1
|
Huq A, Thompson B, Winship I. Clinical application of whole genome sequencing in young onset dementia: challenges and opportunities. Expert Rev Mol Diagn 2024; 24:659-675. [PMID: 39135326 DOI: 10.1080/14737159.2024.2388765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024]
Abstract
INTRODUCTION Young onset dementia (YOD) by its nature is difficult to diagnose. Despite involvement of multidisciplinary neurogenetics services, patients with YOD and their families face significant diagnostic delays. Genetic testing for people with YOD currently involves a staggered, iterative approach. There is currently no optimal single genetic investigation that simultaneously identifies the different genetic variants resulting in YOD. AREAS COVERED This review discusses the advances in clinical genomic testing for people with YOD. Whole genome sequencing (WGS) can be employed as a 'one stop shop' genomic test for YOD. In addition to single nucleotide variants, WGS can reliably detect structural variants, short tandem repeat expansions, mitochondrial genetic variants as well as capture single nucleotide polymorphisms for the calculation of polygenic risk scores. EXPERT OPINION WGS, when used as the initial genetic test, can enhance the likelihood of a precision diagnosis and curtail the time taken to reach this. Finding a clinical diagnosis using WGS can reduce invasive and expensive investigations and could be cost effective. These advances need to be balanced against the limitations of the technology and the genetic counseling needs for these vulnerable patients and their families.
Collapse
Affiliation(s)
- Aamira Huq
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Bryony Thompson
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Winship
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Ganguly J, Tuesta Bernaola M, Jog M. Four Octapeptide Repeat Insertion (4-OPRI) in PRNP Causing Huntington Disease Phenocopy. Can J Neurol Sci 2024; 51:598-600. [PMID: 37614119 DOI: 10.1017/cjn.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Jacky Ganguly
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Mellany Tuesta Bernaola
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Van den Broecke A, Decruyenaere A, Schuermans N, Verdin H, Ghijsels J, Sieben A, Dermaut B, Hemelsoet D. Pooled analysis of patients with inherited prion disease caused by two- to twelve-octapeptide repeat insertions in the prion protein gene (PRNP). J Neurol 2024; 271:263-273. [PMID: 37689591 DOI: 10.1007/s00415-023-11968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Inherited prion diseases caused by two- to twelve-octapeptide repeat insertions (OPRIs) in the prion protein gene (PRNP) show significant clinical heterogeneity. This study describes a family with two new cases with a 4-OPRI mutation and two asymptomatic mutation carriers. The pooled analysis summarizes all cases reported in the literature to date and describes the relation between survival, age of onset, number of OPRI and codon 129 polymorphism. MEDLINE and Google Scholar were queried from database inception up to December 31, 2022. Age of onset was compared per number of OPRI and per codon 129 polymorphism using the Kruskal-Wallis and Wilcoxon-Mann-Whitney tests, respectively. Disease duration was modeled non-parametrically by a Kaplan-Meier model and semi-parametrically by a Cox model. This study comprised 164 patients. Lower number of OPRI and presence of valine (cis-V) versus methionine (cis-M) on codon 129 were associated with an older age of onset (P < 0.001 and P = 0.025, respectively) and shorter disease duration (P < 0.001 and P = 0.003, respectively). Within patients with 5- or more OPRI codon cis-V remained significantly associated with a shorter disease duration. Codon 129 homozygosity versus heterozygosity was not significantly associated with age of onset or disease duration (P = 0.076 and P = 0.409, respectively). This study summarized the largest cohort of patients with two- to twelve-OPRI to date. Lower number of OPRI and codon 129 cis-V is associated with an older age of onset and shorter disease duration, while homozygosity or heterozygosity on codon 129 was not.
Collapse
Affiliation(s)
| | | | - Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jody Ghijsels
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Anne Sieben
- Born-Bunge Institute, Laboratory for Neuropathology, University of Antwerp, Antwerp, Belgium
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
4
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
5
|
Nan H, Liu L, Chen Z, Chu M, Li J, Jing D, Wang Y, Wu L. Octapeptide repeat alteration mutations of the prion protein gene in clinically diagnosed Alzheimer's disease and frontotemporal dementia. Clin Genet 2023. [PMID: 37148197 DOI: 10.1111/cge.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Studies focusing on octapeptide repeat alteration mutations in PRNP in Alzheimer's disease (AD) and frontotemporal dementia (FTD) cohorts have been rare. We aim to screen sporadic AD and FTD patients with unknown etiology for the octapeptide repeat insertions and deletions in PRNP. Two hundred and six individuals were screened for alterations to the repeat region in the PRNP gene, including 146 sporadic AD and 60 sporadic FTD patients. Our study showed a 1.5% (3/206) occurrence of the octapeptide repeat alteration mutations in PRNP in a Chinese cohort of sporadic dementia. One late-onset FTD patient and one early-onset AD patient each had a two-octapeptide repeat deletion in PRNP, while one early-onset AD patient had a five-octapeptide repeat insertion mutation. PRNP octapeptide repeat alteration mutations are present in sporadic AD and FTD patients. The genetic investigation for PRNP octapeptide repeat alteration mutations in sporadic dementia patients should be carried out in future clinical studies.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jieying Li
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Donglai Jing
- Department of Neurology, Rongcheng People's Hospital, Hebei, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Guadagno AH, Medina SH. The manifold role of octapeptide repeats in prion protein assembly. Pept Sci (Hoboken) 2023; 115:e24303. [PMID: 37153755 PMCID: PMC10162500 DOI: 10.1002/pep2.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Amy H. Guadagno
- Nanomedicine, Intercollegiate Degree Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Areškevičiūtė A, Lund EL, Capellari S, Parchi P, Pinkowsky CT. The First Sporadic Creutzfeldt-Jakob Disease Case with a Rare Molecular Subtype VV1 and 1-Octapeptide Repeat Deletion in PRNP. Viruses 2021; 13:v13102061. [PMID: 34696491 PMCID: PMC8540765 DOI: 10.3390/v13102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
In the present manuscript, we report the clinical presentation and challenging diagnostic work-up of a sporadic Creutzfeldt–Jakob disease patient with confirmed VV1 subtype and heterozygous 1-octapeptide repeat deletion in the prion protein gene. The described patient was a 58-year-old woman. Interestingly, most of the reported patients with the VV1 subtype to date are men with an average age of 44 years at disease onset. The patient was observed clinically from symptoms onset until her death 22 months later. This report describes the patient’s insidious clinical evolution and the paraclinical examinations and pathology reports gathered at different time points of disease progression. Unfortunately, the absence of typical clinical and paraclinical features of classic sporadic Creutzfeldt–Jakob disease made the brain biopsy surgery necessary. This case report illustrates the diagnostic difficulties posed by the phenotypic heterogeneity of sporadic Creutzfeldt–Jakob disease and urges clinicians to consider this diagnosis even in patients who do not fulfil the typical clinical disease criteria. Furthermore, it highlights the need for real-time quaking-induced conversion method adaptation for detection of rare sporadic Creutzfeldt–Jakob disease subtypes with certain prion protein gene variants.
Collapse
Affiliation(s)
- Aušrinė Areškevičiūtė
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (A.A.); (E.L.L.)
| | - Eva Løbner Lund
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (A.A.); (E.L.L.)
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40123 Bologna, Italy; (S.C.); (P.P.)
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40123 Bologna, Italy; (S.C.); (P.P.)
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | | |
Collapse
|
8
|
Phenotypic diversity of genetic Creutzfeldt-Jakob disease: a histo-molecular-based classification. Acta Neuropathol 2021; 142:707-728. [PMID: 34324063 PMCID: PMC8423680 DOI: 10.1007/s00401-021-02350-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
The current classification of sporadic Creutzfeldt–Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size (“i”) between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a “thickened” synaptic pattern in E200K carriers, cerebellar “stripe-like linear granular deposits” in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M”i”). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.
Collapse
|
9
|
Cali I, Cracco L, Saracino D, Occhipinti R, Coppola C, Appleby BS, Puoti G. Case Report: Histopathology and Prion Protein Molecular Properties in Inherited Prion Disease With a De Novo Seven-Octapeptide Repeat Insertion. Front Cell Neurosci 2020; 14:150. [PMID: 32733203 PMCID: PMC7362343 DOI: 10.3389/fncel.2020.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
The insertion of additional 168 base pair containing seven octapeptide repeats in the prion protein (PrP) gene region spanning residues 51–91 is associated with inherited prion disease. In 2008, we reported the clinical features of a novel de novo seven-octapeptide repeat insertion (7-OPRI) mutation coupled with codon 129 methionine (M) homozygosity in the PrP gene of a 19-year-old man presenting with psychosis and atypical dementia, and 16-year survival. Here, we describe the histopathological and PrP molecular properties in the autopsied brain of this patient. Histopathological examination revealed widespread brain atrophy, focal spongiform degeneration (SD), cortical PrP plaques, and elongated PrP formations in the cerebellum. Overall, these histopathological features resemble those described in a Belgian pedigree with 7-OPRI mutation except for the presence of PrP plaques in our case, which are morphologically different from the multicore plaques described in some OPRI mutations and in Gerstmann–Sträussler–Scheinker (GSS) syndrome. The comparative characterization of the detergent-soluble and detergent-insoluble PrP in our patient and in sporadic Creutzfeldt–Jakob disease (CJD) revealed distinct molecular signatures. Proteinase K digestion of the pathogenic, disease-associated PrP (PrPD) revealed PrPD type 1 in the cerebral cortex and mixed PrPD types 1 and 2 in the cerebellum. Altogether, the present study outlines the importance of assessing the phenotypical and PrP biochemical properties of these rare conditions, thereby widening the spectrum of the phenotypic heterogeneity of the 7-OPRI insertion mutations. Further studies are needed to determine whether distinct conformers of PrPD are associated with two major clinico-histopathological phenotypes in prion disease with 7-OPRI.
Collapse
Affiliation(s)
- Ignazio Cali
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,National Prion Disease Pathology Surveillance Center (NPDPSC), School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Laura Cracco
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Dario Saracino
- Division of Neurology, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Prion Disease Diagnosis and Surveillance Center (PDDSC), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Cinzia Coppola
- Division of Neurology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Brian Stephen Appleby
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,National Prion Disease Pathology Surveillance Center (NPDPSC), School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Gianfranco Puoti
- Division of Neurology, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Prion Disease Diagnosis and Surveillance Center (PDDSC), University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
10
|
Areškevičiūtė A, Broholm H, Melchior LC, Bartoletti-Stella A, Parchi P, Capellari S, Scheie D, Lund EL. Molecular Characterization of the Danish Prion Diseases Cohort With Special Emphasis on Rare and Unique Cases. J Neuropathol Exp Neurol 2020; 78:980-992. [PMID: 31553446 DOI: 10.1093/jnen/nlz089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to perform an updated reclassification of all definite prion disease cases with available fresh-frozen samples referred to the Danish Reference Center over the past 40 years, putting a special emphasis on the molecular characterization of novel disease subtypes. Investigation of the Danish prion diseases cohort revealed rare sporadic Creutzfeldt-Jakob disease cases with mixed subtypes and subtypes with previously uncharacterized white matter plaques, a new case of sporadic fatal insomnia, and 3 novel mutations, including 2 large octapeptide repeat insertions, and a point mutation in the prion protein gene. The evaluation of methionine and valine distribution at codon 129 among the prion disease patients in the cohort revealed the increased prevalence of methionine homozygotes compared to the general population. This observation was in line with the prevalence reported in other Caucasian prion disease cohort studies. Reclassification of the old prion diseases cohort revealed unique cases, the molecular characterization of which improves prion diseases classification, diagnostic accuracy, genetic counseling of affected families, and the understanding of disease biology.
Collapse
Affiliation(s)
- Aušrinė Areškevičiūtė
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Helle Broholm
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Linea C Melchior
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Piero Parchi
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Sabina Capellari
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - David Scheie
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Eva L Lund
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy; Department of Experimental Diagnostic and Specialty Medicine; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|