detection Method for Phosphorylated α-Synuclein in Parkinson Disease by Skin Biopsy. Front Neurol 2020; 11:569446. [PMID: 33101177 PMCID: PMC7554368 DOI: 10.3389/fneur.2020.569446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/21/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Recent studies have found deposition of phosphorylated α-synuclein (p-syn) in Parkinson disease (PD) patients' skin, indicating p-syn may be a potential biomarker of PD. However, the sensitivity of the p-syn detection varied largely from 5. 3 to 100%, this influenced the clinical use of this detection method to some extent. Objective: This study aimed to optimize the skin biopsy method for detecting p-syn deposition in patients with PD. Methods: Ninety PD patients and 30 healthy controls underwent skin biopsies at 2–3 of the following sites: the distal leg, thigh, cervical region, or forearm. Skin biopsy samples were cut to 50- and 15-μm thickness sections. Deposition of p-syn were detected by using double immunofluorescence labeling of protein gene production 9.5 (PGP9.5) /p-syn. Statistical data analysis was performed using SPSS 25.0 software. Results: Deposition of p-syn were found in 75/90 PD patients but not in healthy controls (p < 0.001). The positive deposition rate of p-syn in the single cervical site was significantly higher than that in the distal leg, thigh, and forearm site. Two samples from the cervical region had a higher p-syn positive rate compared to single cervical site (90.5 vs. 66.7%, p = 0.037). There was no significant difference between the p-syn positive rate of samples from the distal leg/cervical sites and 2 samples from cervical region (80 vs. 90.5%, p = 0.261). Next, the p-syn positive deposition rate of 2-biopsy samples including distal leg/cervical sites and double samples in the cervical site were comparable to the 3-biopsy samples. The 50-μm section had a significantly higher p-syn positive rate than the 15-μm section (p = 0.049). Conclusions: Two biopsy sites (cervical/distal leg) or 2 samples from the cervical site were considered to be priority biopsy sites for detecting p-syn in PD patients. Thick sections may provide a higher p-syn positive rate than thin sections for skin biopsies. These findings provide an optimized p-syn detection method, indicate the valuable pathology biomarker of PD and will promote the clinical use of skin biopsy in the future.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian He
- Key Laboratory of Cerebrovascular Disease of Henan Province, Zhengzhou, China
| | - Yuan Gao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyang Jiang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanjun Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Donadio V, Incensi A, Rizzo G, De Micco R, Tessitore A, Devigili G, Del Sorbo F, Bonvegna S, Infante R, Magnani M, Zenesini C, Vignatelli L, Cilia R, Eleopra R, Tedeschi G, Liguori R. Skin Biopsy May Help to Distinguish Multiple System Atrophy-Parkinsonism from Parkinson's Disease With Orthostatic Hypotension. Mov Disord 2020; 35:1649-1657. [PMID: 32557839 DOI: 10.1002/mds.28126] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The differential diagnosis between multiple system atrophy parkinsonism type (MSA-P) and Parkinson's disease with orthostatic hypotension (PD+OH) is difficult because the 2 diseases have a similar clinical picture. The aim of this study is to distinguish MSA-P from PD+OH by immunostaining for abnormal phosphorylated α-synuclein at serine 129 (p-syn) in cutaneous nerves. METHOD We recruited 50 patients with parkinsonism and chronic orthostatic hypotension: 25 patients fulfilled the diagnostic criteria for MSA-P and 25 patients for PD+OH. The patients underwent a skin biopsy from the cervical area, thigh, and leg to analyze somatic and autonomic skin innervation and p-syn in skin nerves. RESULTS Intraneural p-syn positivity was found in 72% of patients with MSA-P, mainly in distal skin sites. More important, p-syn deposits in MSA-P differed from PD+OH because they were mainly found in somatic fibers of subepidermal plexi, whereas scant autonomic fiber involvement was found in only 3 patients. All patients with PD+OH displayed widely distributed p-syn deposits in the autonomic skin fibers of proximal and distal skin sites, whereas somatic fibers were affected only slightly in 4 patients with PD+OH. Skin innervation mirrored p-syn deposits because somatic innervation was mainly reduced in MSA-P. Sympathetic innervation was damaged in PD+OH but fairly preserved in MSA-P. CONCLUSIONS The p-syn in cutaneous nerves allows the differentiation of MSA-P from PD+OH; MSA-P mainly shows somatic fiber involvement with relatively preserved autonomic innervation; and by contrast, PD+OH displays prevalent abnormal p-syn deposits and denervation in autonomic postganglionic nerves. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italia
| | - Rosa De Micco
- Department of Advanced Medical and Surgery Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italia
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgery Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italia
| | - Grazia Devigili
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italia
| | | | | | - Rossella Infante
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Martina Magnani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Roberto Cilia
- Parkinson Institute ASST Gaetano Pini-CTO, Milano, Italia
| | - Roberto Eleopra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italia
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgery Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italia
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italia
| |
Collapse
|
35
|
O'Hara DM, Kalia SK, Kalia LV. Methods for detecting toxic α-synuclein species as a biomarker for Parkinson's disease. Crit Rev Clin Lab Sci 2020; 57:291-307. [PMID: 32116096 DOI: 10.1080/10408363.2019.1711359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the accumulation of α-synuclein (α-syn) into insoluble aggregates known as Lewy bodies and Lewy neurites in the brain. However, prior to the formation of these large aggregates, α-syn forms oligomers and small fibrils, which are believed to be the pathogenic species leading to the death of neurons in the substantia nigra in disease. The majority of aggregated α-syn is phosphorylated, and it is thought that this post-translational modification may be critical in disease pathogenesis. Thus, early detection of the toxic forms of α-syn may provide a window of opportunity for an intervention to halt or slow the progression of neurodegeneration in PD. Expression of α-syn is not restricted to the central nervous system and the protein can be found elsewhere, including bodily fluids and peripheral tissues. This review will examine current methods for detecting toxic forms of α-syn in accessible biospecimens and outline emerging techniques that may provide reliable identification of biomarkers for PD.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Zitser J, Gibbons C, Miglis MG. The role of tissue biopsy as a biomarker in REM sleep behavior disorder. Sleep Med Rev 2020; 51:101283. [PMID: 32187564 DOI: 10.1016/j.smrv.2020.101283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 02/03/2023]
Abstract
Patients with idiopathic REM-sleep behavior disorder (iRBD) are at substantial risk of progressive neurodegenerative disease of α-synuclein pathology. Longitudinal studies have demonstrated that abnormal α-synuclein deposition occurs early in the course of disease and may precede the appearance of motor symptoms by several decades. This provides rationale for the use of a reliable biomarker to both follow disease progression and to assess treatment response, once disease-modifying treatments become available. Tissue α-synuclein has emerged as a promising candidate, however the utility of α-synuclein detection in tissues accessible to biopsy in iRBD remains unclear. This article summarizes the current literature on the role of tissue biopsy in iRBD, with specific focus on its potential role as a biomarker of disease progression and its role in future clinical trials.
Collapse
Affiliation(s)
- Jennifer Zitser
- Department of Neurology & Neurological Sciences, University of California, San Francisco, CA, USA; Movement Disorders Unit, Department of Neurology, Tel Aviv Sourazky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Christopher Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mitchell G Miglis
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
37
|
Krämer HH, Lautenschläger G, de Azevedo M, Doppler K, Schänzer A, Best C, Oertel WH, Reuter I, Sommer C, Birklein F. Reduced central sympathetic activity in Parkinson's disease. Brain Behav 2019; 9:e01463. [PMID: 31691543 PMCID: PMC6908869 DOI: 10.1002/brb3.1463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE With a combination of different sympathetic tests, we aimed to elucidate whether impairment of sympathetic function in Parkinson's disease (PD) is the consequence of a central or peripheral efferent dysfunction. METHODS Thirty-five patients with early-to-intermediate PD (median age: 63 years; IQR: 57-67 years; disease duration 1-9 years, 15 women) and 20 age- and sex-matched healthy controls (median age: 64.5 years; IQR: 58-68 years; 10 women) were recruited. Autonomic testing was performed in two subgroups and included the assessment of resting cardiovascular parameters, postprandial hypotension (PPH), orthostatic hypotension (OH), and vasoconstriction induced by intradermal microdialysis with different concentrations of norepinephrine (NE; 10-5 ; 10-6 ; 10-7 ; 10-8 ) and by cold through forehead cooling. We also used sympathetic multiunit microneurography (muscle sympathetic nerve activity; MSNA; burst frequency (BF): bursts per minute; burst incidence (BI): bursts per 100 heart beats) and evaluated the presence of phosphorylated α-synuclein deposits in skin innervation in biopsies from the thighs by immunohistohemistry. RESULTS Diastolic blood pressure was higher in the PD group at rest (p < .001) and during OH (F = 6.533; p = .022). Vasoconstriction induced by NE microdialysis and cold was unchanged in PD patients. MSNA was lower in PD patients than in controls (BF: p = .001; BI: p = .025). Phosphorylated α-synuclein deposits could be found only in PD patients. CONCLUSION We did not find indications for peripheral sympathetic nerve fiber dysfunction or adrenoreceptor sensitivity changes. The decreased MSNA argues in favor of central sympathetic impairment.
Collapse
Affiliation(s)
- Heidrun H Krämer
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | | | | | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig-University, Giessen, Germany
| | - Christoph Best
- Department of Neurology, Philipps-University, Marburg, Germany
| | | | - Iris Reuter
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
38
|
Carmona-Abellan M, Gabilondo I, Murueta-Goyena A, Khurana V, Tijero B, Luquin MR, Acera M, Del Pino R, Gardeazabal J, Martínez-Valbuena I, Sanchez-Pernaute R, Gómez-Esteban JC. Small fiber neuropathy and phosphorylated alpha-synuclein in the skin of E46K-SNCA mutation carriers. Parkinsonism Relat Disord 2019; 65:139-145. [PMID: 31178336 DOI: 10.1016/j.parkreldis.2019.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVE In 2004 we described the E46K mutation in alpha-synuclein gene (E46K-SNCA), a rare point mutation causing an aggressive Lewy body disease with early prominent non-motor features and small fiber denervation of myocardium. Considering the potential interest of the skin as a target for the development of biomarkers in Parkinson's Disease (PD), in this work we aimed to evaluate structural and functional integrity of small autonomic nerve fibers and phosphorylated alpha-synuclein (p-synuclein) deposition in the skin of E46K-SNCA carriers as compared to those observed in parkin gene mutation (PARK2) carriers and healthy controls. PATIENTS AND METHODS We studied 7 E46K-SNCA carriers (3 dementia with Lewy bodies, 2 pure autonomic failure, 1 PD and 1 asymptomatic), 2 PARK2 carriers and 2 healthy controls to quantify intraepidermal nerve fiber density and p-synuclein deposition with cervical skin punch biopsies (immunohistochemistry against anti PGP9.5/UCHL-1, TH and p-synuclein) and sudomotor function with electrochemical skin conductance (ESC) (SudoScan). RESULTS All E46K-SNCA carriers had moderate to severe p-synuclein deposits and small fiber neurodegeneration in different epidermal and dermal structures including nerve fascicles and glands, especially in carriers with Pure Autonomic Failure, while p-synuclein aggregates where absent in healthy controls and in one of two PARK2 carriers. The severity of the latter skin abnormalities in E46K-SNCA were correlated with sudomotor dysfunction (lower ESC) in hands (p = 0.035). INTERPRETATION These results together with our previous findings support the relevance of E46K-SNCA mutation as a suitable model to study small fiber neuropathy in Lewy body diseases.
Collapse
Affiliation(s)
- Mar Carmona-Abellan
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces-Barakaldo, Bizkaia, Spain
| | - Inigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces-Barakaldo, Bizkaia, Spain; Neurology Department, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain; Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - Ane Murueta-Goyena
- Neurology Department, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces-Barakaldo, Bizkaia, Spain; Neurology Department, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | - María Rosario Luquin
- Department of Neurology, Clínica Universitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces-Barakaldo, Bizkaia, Spain
| | - Rocío Del Pino
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces-Barakaldo, Bizkaia, Spain
| | - Jesús Gardeazabal
- Dermatology Department, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | - Ivan Martínez-Valbuena
- Department of Neurology, Clínica Universitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | | | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Cruces-Barakaldo, Bizkaia, Spain; Neurology Department, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain.
| |
Collapse
|
39
|
Pérez-Lloret S, Quarracino C, Otero-Losada M, Rascol O. Droxidopa for the treatment of neurogenic orthostatic hypotension in neurodegenerative diseases. Expert Opin Pharmacother 2019; 20:635-645. [PMID: 30730771 DOI: 10.1080/14656566.2019.1574746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION L-threo-3,4-dihydroxyphenylserine (droxidopa), a pro-drug metabolized to norepinephrine in nerve endings and other tissues, has been commercially available in Japan since 1989 for treating orthostatic hypotension symptoms in Parkinson's disease (PD) patients with a Hoehn & Yahr stage III rating, as well as patients with Multiple System Atrophy (MSA), familial amyloid polyneuropathy, and hemodialysis. Recently, the FDA has approved its use in symptomatic neurogenic orthostatic hypotension (NOH). Areas covered: The authors review the effects of droxidopa in NOH with a focus on the neurodegenerative diseases PD, MSA, and pure autonomic failure (PAF). Expert opinion: A few small and short placebo-controlled clinical trials in NOH showed significant reductions in the manometric drop in blood pressure (BP) after posture changes or meals. Larger Phase III studies showed conflicting results, with two out of four trials meeting their primary outcome and thus suggesting a positive yet short-lasting effect of the drug on OH Questionnaire composite score, light-headedness/dizziness score, and standing BP during the first two treatment-weeks. Results appear essentially similar in PD, MSA, and PAF. The FDA granted droxidopa approval in the frame of an 'accelerated approval program' provided further studies are conducted to assess its long-term effects on OH symptoms.
Collapse
Affiliation(s)
- Santiago Pérez-Lloret
- a Instituto de Investigaciones Cardiológicas , University of Buenos Aires, National Research Council (ININCA-UBA-CONICET) , Buenos Aires , Argentina.,b Department of Physiology , School of Medicine, University of Buenos Aires (UBA) , Buenos Aires , Argentina
| | - Cecilia Quarracino
- a Instituto de Investigaciones Cardiológicas , University of Buenos Aires, National Research Council (ININCA-UBA-CONICET) , Buenos Aires , Argentina
| | - Matilde Otero-Losada
- a Instituto de Investigaciones Cardiológicas , University of Buenos Aires, National Research Council (ININCA-UBA-CONICET) , Buenos Aires , Argentina
| | - Olivier Rascol
- c Services de Pharmacologie Clinique et Neurosciences, Centre d'Investigation Clinique CIC 1436, NS-Park/FCRIN Network, NeuroToul COEN Center , Université de Toulouse UPS, CHU de Toulouse, INSERM , Toulouse , France
| |
Collapse
|
40
|
Moving forward the in vivo diagnosis of the synucleinopathies. Clin Auton Res 2019; 29:575-576. [DOI: 10.1007/s10286-019-00595-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/05/2023]
|
41
|
Donadio V. Skin nerve α-synuclein deposits in Parkinson's disease and other synucleinopathies: a review. Clin Auton Res 2018; 29:577-585. [PMID: 30506233 DOI: 10.1007/s10286-018-0581-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE The in vivo diagnosis of synucleinopathies is an important research aim since clinical diagnostic criteria show low accuracy. The skin innervation, especially the autonomic subdivision, is a useful region to search for abnormal α-syn aggregates in synucleinopathies since the peripheral sympathetic nerves can be the earliest-affected neural region and autonomic symptoms may precede the classical symptoms of these disorders. METHODS The major advantages of skin biopsy as an in vivo diagnostic tool for synucleinopathies are that it is an inexpensive and easy-to-perform technique requiring only limited facilities, and that it is repeatable in long-term studies as it causes only minor discomfort to the patient. RESULTS This review analyzes current progress in this area of research that may facilitate the standardization of this method, potentially eliminating differences among laboratories in the implementation of the method. CONCLUSIONS The most suitable and commonly used technique for identifying in vivo α-syn aggregates in skin nerves is indirect immunofluorescence, although several aspects of this approach need to be standardized, particularly when synucleinopathies without autonomic failure present a patchy distribution of abnormal α-syn aggregates in skin nerves. By contrast, synucleinopathies with autonomic failure may present widespread diffusion of abnormal aggregates in autonomic skin nerves.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto Delle Scienze Neurologiche di Bologna (Italy), UOC Clinica Neurologica, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|