1
|
Min X, Wang Y, Dong X, Dong X, Wang N, Wang Z, Shi L. Epidemiological characteristics of human metapneumovirus among children in Nanjing, China. Eur J Clin Microbiol Infect Dis 2024; 43:1445-1452. [PMID: 38801487 DOI: 10.1007/s10096-024-04858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE The objective of this study was to examine the molecular epidemiology and clinical characteristics of HMPV infection among children with ARIs in Nanjing. METHODS The respiratory samples were collected from 2078 children (≤ 14 years) with acute respiratory infections and were tested for HMPV using real-time RT-PCR. Amplification and sequencing of the HMPV G gene were followed by phylogenetic analysis using MEGA 7.0. RESULT The detection rate of HMPV among children was 4.7% (97/2078), with a concentration in those under 5 years of age. Notably, the peak season for HMPV prevalence was observed in winter. Among the 97 HMPV-positive samples, 51.5% (50/97) were available for characterization of the HMPV G protein gene. Phylogenetic analysis indicated that the sequenced HMPV strains were classified into three sublineages: A2c111nt - dup (84.0%), B1 (2.0%), and B2 (14.0%). CONCLUSION There was an incidence of HMPV among hospitalized children during 2021-2022 in Nanjing with A2c111nt - dup being the dominant strain. This study demonstrated the molecular epidemiological characteristics of HMPV among children with respiratory infections in Nanjing, China.
Collapse
Affiliation(s)
- Xiaoyu Min
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Yaqian Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiaoxiao Dong
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiaoqing Dong
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Nan Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Ziyu Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Liming Shi
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Novel insights into the host cell glycan binding profile of human metapneumovirus. J Virol 2024; 98:e0164123. [PMID: 38690874 PMCID: PMC11237588 DOI: 10.1128/jvi.01641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galβ1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Luck MI, Subillaga EJ, Borenstein R, Sabo Y. Ginkgolic acid inhibits orthopneumo- and metapneumo- virus infectivity. Sci Rep 2024; 14:8230. [PMID: 38589437 PMCID: PMC11001990 DOI: 10.1038/s41598-024-58032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
The human respiratory syncytial virus (hRSV) and the human metapneumovirus (hMPV) are important human respiratory pathogens from the Pneumoviridae family. Both are responsible for severe respiratory tract infections in infants, young children, elderly individuals, adults with chronic medical conditions, and immunocompromised patients. Despite their large impact on human health, vaccines for hRSV were only recently introduced, and only limited treatment options exist. Here we show that Ginkgolic acid (GA), a natural compound from the extract of Ginkgo biloba, with known antiviral properties for several viruses, efficiently inhibits these viruses' infectivity and spread in cultures in a dose-dependent manner. We demonstrate that the drug specifically affects the entry step during the early stages on the viruses' life cycle with no effect on post-entry and late stage events, including viral gene transcription, genome replication, assembly and particles release. We provide evidence that GA acts as an efficient antiviral for members of the Pneumoviridae family and has the potential to be used to treat acute infections.
Collapse
Affiliation(s)
- Maria I Luck
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Erick J Subillaga
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling Division of Hepatology, Department of Medicine Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yosef Sabo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Alchikh M, Conrad TOF, Obermeier PE, Ma X, Schweiger B, Opota O, Rath BA. Disease Burden and Inpatient Management of Children with Acute Respiratory Viral Infections during the Pre-COVID Era in Germany: A Cost-of-Illness Study. Viruses 2024; 16:507. [PMID: 38675850 PMCID: PMC11054359 DOI: 10.3390/v16040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Respiratory viral infections (RVIs) are common reasons for healthcare consultations. The inpatient management of RVIs consumes significant resources. From 2009 to 2014, we assessed the costs of RVI management in 4776 hospitalized children aged 0-18 years participating in a quality improvement program, where all ILI patients underwent virologic testing at the National Reference Centre followed by detailed recording of their clinical course. The direct (medical or non-medical) and indirect costs of inpatient management outside the ICU ('non-ICU') versus management requiring ICU care ('ICU') added up to EUR 2767.14 (non-ICU) vs. EUR 29,941.71 (ICU) for influenza, EUR 2713.14 (non-ICU) vs. EUR 16,951.06 (ICU) for RSV infections, and EUR 2767.33 (non-ICU) vs. EUR 14,394.02 (ICU) for human rhinovirus (hRV) infections, respectively. Non-ICU inpatient costs were similar for all eight RVIs studied: influenza, RSV, hRV, adenovirus (hAdV), metapneumovirus (hMPV), parainfluenza virus (hPIV), bocavirus (hBoV), and seasonal coronavirus (hCoV) infections. ICU costs for influenza, however, exceeded all other RVIs. At the time of the study, influenza was the only RVI with antiviral treatment options available for children, but only 9.8% of influenza patients (non-ICU) and 1.5% of ICU patients with influenza received antivirals; only 2.9% were vaccinated. Future studies should investigate the economic impact of treatment and prevention of influenza, COVID-19, and RSV post vaccine introduction.
Collapse
Affiliation(s)
- Maren Alchikh
- Vaccine Safety Initiative, 10437 Berlin, Germany; (M.A.); (P.E.O.)
- Laboratoire Chrono-Environnement, Université Bourgogne Franche-Comté, 25030 Besançon, France
- ESGREV (ESCMID Respiratory Virus Study Group), 4001 Basel, Switzerland;
| | | | - Patrick E. Obermeier
- Vaccine Safety Initiative, 10437 Berlin, Germany; (M.A.); (P.E.O.)
- ESGREV (ESCMID Respiratory Virus Study Group), 4001 Basel, Switzerland;
| | - Xiaolin Ma
- Department of Pulmonology, Capital Institute of Pediatrics, Beijing 100005, China;
| | - Brunhilde Schweiger
- Unit 17, Influenza and Other Respiratory Viruses, Department of Infectious Diseases, National Reference Centre for Influenza, Robert Koch-Institute, 13353 Berlin, Germany;
| | - Onya Opota
- ESGREV (ESCMID Respiratory Virus Study Group), 4001 Basel, Switzerland;
- Institute of Microbiology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Barbara A. Rath
- Vaccine Safety Initiative, 10437 Berlin, Germany; (M.A.); (P.E.O.)
- Laboratoire Chrono-Environnement, Université Bourgogne Franche-Comté, 25030 Besançon, France
- ESGREV (ESCMID Respiratory Virus Study Group), 4001 Basel, Switzerland;
| |
Collapse
|
5
|
Ng DCE, Liew CH, Tan KK, Awang EHB, Nazri FNBA, Maran AKT, Mohan VAAC, Ramachandran D, Chok M, Teh CH, Mohamad Nor A, Baharuddin SB, Khoo EJ. Clinical comparison of HMPV and RSV infections in hospitalised Malaysian children: A propensity score matched study. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13747. [PMID: 38529669 DOI: 10.1111/crj.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) are significant contributors to the burden of acute respiratory infections in children, but data on hMPV from Southeast Asia are limited despite its potential for serious disease. This study aimed to compare the clinical presentation, resource utilisation and outcomes between hMPV and RSV infections in hospitalised Malaysian children. METHODS This retrospective, observational study included children aged ≤12 years old hospitalised with hMPV or RSV, confirmed via direct fluorescent antibody (DFA) methods, between 1 July to 30 October 2022 at Hospital Tuanku Ja'afar Seremban, Malaysia. Demographic, clinical presentation, resource utilisation and outcome data were analysed. Propensity score matching was used to balance cohorts based on key demographic and clinical characteristics. RESULTS This study included 192 patients, comprising 112 with hMPV and 80 with RSV. hMPV patients were older (median age 20.5 vs. 9.4 months, p < 0.001) and had a higher incidence of comorbidities (24.1% vs. 7.5%, p = 0.003). Fever was more common in the hMPV group (97.3% vs. 73.8%, p < 0.001), but the other clinical manifestations were similar. Postmatching analysis showed higher corticosteroid use in the hMPV group (p = 0.01). No significant differences were observed in the use of other resources, PICU admissions, duration of hospitalisation or mortality rates between both groups. CONCLUSION hMPV and RSV infections in children share similar clinical manifestations and outcomes, with hMPV affecting older children and showing higher corticosteroid usage. These findings emphasise the need for equal clinical vigilance for both hMPV and RSV in paediatric respiratory infections.
Collapse
Affiliation(s)
- David Chun-Ern Ng
- Hospital Tuanku Ja'afar, Ministry of Health Malaysia, Seremban, Malaysia
| | - Chuin-Hen Liew
- Hospital Tuanku Ampuan Najihah, Ministry of Health Malaysia, Kuala Pilah, Malaysia
| | - Kah Kee Tan
- Department of Paediatrics, Perdana University Seremban Clinical Academic Center, Seremban, Malaysia
| | | | | | | | | | | | - Michelle Chok
- Hospital Tuanku Ja'afar, Ministry of Health Malaysia, Seremban, Malaysia
| | - Cheah Hooi Teh
- Hospital Tuanku Ja'afar, Ministry of Health Malaysia, Seremban, Malaysia
| | - Airena Mohamad Nor
- Hospital Tuanku Ja'afar, Ministry of Health Malaysia, Seremban, Malaysia
| | | | - Erwin Jiayuan Khoo
- Department of Paediatrics, International Medical University, Kuala Lumpur, Malaysia
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Ballegeer M, van Scherpenzeel RC, Delgado T, Iglesias-Caballero M, García Barreno B, Pandey S, Rush SA, Kolkman JA, Mas V, McLellan JS, Saelens X. A neutralizing single-domain antibody that targets the trimer interface of the human metapneumovirus fusion protein. mBio 2024; 15:e0212223. [PMID: 38117059 PMCID: PMC10790764 DOI: 10.1128/mbio.02122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Human metapneumovirus (hMPV) is an important respiratory pathogen for which no licensed antivirals or vaccines exist. Single-domain antibodies represent promising antiviral biologics that can be easily produced and formatted. We describe the isolation and detailed characterization of two hMPV-neutralizing single-domain antibodies that are directed against the fusion protein F. One of these single-domain antibodies broadly neutralizes hMPV A and B strains, can prevent proteolytic maturation of F, and binds to an epitope in the F trimer interface. This suggests that hMPV pre-F undergoes trimer opening or "breathing" on infectious virions, exposing a vulnerable site for neutralizing antibodies. Finally, we show that this single-domain antibody, fused to a human IgG1 Fc, can protect cotton rats against hMPV replication, an important finding for potential future clinical applications.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Shubham Pandey
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Vicente Mas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Nadiger M, Sendi P, Martinez PA, Totapally BR. Epidemiology and Clinical Features of Human Metapneumovirus and Respiratory Syncytial Viral Infections in Children. Pediatr Infect Dis J 2023; 42:960-964. [PMID: 37523504 DOI: 10.1097/inf.0000000000004055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are 2 common causes of acute respiratory tract infections in infants and young children. The objective of this study is to compare the demographics and outcomes of children hospitalized with HMPV and RSV infections in the United States. METHODS We performed a retrospective cohort analysis of children 1 month to less than 3 years old discharged during 2016 with HMPV or RSV infection using the Kids' Inpatient Database. Children with HMPV and RSV coinfection were excluded. Data were weighted for national estimates. RESULTS There were 6585 children with HMPV infection and 70,824 with RSV infection discharged during the study period. The mean age of children with HMPV infection was higher than that of children with RSV infection (0.73 ± 0.8 vs. 0.42 ± 0.7 years; P < 0.05). The mortality rate was significantly higher in children with the presence of any complex chronic conditions compared to those without, in both HMPV [odds ratio (OR): 32.42; CI: 9.931-105.857; P < 0.05] as well as RSV (OR: 35.81; CI: 21.12-57.97; P < 0.05) groups. The adjusted median length of stay was longer (4.64 days; CI: 4.52-4.76 days vs. 3.33 days; CI: 3.31-3.35 days; P < 0.001) and total charges were higher ($44,358; CI: $42,145-$46,570 vs. $22,839; CI: $22,512-$23,166; P < 0.001), with HMPV infection. The mortality rate was similar in HMPV infection compared to RSV infection on multivariable analysis (OR: 1.48; P > 0.05). CONCLUSION In hospitalized children in the United States, HMPV infection is less common than RSV infection. Complex chronic conditions are more prevalent in children hospitalized with HMPV infection. Hospitalization with HMPV is associated with longer length of stay and higher hospital charges. The adjusted mortality is similar with both infections.
Collapse
Affiliation(s)
- Meghana Nadiger
- From the Division of Critical Care Medicine, Department of Pediatrics, University of Illinois College of Medicine, Peoria Illinois
| | - Prithvi Sendi
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, Florida
- Division of Critical Care Medicine, Department of Pediatrics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Paul A Martinez
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, Florida
- Division of Critical Care Medicine, Department of Pediatrics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Balagangadhar R Totapally
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, Florida
- Division of Critical Care Medicine, Department of Pediatrics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
8
|
Guo L, Li L, Liu L, Zhang T, Sun M. Neutralising antibodies against human metapneumovirus. THE LANCET. MICROBE 2023; 4:e732-e744. [PMID: 37499668 DOI: 10.1016/s2666-5247(23)00134-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 07/29/2023]
Abstract
Human metapneumovirus (hMPV) is one of the leading causes of respiratory infection. Since its discovery in 2001, no specific antiviral or vaccine has been available in contrast to its closely related family member human respiratory syncytial virus (hRSV). Neutralising monoclonal antibodies (nMAbs) are the core effectors of vaccines and are essential therapeutic immune drugs against infectious pathogens. The development of nMAbs against hMPV has accelerated in recent years as a result of breakthroughs in viral fusion (F) protein structural biology and experience with hRSV and other enveloped viruses. We provide an overview of the potent F-specific nMAbs of hMPV, generalise their targeting F antigen epitopes, and discuss the nMAb development strategy and future directions for hMPV and broad-spectrum hMPV, hRSV nMabs, and vaccine research and development.
Collapse
Affiliation(s)
- Lei Guo
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li Li
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li Liu
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Tiesong Zhang
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China.
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
9
|
Drug Repurposing for Therapeutic Discovery against Human Metapneumovirus Infection. Antimicrob Agents Chemother 2022; 66:e0100822. [PMID: 36094205 PMCID: PMC9578393 DOI: 10.1128/aac.01008-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) is recognized as an important cause of pneumonia in infants, in the elderly, and in immunocompromised individuals worldwide. The absence of an antiviral treatment or vaccine strategy against HMPV infection creates a high burden on the global health care system. Drug repurposing has become increasingly attractive for the treatment of emerging and endemic diseases as it requires less research and development costs than traditional drug discovery. In this study, we developed an in vitro medium-throughput screening assay that allows for the identification of novel anti-HMPV drugs candidates. Out of ~2,400 compounds, we identified 11 candidates with a dose-dependent inhibitory activity against HMPV infection. Additionally, we further described the mode of action of five anti-HMPV candidates with low in vitro cytotoxicity. Two entry inhibitors, Evans Blue and aurintricarboxylic acid, and three post-entry inhibitors, mycophenolic acid, mycophenolate mofetil, and 2,3,4-trihydroxybenzaldehyde, were identified. Among them, the mycophenolic acid series displayed the highest levels of inhibition, due to the blockade of intracellular guanosine synthesis. Importantly, MPA has significant potential for drug repurposing as inhibitory levels are achieved below the approved human oral dose. Our drug-repurposing strategy proved to be useful for the rapid discovery of novel hit candidates to treat HMPV infection and provide promising novel templates for drug design.
Collapse
|
10
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antiviral Res 2022; 207:105405. [PMID: 36084851 DOI: 10.1016/j.antiviral.2022.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Human metapneumoviruses have emerged in the past decades as an important global pathogen that causes severe upper and lower respiratory tract infections. Children under the age of 2, the elderly and immunocompromised individuals are more susceptible to HMPV infection than the general population due to their suboptimal immune system. Despite the recent discovery of HMPV as a novel important respiratory virus, reports have rapidly described its epidemiology, biology, and pathogenesis. However, progress is still to be made in the development of vaccines and drugs against HMPV infection as none are currently available. Herein, we discuss the importance of HMPV and review the reported strategies for anti-HMPV drug candidates. We also present the fusion protein as a promising antiviral drug target due to its multiple roles in the HMPV lifecycle. This key viral protein has previously been targeted by a range of inhibitors, which will be discussed as they represent opportunities for future drug design.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
11
|
Stewart-Jones GBE, Gorman J, Ou L, Zhang B, Joyce MG, Yang L, Cheng C, Chuang GY, Foulds KE, Kong WP, Olia AS, Sastry M, Shen CH, Todd JP, Tsybovsky Y, Verardi R, Yang Y, Collins PL, Corti D, Lanzavecchia A, Scorpio DG, Mascola JR, Buchholz UJ, Kwong PD. Interprotomer disulfide-stabilized variants of the human metapneumovirus fusion glycoprotein induce high titer-neutralizing responses. Proc Natl Acad Sci U S A 2021; 118:e2106196118. [PMID: 34551978 PMCID: PMC8488613 DOI: 10.1073/pnas.2106196118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory disease worldwide, particularly among children and the elderly. Although there is no licensed HMPV vaccine, promising candidates have been identified for related pneumoviruses based on the structure-based stabilization of the fusion (F) glycoprotein trimer, with prefusion-stabilized F glycoprotein trimers eliciting significantly higher neutralizing responses than their postfusion F counterparts. However, immunization with HMPV F trimers in either prefusion or postfusion conformations has been reported to elicit equivalent neutralization responses. Here we investigate the impact of stabilizing disulfides, especially interprotomer disulfides (IP-DSs) linking protomers of the F trimer, on the elicitation of HMPV-neutralizing responses. We designed F trimer disulfides, screened for their expression, and used electron microscopy (EM) to confirm their formation, including that of an unexpected postfusion variant. In mice, IP-DS-stabilized prefusion and postfusion HMPV F elicited significantly higher neutralizing responses than non-IP-DS-stabilized HMPV Fs. In macaques, the impact of IP-DS stabilization was more measured, although IP-DS-stabilized variants of either prefusion or postfusion HMPV F induced neutralizing responses many times the average titers observed in a healthy human cohort. Serological and absorption-based analyses of macaque responses revealed elicited HMPV-neutralizing responses to be absorbed differently by IP-DS-containing and by non-IP-DS-containing postfusion Fs, suggesting IP-DS stabilization to alter not only the immunogenicity of select epitopes but their antigenicity as well. We speculate the observed increase in immunogenicity by IP-DS trimers to be related to reduced interprotomer flexibility within the HMPV F trimer.
Collapse
Affiliation(s)
| | - Jason Gorman
- Vaccine Research Center, NIH, Bethesda, MD 20892
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Li Ou
- Vaccine Research Center, NIH, Bethesda, MD 20892
| | | | - M Gordon Joyce
- Vaccine Research Center, NIH, Bethesda, MD 20892
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910
| | - Lijuan Yang
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Cheng Cheng
- Vaccine Research Center, NIH, Bethesda, MD 20892
| | | | | | | | - Adam S Olia
- Vaccine Research Center, NIH, Bethesda, MD 20892
| | | | | | | | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | | | | | - Peter L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Humabs BioMed SA, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892;
| | | |
Collapse
|
12
|
Piñana M, Vila J, Maldonado C, Galano-Frutos JJ, Valls M, Sancho J, Nuvials FX, Andrés C, Martín-Gómez MT, Esperalba J, Codina MG, Pumarola T, Antón A. Insights into immune evasion of human metapneumovirus: novel 180- and 111-nucleotide duplications within viral G gene throughout 2014-2017 seasons in Barcelona, Spain. J Clin Virol 2020; 132:104590. [PMID: 32957052 PMCID: PMC7418790 DOI: 10.1016/j.jcv.2020.104590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
HMPV has a prevalence of 3%, affecting equally children and adults. 180- and 111-nucleotide duplications emerged, increasing in prevalence over seasons. G proteins w/ duplications protruded more from the membrane than w/o duplication. Viruses w/ duplications were more associated to LRTI in adults than w/o duplication. These facts suggest these duplications might enhance an immune evasion mechanism
Background Human metapneumovirus (HMPV) is an important aetiologic agent of respiratory tract infection (RTI). This study aimed to describe its genetic diversity and clinical impact in patients attended at a tertiary university hospital in Barcelona from the 2014-2015 to the 2016-2017 seasons, focusing on the emerging duplications in G gene and their structural properties. Methods Laboratory-confirmed HMPV were characterised based on partial-coding F and G gene sequences with MEGA.v6.0. Computational analysis of disorder propensity, aggregation propensity and glycosylation sites in viral G predicted protein sequence were carried out. Clinical data was retrospectively reviewed and further associated to virological features. Results HMPV prevalence was 3%. The 180- and 111-nucleotide duplications occurred in A2c lineage G protein increased in prevalence throughout the study, in addition to short genetic changes observed in other HMPV lineages. The A2c G protein without duplications was calculated to protrude over F protein in 23% of cases and increased to a 39% and a 46% with the 111- and 180-nucleotide duplications, respectively. Children did not seem to be more affected by these mutant viruses, but there was a strong association of these variants to LRTI in adults. Discussion HMPV presents a high genetic diversity in all lineages. Novel variants carrying duplications might present an evolutionary advantage due to an improved steric shielding, which would have been responsible for the reported increasing prevalence and the association to LRTI in adults.
Collapse
Affiliation(s)
- Maria Piñana
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jorgina Vila
- Paediatric Hospitalization Unit, Paediatrics Department, Hospital Universitari Maternoinfantil Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Carolina Maldonado
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Juan José Galano-Frutos
- Biochemistry and Molecular and Cell Biology Department, Sciences Faculty, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Maria Valls
- Paediatric Hospitalization Unit, Paediatrics Department, Hospital Universitari Maternoinfantil Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Sancho
- Biochemistry and Molecular and Cell Biology Department, Sciences Faculty, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Francesc Xavier Nuvials
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - María Teresa Martín-Gómez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Andrés Antón
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
13
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
14
|
Human Metapneumovirus: A Largely Unrecognized Threat to Human Health. Pathogens 2020; 9:pathogens9020109. [PMID: 32069879 PMCID: PMC7169409 DOI: 10.3390/pathogens9020109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Human metapneumovirus (HMPV) infects most children by five years of age. The virus can cause both upper and lower respiratory tract disease and can be life threatening. High-risk populations include young children who are exposed to virus for the first time and the elderly. Currently, there is no standard treatment nor licensed vaccine for HMPV, although several attractive vaccine candidates have been developed for pre-clinical studies. A raised awareness of the impact of HMPV on public health is needed to drive research, complete vaccine development, and thereby prevent significant virus-associated morbidities and mortalities worldwide.
Collapse
|
15
|
Pilaev M, Shen Y, Carbonneau J, Venable MC, Rhéaume C, Lavigne S, Couture C, Guarné A, Hamelin MÈ, Boivin G. Evaluation of pre- and post-fusion Human metapneumovirus F proteins as subunit vaccine candidates in mice. Vaccine 2020; 38:2122-2127. [DOI: 10.1016/j.vaccine.2020.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
|
16
|
Barrera-Badillo G, Olivares-Flores B, Ruiz-López A, Fierro-Valdez MÁ, Gutiérrez-Vargas RI, López-Martínez I. Human Metapneumovirus: Etiological Agent of Severe Acute Respiratory Infections in Hospitalized and Deceased Patients with a Negative Diagnosis of Influenza. Pathogens 2020; 9:pathogens9020085. [PMID: 32013048 PMCID: PMC7168596 DOI: 10.3390/pathogens9020085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/25/2020] [Accepted: 01/25/2020] [Indexed: 01/19/2023] Open
Abstract
Human metapneumovirus (HMPV) is one of the four major viral pathogens associated with acute respiratory tract infections (ARI) and creates a substantial burden of disease, particularly in young children (<5 years) and older individuals (≥65 years). The objective of this study was to determine the epidemiological behavior of HMPV in Mexico. This retrospective study was conducted over a nine-year period and used 7283 influenza-negative respiratory samples from hospitalized and deceased patients who presented Severe Acute Respiratory Infection (SARI). The samples were processed with the help of qualitative multiplex RT-PCR for simultaneous detection of 14 respiratory viruses (xTAG® RVP FAST v2). 40.8% of the samples were positive for respiratory viruses, mainly rhinovirus/enterovirus (47.6%), respiratory syncytial virus (15.9%), HMPV (11.1%) and parainfluenza virus (8.9%). Other respiratory viruses and co-infections accounted for 16.5%. HMPV infects all age groups, but the most affected group was infants between 29 days and 9 years of age (65.6%) and adults who are 40 years and older (25.7%). HMPV circulates every year from November to April, and the highest circulation was observed in late winter. The results of this study aim to raise awareness among clinicians about the high epidemiological impact of HMPV in young children and older individuals in order to reduce the economic burden in terms of health care costs.
Collapse
Affiliation(s)
- Gisela Barrera-Badillo
- Institute of Epidemiological Diagnosis and Reference “Dr. Manuel Martinez Baez” (InDRE), Health Secretary. Francisco de P. Miranda No. 177. Colony Lomas de Plateros. Town Hall., Alvaro Obregon 1480, Mexico City, Mexico; (B.O.-F.); (A.R.-L.); (M.Á.F.-V.); (I.L.-M.)
- Correspondence: ; Tel.: +52-55-3893-9972
| | - Beatriz Olivares-Flores
- Institute of Epidemiological Diagnosis and Reference “Dr. Manuel Martinez Baez” (InDRE), Health Secretary. Francisco de P. Miranda No. 177. Colony Lomas de Plateros. Town Hall., Alvaro Obregon 1480, Mexico City, Mexico; (B.O.-F.); (A.R.-L.); (M.Á.F.-V.); (I.L.-M.)
| | - Adriana Ruiz-López
- Institute of Epidemiological Diagnosis and Reference “Dr. Manuel Martinez Baez” (InDRE), Health Secretary. Francisco de P. Miranda No. 177. Colony Lomas de Plateros. Town Hall., Alvaro Obregon 1480, Mexico City, Mexico; (B.O.-F.); (A.R.-L.); (M.Á.F.-V.); (I.L.-M.)
| | - Miguel Ángel Fierro-Valdez
- Institute of Epidemiological Diagnosis and Reference “Dr. Manuel Martinez Baez” (InDRE), Health Secretary. Francisco de P. Miranda No. 177. Colony Lomas de Plateros. Town Hall., Alvaro Obregon 1480, Mexico City, Mexico; (B.O.-F.); (A.R.-L.); (M.Á.F.-V.); (I.L.-M.)
| | - Rosaura Idania Gutiérrez-Vargas
- General Directorate of Epidemiology; Health Secretary. Francisco de P. Miranda No. 157. Colony Lomas de Plateros. Town Hall. Alvaro Obregon, Mexico City 01480, Mexico;
| | - Irma López-Martínez
- Institute of Epidemiological Diagnosis and Reference “Dr. Manuel Martinez Baez” (InDRE), Health Secretary. Francisco de P. Miranda No. 177. Colony Lomas de Plateros. Town Hall., Alvaro Obregon 1480, Mexico City, Mexico; (B.O.-F.); (A.R.-L.); (M.Á.F.-V.); (I.L.-M.)
| |
Collapse
|
17
|
Zhu R, Guo C, Zhao L, Deng J, Wang F, Sun Y, Qian Y. Epidemiological and genetic characteristics of human metapneumovirus in pediatric patients across six consecutive seasons in Beijing, China. Int J Infect Dis 2019; 91:137-142. [PMID: 31821893 DOI: 10.1016/j.ijid.2019.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To investigate the genetic characteristics of human metapneumovirus (hMPV) circulating among children with acute respiratory tract infections (ARTIs) in Beijing, China. METHODS Clinical samples were obtained from outpatients and hospitalized children with ARTIs between August 2010 and July 2016. Reverse transcription polymerase chain reaction assays were used to screen and identify hMPV, while partial glycoprotein gene sequences were used for phylogenetic analysis. RESULTS Among the 10 918 samples, 292 (2.7%) were positive for hMPV. Overall, the virus was more prevalent among inpatients (4.3%) than outpatients (1.2%). A biennial alternating pattern of hMPV infection was observed, with infection rates fluctuating between 1.6% and 4.0%. Most cases were detected between December and April, showing clear-cut seasonality. Sub-genotypes A2b, B1, and B2 co-circulated in winter and spring in an alternating pattern, while only one A1-positive case was observed in 2012. The seasonal peak of hMPV was slightly delayed or overlapped with that of respiratory syncytial virus and influenza virus. hMPV activity increased in the 2010-2011 and 2014-2015 seasons, when influenza activity was apparently decreased compared with other epidemic seasons. CONCLUSIONS This study provides information on the epidemiological and genetic characteristics of hMPV in children in Beijing, and reinforces the significance of hMPV in children with ARTIs, especially lower respiratory tract infections.
Collapse
Affiliation(s)
- Runan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Chunying Guo
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Jie Deng
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Fang Wang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Yu Sun
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China.
| |
Collapse
|
18
|
Divarathna MVM, Rafeek RAM, Noordeen F. A review on epidemiology and impact of human metapneumovirus infections in children using TIAB search strategy on PubMed and PubMed Central articles. Rev Med Virol 2019; 30:e2090. [PMID: 31788915 DOI: 10.1002/rmv.2090] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory tract infections (ARTI) contribute to morbidity and mortality in children globally. Viruses including human metapneumovirus (hMPV) account for most ARTIs. The virus causes upper and lower respiratory tract infections mostly in young children and contributes to hospitalization of individuals with asthma,chronic obstructive pulmonary diseases and cancer. Moreover, hMPV pauses a considerable socio-economic impact creating a substantial disease burden wherever it has been studied, although hMPV testing is relatively new in many countries. We aimed to comprehensively analyze the epidemiological aspects including prevalence, disease burden and seasonality of hMPV infections in children in the world. We acquired published data extracted from PubMed and PubMed Central articles using the title and abstract (TIAB)search strategy for the major key words on hMPV infections from 9/54 African, 11/35 American, 20/50 Asian, 2/14 Australian/Oceanian and 20/51 European countries. According to the findings of this review, the prevalence of hMPV infection ranges from 1.1 to 86% in children of less than 5 years of age globally. Presence of many hMPV genotypes (A1, A2, B1, B2) and sub-genotypes (A2a, A2b, A2c, B2a, B2b) suggests a rapid evolution of the virus with limited influence by time and geography. hMPV infection mostly affects children between 2 to 5 years of age. The virus is active throughout the year in the tropics and epidemics occur during the winter and spring in temperate climates, contributing to a substantial disease burden globally.
Collapse
Affiliation(s)
- Maduja V M Divarathna
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rukshan A M Rafeek
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Faseeha Noordeen
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
19
|
Prevalence, clinical outcomes and rainfall association of acute respiratory infection by human metapneumovirus in children in Bogotá, Colombia. BMC Pediatr 2019; 19:345. [PMID: 31601181 PMCID: PMC6785857 DOI: 10.1186/s12887-019-1734-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/20/2019] [Indexed: 11/17/2022] Open
Abstract
Background Acute respiratory infections (ARIs) are one of the main causes of morbidity and mortality in children. Viruses are the main etiological agents, and their behavior tends to be seasonal and vary by geographical location. Human metapneumovirus (HMPV) has recently been described as a cause of severe acute respiratory infection and its prevalence and clinical behavior in children at moderate altitudes is unknown. Methods A cross-sectional study was carried out on patients seen at a university hospital in Bogotá, Colombia between October 2015 and December 2017 in a city at a moderate altitude above sea level. Children with acute respiratory infections who had had a multiplex RT-PCR assay were selected. The prevalence of HMPV infection, its clinical outcomes and its relationship to rainfall were evaluated. Results Out of a total of 14,760 discharged patients, multiplex RT-PCR was performed on 502 and a virus was detected in 420 children with acute respiratory infection (ARI). The study group had a median age of 21 months (IQR 7–60), with similar proportion of males and females (56.4 and 43.6% respectively) and 5.2% (CI 95 3.3–7.8%) prevalence of HMPV infection. The group with HMPV infection showed a greater frequency of viral coinfection (22.7% vs 14% P = 0.03) compared with ARI caused by other viruses. The rate of bacterial coinfection (P = 0.31), presence of comorbidities (p = 0.75), length of hospital stay (P = 0.42), need for mechanical ventilation (P = 0.75) and mortality (P = 0.22) were similar for HMPV and other viral infections. A moderate correlation was established between HMPV infection and rainfall peaks (Spearman’s Rho 0.44 p = 0.02). Conclusions Human metapneumovirus was the fifth most frequently isolated virus in children with ARI, had similar clinical behavior and severity to other viruses but a higher rate of viral coinfection. Its peaks seem to correlate to rainy seasons.
Collapse
|
20
|
Noordeen F, Pitchai FNN, Kudagammana ST, Rafeek RAM. A mini outbreak of human metapneumovirus infection with severe acute respiratory symptoms in a selected group of children presented to a teaching hospital in Sri Lanka. Virusdisease 2019; 30:307-310. [PMID: 31179371 PMCID: PMC6531517 DOI: 10.1007/s13337-019-00522-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/14/2019] [Indexed: 12/01/2022] Open
Abstract
Human metapneumovirus (hMPV) of the family Paramyxoviridae is a relatively new virus causing severe acute respiratory tract infections (SARI) in children. Data on hMPV infection in Asia including Sri Lanka is limited. We aimed to detect respiratory viruses including hMPV in a selected group of children affected by a small outbreak of SARI presented to the Teaching Hospital, Peradeniya (THP), Sri Lanka in 2014. Nasopharyngeal aspirates (NPA) were obtained from 21 children with SARI and tested for hMPV, influenza A and B, parainfluenza 1, 2 and 3 (PIV 1-3), adenovirus and respiratory syncytial virus (RSV) antigens using an immunofluorescence assay (IFA). In addition, a one step RT-PCR was done for the detection of hMPV from the viral RNA extracts. Of the 21 NPA samples tested for respiratory viral antigens by IFA, two were positive for RSV (9.5%), one was positive for influenza A (4.8%) and one was positive for both adenovirus and PIV-2 (4.8%). Of the 21 NPA viral RNA extracts tested by RT-PCR, 18 (86%) were positive for hMPV, in which 2 were co-infected with RSV and influenza A virus, respectively. hMPV was the predominant cause of SARI outbreak (2014) in children presented to the THP, Sri Lanka.
Collapse
Affiliation(s)
- Faseeha Noordeen
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - F. N. Nagoor Pitchai
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. Thushara Kudagammana
- Department of Paediatrics, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Teaching Hospital, Peradeniya, Sri Lanka
| | - R. A. Mohamed Rafeek
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
21
|
Barr R, McGalliard R, Drysdale SB. Human metapneumovirus in paediatric intensive care unit (PICU) admissions in the United Kingdom (UK) 2006-2014. J Clin Virol 2019; 112:15-19. [PMID: 30669024 PMCID: PMC7106375 DOI: 10.1016/j.jcv.2019.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/27/2018] [Accepted: 01/15/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Human metapneumovirus (HMPV) is a pneumovirus known to cause respiratory disease in children. It was identified as a pathogen in 2001 and its healthcare burden and associated costs are not fully understood. OBJECTIVES This study aimed to assess the clinical characteristics of children with HMPV infection admitted to paediatric intensive care units (PICUs) across the United Kingdom (UK) over a nine-year period and to estimate the associated costs of care. STUDY DESIGN Data were collected from the UK paediatric intensive care audit network (PICANet) and costs calculated using the National Health Service (NHS) reference costing scheme. RESULTS There were 114 admissions in which HMPV was detected. The number of admissions associated with a code of HMPV rose steadily over the study period (three in 2006 to 28 in 2014) and showed significant seasonal variability, with the peak season being from November to May. Children required varying levels of intensive care support from minimal to complex support including invasive ventilation, inotropes, renal replacement therapy and extracorporeal membrane oxygenation (ECMO). HMPV was associated with five deaths during the study period. The associated costs of PICU admissions were estimated to be between £2,256,823 and £3,997,823 over the study period, with estimated annual costs rising over the study period due to increasing HMPV admissions. CONCLUSIONS HMPV is associated with a significant healthcare burden and associated cost of care in PICUs in the UK.
Collapse
Affiliation(s)
- Rachael Barr
- Oxford University Hospitals NHS Foundation Trust, Children's Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom; Taunton and Somerset NHS Foundation Trust, Children's Hospital, Parkfield Drive, Taunton, TA1 5DA, United Kingdom.
| | - Rachel McGalliard
- Oxford University Hospitals NHS Foundation Trust, Children's Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom
| | - Simon B Drysdale
- Oxford University Hospitals NHS Foundation Trust, Children's Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, OX3 9DU, United Kingdom; NIHR Oxford Biomedical Research Centre, Level 2, Children's Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
22
|
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018; 29:434-444. [PMID: 30539045 PMCID: PMC6261883 DOI: 10.1007/s13337-018-0498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important pneumovirus which causes acute respiratory disease in human beings. The viral infection leads to mild to severe respiratory symptoms depending on the age and immune status of the infected individual. Several groups across the world are working on the development of immunogens and therapy to manage HMPV infection with promising results under laboratory conditions but till date any virus specific vaccine or therapy has not been approved for clinical use. This minireview gives an overview of the prophylactic and therapeutic approaches to manage HMPV infections.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| | - Mansi Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| |
Collapse
|
23
|
Howard LM, Edwards KM, Zhu Y, Griffin MR, Weinberg GA, Szilagyi PG, Staat MA, Payne DC, Williams JV. Clinical Features of Human Metapneumovirus Infection in Ambulatory Children Aged 5-13 Years. J Pediatric Infect Dis Soc 2018; 7:165-168. [PMID: 28369564 PMCID: PMC5954304 DOI: 10.1093/jpids/pix012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
We detected human metapneumovirus (HMPV) in 54 (5%) of 1055 children aged 5 to 13 years with acute respiratory illness (ARI) identified by outpatient and emergency department surveillance between November and May 2003-2009. Its clinical features were similar to those of HMPV-negative ARI, except a diagnosis of pneumonia was more likely (13% vs 4%, respectively; P = .005) and a diagnosis of pharyngitis (7% vs 24%, respectively; P = .005) was less likely in patients with HMPV- positive ARI than those with HMPV-negative ARI.
Collapse
Affiliation(s)
- Leigh M Howard
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Yuwei Zhu
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Peter G Szilagyi
- Mattel Children’s Hospital at University of California at Los Angeles
| | - Mary A Staat
- Cincinnati Children’s Hospital Medical Center, Ohio
| | - Daniel C Payne
- Emory University, Atlanta, Georgia
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John V Williams
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Pennsylvania
- Correspondence: J. V. Williams, MD, Children’s Hospital of Pittsburgh, Division of Pediatric Infectious Diseases, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA 15224 ()
| |
Collapse
|
24
|
Zhou J, Peng Y, Peng X, Gao H, Sun Y, Xie L, Zhong L, Duan Z, Xie Z, Cao Y. Human bocavirus and human metapneumovirus in hospitalized children with lower respiratory tract illness in Changsha, China. Influenza Other Respir Viruses 2018; 12:279-286. [PMID: 29266860 PMCID: PMC5820417 DOI: 10.1111/irv.12535] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lower respiratory tract illness is a major cause of morbidity and mortality in children worldwide, however, information about the epidemiological and clinical characteristics of LRTIs caused by HMPV and HBoV in China is limited. OBJECTIVES Human bocavirus (HBoV) and human metapneumovirus (HMPV) are two important viruses for children with lower respiratory tract infections (LRTI). We aimed to assay the correlation between viral load and clinical characteristics of HBoV and HMPV with LRTI in Changsha, China. METHODS Nasopharyngeal aspirates (NPAs) from children with LRTI were collected. Real-time PCR was used to screen HBoV and HMPV. Analyses were performed using SPSS 16.0 software. RESULTS Pneumonia was the most frequent diagnosis. There was no significant difference between HBoV- and HMPV-positive patients in age (P = .506) or hospitalization duration (P = .280); 24.1% and 18.2% were positive for HBoV and HMPV. HBoV infections peaked in summer (32.2%), and HMPV infections peaked in winter (28.9%). The HBoV-positive patients had a shorter hospitalization duration than the HBoV-negative patients (P = .021), and the HMPV-positive patients had a higher prevalence of fever than the HMPV-negative patients (P = .002). The HBoV viral load was significantly higher among patients aged <1 year (P = .006). The mean HBoV and HMPV viral loads were not significantly different between patients with single infections and coinfections. Patients infected with HBoV only were older than those coinfected with HBoV and other respiratory viruses (P = .005). No significant difference was found in the clinical characteristics of patients infected with HMPV only and those coinfected with HMPV and other respiratory viruses. CONCLUSION Pneumonia was the most frequent diagnosis caused by HBoV and HMPV. Neither HBoV nor HMPV viral load was correlated with disease severity.
Collapse
Affiliation(s)
- Jie‐ying Zhou
- Department of Laboratory MedicalThe First People's Hospital of Hunan ChenzhouChenzhouChina
- Key Laboratory for Medical VirologyMinistry of HealthNational Institute for Viral Disease Control and Prevention, ChinaCenter for Disease ControlBeijingChina
- Department of Laboratory MedicalThe First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Ying Peng
- Key Laboratory for Medical VirologyMinistry of HealthNational Institute for Viral Disease Control and Prevention, ChinaCenter for Disease ControlBeijingChina
- Department of PaediatricsThe First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Xiao‐you Peng
- Department of Laboratory MedicalThe First People's Hospital of Hunan ChenzhouChenzhouChina
| | - Han‐chun Gao
- Key Laboratory for Medical VirologyMinistry of HealthNational Institute for Viral Disease Control and Prevention, ChinaCenter for Disease ControlBeijingChina
| | - Ya‐ping Sun
- Yuhang District Center for Disease Control and PreventionHangzhouChina
| | - Le‐yun Xie
- Department of PaediatricsThe First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Li‐li Zhong
- Department of PaediatricsThe First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Zhao‐jun Duan
- Key Laboratory for Medical VirologyMinistry of HealthNational Institute for Viral Disease Control and Prevention, ChinaCenter for Disease ControlBeijingChina
| | - Zhi‐ping Xie
- Key Laboratory for Medical VirologyMinistry of HealthNational Institute for Viral Disease Control and Prevention, ChinaCenter for Disease ControlBeijingChina
| | - You‐de Cao
- Department of Laboratory MedicalThe First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| |
Collapse
|
25
|
Zhang L, Liu W, Liu D, Chen D, Tan W, Qiu S, Xu D, Li X, Liu T, Zhou R. Epidemiological and clinical features of human metapneumovirus in hospitalised paediatric patients with acute respiratory illness: a cross-sectional study in Southern China, from 2013 to 2016. BMJ Open 2018; 8:e019308. [PMID: 29437754 PMCID: PMC5829904 DOI: 10.1136/bmjopen-2017-019308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Human metapneumovirus (HMPV) is one of the most important respiratory viral pathogens affecting infants and children worldwide. Our study describes the epidemiological and clinical characteristics of HMPV present in patients hospitalised with acute respiratory illness (ARI) in Guangzhou, Southern China. STUDY DESIGN A cross-sectional study. SETTING Two tertiary hospitals in Guangzhou. PARTICIPANTS AND METHODS Throat swabs were collected over a 3-year period from 5133 paediatric patients (≤14 years) hospitalised with ARI. Patients who are HMPV positive with clinical presentations (101/103) were recorded for further analysis. RESULTS Of the 5133 patients included in the study, 103 (2.0%) were positive for HMPV. HMPV was more prevalent in children ≤5 years (2.2%, 98/4399) compared with older children (>5-14 years) (0.7%, 5/734) (P=0.004). Two seasonal HMPV peaks were observed each year and mainly occurred in spring and early summer. Overall, 18.4% (19/103) of patients who are HMPV positive were codetected with other pathogens, most frequently respiratory syncytial virus (36.8%, 7/19). Patients who are HMPV positive presented with a wide spectrum of clinical features, including cough (100.0%, 101/101), abnormal pulmonary breath sound (91.1%, 92/101), fever (88.1%, 89/101), expectoration (77.2%, 78/101), coryza (50.5%, 51/101) and wheezing (46.5%, 47/101). The main diagnosis of patients who are HMPV positive was bronchopneumonia (66.7%, 56/84). Fever (≥38˚C) (91.6%, 76/83) was detected more often in patients with only HMPV detected than in patients with HMPV plus other pathogen(s) detected (72.2%, 13/18) (P=0.037), whereas diarrhoea was more common in patients with HMPV plus other pathogen(s) detected (22.2%, 4/18), compared with patients with HMPV only (3.6%, 3/83) (P=0.018). CONCLUSIONS HMPV is an important respiratory pathogen in children with ARI in Guangzhou, particularly in children ≤5 years old. HMPV has a seasonal variation. Bronchopneumonia is a major diagnosis in patients who are HMPV positive.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donglan Liu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Weiping Tan
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiao Li
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tiantian Liu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
26
|
Gregianini TS, Seadi CF, Menegolla I, Martins LG, Ikuta N, Wolf JM, Lunge VR. Human metapneumovirus in Southern Brazil. Rev Soc Bras Med Trop 2018. [DOI: 10.1590/0037-8682-0435-2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Diaz-Dinamarca DA, Ibañez FJ, Soto DA, Soto JA, Cespedes PF, Muena NA, Garate DS, Kalergis AM, Vasquez AE. Immunization with a Mixture of Nucleoprotein from Human Metapneumovirus and AbISCO-100 Adjuvant Reduces Viral Infection in Mice Model. Viral Immunol 2018; 31:306-314. [PMID: 29373084 DOI: 10.1089/vim.2017.0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human metapneumovirus (hMPV) is the second leading cause globally of acute infection of the respiratory tract in children, infecting the upper and lower airways. The hMPV may induce an inappropriate Th2-type immune response, which causes severe pulmonary inflammation, leading to the obstruction of airways. Despite its severe epidemiological relevance, no vaccines are currently available for the prevention of hMPV-induced illness. In this investigation, we demonstrated that immunization of mice with the recombinant hMPV nucleoprotein (hMPV-N) mixed with the AbISCO-100 adjuvant reduced viral replication in lungs following challenge with the virus. We found that immunized mice had reduced weight loss, decreased granulocytes in the lung, an increased level of specific nucleoprotein antibodies of IgG1 and IgG2a-isotypes, and a local profile of Th1/Th17-type cytokines. Our results suggest that immunization with the hMPV-N and the AbISCO-100 adjuvant induces a reduction of viral infection and could be considered for the development of an hMPV vaccine.
Collapse
Affiliation(s)
- Diego A Diaz-Dinamarca
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Ibañez
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel A Soto
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile
| | - Jorge A Soto
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Cespedes
- 2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás A Muena
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile
| | - Diego S Garate
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile
| | - Alexis M Kalergis
- 2 Facultad de Ciencias Biológicas, Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy , Pontificia Universidad Católica de Chile, Santiago, Chile .,3 Facultad de Medicina, Departamento de Endocrinología, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Abel E Vasquez
- 1 Sección de Biotecnología, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile , Santiago, Chile .,4 Universidad San Sebastián , Facultad de Ciencia, Escuela de Bioquímica, Providencia, Santiago, Chile
| |
Collapse
|
28
|
Moe N, Stenseng IH, Krokstad S, Christensen A, Skanke LH, Risnes KR, Nordbø SA, Døllner H. The Burden of Human Metapneumovirus and Respiratory Syncytial Virus Infections in Hospitalized Norwegian Children. J Infect Dis 2017; 216:110-116. [PMID: 28838133 PMCID: PMC7107394 DOI: 10.1093/infdis/jix262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 01/13/2023] Open
Abstract
Background The burden of severe human metapneumovirus (HMPV) respiratory tract infections (RTIs) in European children has not been clarified. We assessed HMPV in Norwegian children and compared hospitalization rates for HMPV and respiratory syncytial virus (RSV). Methods We prospectively enrolled children (<16 years old) hospitalized with RTI and asymptomatic controls (2006-2015). Nasopharyngeal aspirate samples were analyzed with polymerase chain reaction (PCR) tests for HMPV, RSV, and 17 other pathogens. We genotyped HMPV-positive samples and assessed shedding time in 32 HMPV-infected children. Results In children with RTI, HMPV was detected in 7.3% (267 of 3650) and RSV in 28.7% (1048 of 3650). Among controls, 2.1% (7 of 339) had low HMPV levels detected by PCR, but all were culture negative. HMPV primarily occurred from January to April and in regular epidemics. At least 2 HMPV subtypes occurred each season. The average annual hospitalization rates in children <5 years old with lower RTI were 1.9/1000 (HMPV) and 10.4/1000 (RSV). Among children with RTI, the median HMPV shedding time by PCR was 13 days (range, 6-28 days), but all were culture negative (noninfectious) after 13 days. Conclusions HMPV appears in epidemics in Norwegian children, with a hospitalization rate 5 times lower than RSV. Low levels of HMPV are rarely detected in healthy children.
Collapse
Affiliation(s)
- Nina Moe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Inger Heimdal Stenseng
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology
| | - Sidsel Krokstad
- Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andreas Christensen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars Høsøien Skanke
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Kari Ravndal Risnes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Svein Arne Nordbø
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| |
Collapse
|
29
|
Rath B, Conrad T, Myles P, Alchikh M, Ma X, Hoppe C, Tief F, Chen X, Obermeier P, Kisler B, Schweiger B. Influenza and other respiratory viruses: standardizing disease severity in surveillance and clinical trials. Expert Rev Anti Infect Ther 2017; 15:545-568. [PMID: 28277820 PMCID: PMC7103706 DOI: 10.1080/14787210.2017.1295847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Influenza-Like Illness is a leading cause of hospitalization in children. Disease burden due to influenza and other respiratory viral infections is reported on a population level, but clinical scores measuring individual changes in disease severity are urgently needed. Areas covered: We present a composite clinical score allowing individual patient data analyses of disease severity based on systematic literature review and WHO-criteria for uncomplicated and complicated disease. The 22-item ViVI Disease Severity Score showed a normal distribution in a pediatric cohort of 6073 children aged 0-18 years (mean age 3.13; S.D. 3.89; range: 0 to 18.79). Expert commentary: The ViVI Score was correlated with risk of antibiotic use as well as need for hospitalization and intensive care. The ViVI Score was used to track children with influenza, respiratory syncytial virus, human metapneumovirus, human rhinovirus, and adenovirus infections and is fully compliant with regulatory data standards. The ViVI Disease Severity Score mobile application allows physicians to measure disease severity at the point-of care thereby taking clinical trials to the next level.
Collapse
Affiliation(s)
- Barbara Rath
- a Division of Pediatric Infectious Diseases , Vienna Vaccine Safety Initiative , Berlin , Germany.,b Department of Pediatrics , Charité University Medical Center , Berlin , Germany.,c Division of Epidemiology and Public Health , University of Nottingham , Nottingham , UK
| | - Tim Conrad
- d Department of Mathematics and Computer Science , Freie Universität Berlin , Berlin , Germany
| | - Puja Myles
- c Division of Epidemiology and Public Health , University of Nottingham , Nottingham , UK
| | - Maren Alchikh
- a Division of Pediatric Infectious Diseases , Vienna Vaccine Safety Initiative , Berlin , Germany.,b Department of Pediatrics , Charité University Medical Center , Berlin , Germany
| | - Xiaolin Ma
- b Department of Pediatrics , Charité University Medical Center , Berlin , Germany.,e National Reference Centre for Influenza and Other Respiratory Viruses , Robert Koch Institute , Berlin , Germany
| | - Christian Hoppe
- a Division of Pediatric Infectious Diseases , Vienna Vaccine Safety Initiative , Berlin , Germany.,d Department of Mathematics and Computer Science , Freie Universität Berlin , Berlin , Germany
| | - Franziska Tief
- a Division of Pediatric Infectious Diseases , Vienna Vaccine Safety Initiative , Berlin , Germany.,b Department of Pediatrics , Charité University Medical Center , Berlin , Germany
| | - Xi Chen
- a Division of Pediatric Infectious Diseases , Vienna Vaccine Safety Initiative , Berlin , Germany.,b Department of Pediatrics , Charité University Medical Center , Berlin , Germany
| | - Patrick Obermeier
- a Division of Pediatric Infectious Diseases , Vienna Vaccine Safety Initiative , Berlin , Germany.,b Department of Pediatrics , Charité University Medical Center , Berlin , Germany
| | - Bron Kisler
- f Clinical Data Standards Interchange Consortium (CDISC) , Austin , TX , USA
| | - Brunhilde Schweiger
- e National Reference Centre for Influenza and Other Respiratory Viruses , Robert Koch Institute , Berlin , Germany
| |
Collapse
|
30
|
Cheemarla NR, Baños-Lara MDR, Naidu S, Guerrero-Plata A. Neutrophils regulate the lung inflammatory response via γδ T cell infiltration in an experimental mouse model of human metapneumovirus infection. J Leukoc Biol 2017; 101:1383-1392. [PMID: 28336678 DOI: 10.1189/jlb.4a1216-519rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/28/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human circulation. They are the first immune cell population recruited to the sites of infection. However, the role of neutrophils to regulate host immune responses during respiratory viral infections is largely unknown. To elucidate the role of neutrophils in respiratory antiviral defense, we used an experimental mouse model of human metapneumovirus (HMPV) infection. HMPV, a member of the Paramyxoviridae family, is a leading respiratory pathogen causing severe symptoms, such as bronchiolitis and pneumonia, in young, elderly, and immunocompromised patients. We demonstrate that neutrophils are the predominant population of immune cells recruited into the lungs after HMPV infection. This led us to hypothesize that neutrophils represent a key player of the immune response during HMPV infection, thereby regulating HMPV-induced lung pathogenesis. Specific depletion of neutrophils in vivo using a mAb and simultaneous infection with HMPV exhibited higher levels of inflammatory cytokines, pulmonary inflammation, and severe clinical disease compared with HMPV-infected, competent mice. Interestingly, the lack of neutrophils altered γδ T cell accumulation in the lung. The absence of γδ T cells during HMPV infection led to reduced pulmonary inflammation. These novel findings demonstrate that neutrophils play a critical role in controlling HMPV-induced inflammatory responses by regulating γδ T cell infiltration to the site of infection.
Collapse
Affiliation(s)
- Nagarjuna R Cheemarla
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and
| | - Ma Del Rocío Baños-Lara
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and
| | - Shan Naidu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA; and .,Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
31
|
Márquez-Escobar VA. Current developments and prospects on human metapneumovirus vaccines. Expert Rev Vaccines 2017; 16:419-431. [PMID: 28116910 DOI: 10.1080/14760584.2017.1283223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Human metapneumovirus (hMPV) has become one of the major pathogens causing acute respiratory infections (ARI) mainly affecting young children, immunocompromised patients, and the elderly. Currently there are no licensed vaccines against this virus. Areas covered: Since the discovery of hMPV in 2001, many groups have focused on developing vaccines against this pathogen. This review presents the outcomes and perspectives derived from preclinical studies performed in cell cultures and animals as well as the only candidate that has reached evaluation in a clinical trial. Limitations of the current vaccine candidates are discussed and perspectives for the development of plant-based vaccines are analyzed. Expert commentary: Several hMPV vaccine candidates are under development with the potential to progress into clinical trials. In parallel, the molecular farming field offers new opportunities to generate innovative vaccines that will offer several advantages in the fight against hMPV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- a Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, San Luis Potosí 78210 , SLP , Mexico
| |
Collapse
|