1
|
Veronese A, Uršič T, Bizjak Vojinovič S, Rodman Berlot J. Exploring Clinical Predictors of Severe Human Metapneumovirus Respiratory Tract Infections in Children: Insights from a Recent Outbreak. Microorganisms 2024; 12:641. [PMID: 38674586 PMCID: PMC11052206 DOI: 10.3390/microorganisms12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen that causes both upper (URTIs) and lower respiratory tract infections (LRTIs) in children. The virus can be implicated in severe bronchiolitis and pneumonia, necessitating hospitalization, with certain cases requiring intensive care unit intervention. As part of a retrospective observational study, we aimed to identify indicators of severe hMPV respiratory tract infections in children referred to the University Children's Hospital Ljubljana and the Department of Infectious Diseases Ljubljana, Slovenia, during a recent outbreak. We analyzed clinical data from November 2022 to January 2023 and compared the characteristics of children presenting with URTIs and LRTIs. We also examined the characteristics of children with hMPV LRTIs, distinguishing between children with and without LRTI-associated hypoxemia. Of 78 hMPV-PCR-positive pediatric patients (mean age 3.1 years; 60.3% boys), 36% had a URTI, and 64% had an LRTI. Hospitalization was required in 64% (50/78), with 42% (21/50) requiring oxygen therapy. LRTI-associated hypoxemia was more common in patients with atopy who showed dyspnea, tachypnea, crackles, and wheezing on lung auscultation. In a multivariable logistic regression analysis, wheezing detected on lung auscultation was a significant predictive factor for hypoxemic hMPV-LRTI. Specifically, children presenting with wheezing were found to be ten times more likely to experience hypoxemia. Prematurity and chronic conditions did not influence the presentation or severity of hMPV infection. This study highlights wheezing and atopy as crucial indicators of severe hMPV LRTI in children, emphasizing the importance of early recognition and intervention.
Collapse
Affiliation(s)
- Airin Veronese
- Department of Paediatric Pulmonology, University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Uršič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Bizjak Vojinovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Jasna Rodman Berlot
- Department of Paediatric Pulmonology, University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Chongyu T, Guanglin L, Fang S, Zhuoya D, Hao Y, Cong L, Xinyu L, Wei H, Lingyun T, Yan N, Penghui Y. A chimeric influenza virus vaccine expressing fusion protein epitopes induces protection from human metapneumovirus challenge in mice. Front Microbiol 2023; 13:1012873. [PMID: 38155756 PMCID: PMC10753001 DOI: 10.3389/fmicb.2022.1012873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2023] Open
Abstract
Human metapneumovirus (HMPV) is a common virus associated with acute respiratory distress syndrome in pediatric patients. There are no HMPV vaccines or therapeutics that have been approved for prevention or treatment. In this study, we constructed a novel recombinant influenza virus carrying partial HMPV fusion protein (HMPV-F), termed rFLU-HMPV/F-NS, utilizing reverse genetics, which contained (HMPV-F) in the background of NS segments of influenza virus A/PuertoRico/8/34(PR8). The morphological characteristics of rFLU-HMPV/F-NS were consistent with the wild-type flu virus. Additionally, immunofluorescence results showed that fusion proteins in the chimeric rFLU-HMPV/F-NS could work well, and the virus could be stably passaged in SPF chicken embryos. Furthermore, intranasal immunization with rFLU-HMPV/F-NS in BALB/c mice induced robust humoral, mucosal and Th1-type dominant cellular immune responses in vivo. More importantly, we discovered that rFLU-HMPV/F-NS afforded significant protective efficacy against the wild-type HMPV and influenza virus challenge, with significantly attenuated pathological changes and reduced viral titers in the lung tissues of immunized mice. Collectively, these findings demonstrated that chimeric recombinant rFLU-HMPV/F-NS as a promising HMPV candidate vaccine has potentials for the development of HMPV vaccine.
Collapse
Affiliation(s)
- Tian Chongyu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Lei Guanglin
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sun Fang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deng Zhuoya
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Hao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Cong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Xinyu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - He Wei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tan Lingyun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Niu Yan
- Inner Mongolia Medical University, Hohhot, China
| | - Yang Penghui
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Inner Mongolia Medical University, Hohhot, China
- First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Lamichhane J, Upreti M, Nepal K, Upadhyay BP, Maharjan U, Shrestha RK, Chapagain RH, Banjara MR, Shrestha UT. Burden of human metapneumovirus infections among children with acute respiratory tract infections attending a Tertiary Care Hospital, Kathmandu. BMC Pediatr 2023; 23:388. [PMID: 37550689 PMCID: PMC10405573 DOI: 10.1186/s12887-023-04208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARIs) are one of the most common causes of mortality and morbidity worldwide. Every year millions of children suffer from viral respiratory tract infections (RTIs) ranging from mild to severe illnesses. Human Metapneumovirus (HMPV) is among the most frequent viruses responsible for RTIs. However, HMPV infections and their severity among children have not been explored yet in Nepal. PURPOSE Therefore, the study was focused on HMPV infections and other potential viral etiologies or co-infections using multiplex PCR among children attending Kanti Children's Hospital and assessed the clinical characteristics of the infections as well as found the co-infections. A hospital-based cross-sectional study was designed and a convenience sampling method was used to enroll children of less than 15 years with flu-like symptoms from both outpatients and inpatients departments over three months of the study period. RESULTS HMPV infection (13.3%) was the most predominant infection among the different viral infections in children with ARIs in Kanti Children's Hospital. The HMPV was more prevalent in the age group less than three years (21.8%). Cough and fever were the most common clinical features present in all children infected with HMPV followed by rhinorrhea, sore throat, and wheezing. HMPV-positive children were diagnosed with pneumonia (42.9%), bronchiolitis (28.5%), upper respiratory tract infections (14.3%), and asthma (14.3%). The prevalence of HMPV was high in late winter (14.3%) followed by early spring (13.5%). CONCLUSIONS This study provides the baseline information on HMPV and associated co-infection with other respiratory viruses for the differential diagnosis based on molecular methods and also the comparison of clinical presentations among the different respiratory syndromes.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Milan Upreti
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Krishus Nepal
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | | | - Urusha Maharjan
- Central Diagnostic Laboratory & Research Center, Kamalpokhari, Kathmandu, Nepal
| | | | | | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
4
|
Emergence and Potential Extinction of Genetic Lineages of Human Metapneumovirus between 2005 and 2021. mBio 2023; 14:e0228022. [PMID: 36507832 PMCID: PMC9973309 DOI: 10.1128/mbio.02280-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human metapneumovirus (HMPV) is one of the leading causes of respiratory illness (RI), primarily in infants. Worldwide, two genetic lineages (A and B) of HMPV are circulating that are antigenically distinct and can each be further divided into genetic sublineages. Surveillance combined with large-scale whole-genome sequencing studies of HMPV are scarce but would help to identify viral evolutionary dynamics. Here, we analyzed 130 whole HMPV genome sequences obtained from samples collected from individuals hospitalized with RI and partial fusion (n = 144) and attachment (n = 123) protein gene sequences obtained from samples collected from patients with RI visiting general practitioners between 2005 and 2021 in the Netherlands. Phylogenetic analyses demonstrated that HMPV continued to group in the four sublineages described in 2004 (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected in the Netherlands after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between samples obtained from patients with RI being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. In the past, different names for the newly energing lineages have been proposed, demonstrating the need for a consistent naming convention. Here, criteria are proposed for the designation of new genetic lineages to aid in moving toward a systematic HMPV classification. IMPORTANCE Human metapneumovirus (HMPV) is one of the major causative agents of human respiratory tract infections. Monitoring of virus evolution could aid toward the development of new antiviral treatments or vaccine designs. Here, we studied HMPV evolution between 2005 and 2021, with viruses obtained from samples collected from hospitalized individuals and patients with respiratory infections consulting general practitioners. Phylogenetic analyses demonstrated that HMPV continued to group in the four previously described sublineages (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between patients being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. These data were used to propose criteria for the designation of new genetic lineages to aid toward a systematic HMPV classification.
Collapse
|
5
|
Global Extension and Predominance of Human Metapneumovirus A2 Genotype with Partial G Gene Duplication. Viruses 2022; 14:v14051058. [PMID: 35632799 PMCID: PMC9146545 DOI: 10.3390/v14051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important respiratory pathogen and is divided in two main groups (A and B). HMPV strains with partial duplications (111-nt and 180-nt duplication) of the G gene have been reported in recent years. Since the initial reports, viruses with these characteristics have been reported in several countries. We analyzed all complete HMPV G gene ectodomain sequences available at GenBank to determine if viruses with 111-nt or 180-nt duplication have become the leading HMPV strains worldwide, and to describe their temporal and geographic distribution. We identified 1462 sequences that fulfilled study criteria (764 HMPV A and 698 HMPV B) reported from 37 countries. The most frequent HMPV A genotype was A2b2 (n = 366), and the most frequent B genotype was B2 (n = 374). A total of 84 sequences contained the 111-nt duplication, and 90 sequences contained the 180-nt duplication. Since 2016, viruses with a partial duplication comprise the most frequent HMPV A sequences globally and have displaced other HMPV A viruses in Asia, Europe, and South America; no sequences of viruses with partial duplication have been reported in North America or Africa so far. Continued surveillance of HMPV is required to identify the emergence and spread of epidemiologically relevant variants.
Collapse
|
6
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
7
|
Mathisen M, Basnet S, Christensen A, Sharma AK, Tylden G, Krokstad S, Valentiner-Branth P, Strand TA. Viral and Atypical Bacterial Detection in Young Nepalese Children Hospitalized with Severe Pneumonia. Microbiol Spectr 2021; 9:e0055121. [PMID: 34704788 PMCID: PMC8549725 DOI: 10.1128/spectrum.00551-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory viruses cause a substantial proportion of respiratory tract infections in children but are underrecognized as a cause of severe pneumonia hospitalization in low-income settings. We employed 22 real-time PCR assays and retrospectively reanalyzed 610 nasopharyngeal aspirate specimens from children aged 2 to 35 months with severe pneumonia (WHO definition) admitted to Kanti Childrens' Hospital in Kathmandu, Nepal, from January 2006 through June 2008. Previously, ≥1 of 7 viruses had been detected by multiplex reverse transcription-PCR in 30% (188/627) of cases. Reanalyzing the stored specimens, we detected ≥1 pathogens, including 18 respiratory viruses and 3 atypical bacteria, in 98.7% (602/610) of cases. Rhinovirus (RV) and respiratory syncytial virus (RSV) were the most common, detected in 318 (52.1%) and 299 (49%) cases, respectively, followed by adenovirus (AdV) (10.6%), human metapneumovirus (hMPV) (9.7%), parainfluenza virus type 3 (8.4%), and enterovirus (7.7%). The remaining pathogens were each detected in less than 5%. Mycoplasma pneumoniae was most common among the atypical bacteria (3.7%). Codetections were observed in 53.3% of cases. Single-virus detection was more common for hMPV (46%) and RSV (41%) than for RV (22%) and AdV (6%). The mean cycle threshold value for detection of each pathogen tended to be lower in single-pathogen detections than in codetections. This finding was significant for RSV, RV, and AdV. RSV outbreaks occurred at the end of the monsoon or during winter. An expanded diagnostic PCR panel substantially increased the detection of respiratory viruses in young Nepalese children hospitalized with severe pneumonia. IMPORTANCE Respiratory viruses are an important cause of respiratory tract infections in children but are underrecognized as a cause of pneumonia hospitalization in low-income settings. Previously, we detected at least one of seven respiratory viruses by PCR in 30% of young Nepalese children hospitalized with severe pneumonia over a period of 36 months. Using updated PCR assays detecting 21 different viruses and atypical bacteria, we reanalyzed 610 stored upper-respiratory specimens from these children. Respiratory viruses were detected in nearly all children hospitalized for pneumonia. RSV and rhinovirus were the predominant pathogens detected. Detection of two or more pathogens was observed in more than 50% of the pneumonia cases. Single-virus detection was more common for human metapneumovirus and RSV than for rhinovirus and adenovirus. The concentration of virus was higher (low cycle threshold [CT] value) for single detected pathogens, hinting at a high viral load as a marker of clinical significance.
Collapse
Affiliation(s)
- Maria Mathisen
- Department of Medical Microbiology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Sudha Basnet
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Andreas Christensen
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Arun K. Sharma
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Garth Tylden
- Department of Microbiology and Infection control, University Hospital of North Norway, Tromsø, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Palle Valentiner-Branth
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Infectious Disease Preparedness, Copenhagen, Denmark
| | - Tor A. Strand
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|