1
|
Ogwuche J, Chang CA, Ige O, Sagay AS, Chaplin B, Kahansim ML, Paul M, Elujoba M, Imade G, Kweashi G, Dai YC, Hsieh SC, Wang WK, Hamel DJ, Kanki PJ. Arbovirus surveillance in pregnant women in north-central Nigeria, 2019-2022. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.04.23293671. [PMID: 37609234 PMCID: PMC10441490 DOI: 10.1101/2023.08.04.23293671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The adverse impact of Zika (ZIKV), dengue (DENV), and chikungunya (CHIKV) virus infection in pregnancy has been recognized in Latin America and Asia but is not well studied in Africa. In Nigeria, we screened 1006 pregnant women for ZIKV, DENV and CHIKV IgM/IgG by rapid test (2019-2022). Women with acute infection were recruited for prospective study and infants were examined for any abnormalities from delivery through six months. A subset of rapid test-reactive samples were confirmed using virus-specific ELISAs and neutralization assays. Prevalence of acute infection (IgM+) was 3.8%, 9.9% and 11.8% for ZIKV, DENV and CHIKV, respectively; co-infections represented 24.5% of all infections. Prevalence in asymptomatic women was twice the level of symptomatic infection. We found a significant association between acute maternal ZIKV/DENV/CHIKV infection and any gross abnormal birth outcome (p=0.014). Further prospective studies will contribute to our understanding of the clinical significance of these endemic arboviruses in Africa.
Collapse
|
2
|
Effective Infection with Dengue Virus in Experimental Neonate and Adult Mice through the Intranasal Route. Viruses 2022; 14:v14071394. [PMID: 35891375 PMCID: PMC9322762 DOI: 10.3390/v14071394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus, the causative agent of dengue fever, life-threatening hemorrhagic fever, and shock syndrome, is mainly transmitted to humans through mosquito vectors. It can also be transmitted through atypical routes, including needle stick injury, vertical transmission, blood transfusion, and organ transplantation. In addition, sporadic cases which have no clear infectious causes have raised the respiratory exposure concerns, and the risks remain unclear. Here, we analyze the respiratory infectivity of the dengue virus in BALB/c suckling and adult immunodeficient mice by the intranasal inoculation of dengue virus serotype 2. The infected mice presented with clinical symptoms, including excitement, emaciation, malaise, and death. Viremia was detected for 3 days post inoculation. Histopathological changes were observed in the brain, liver, and spleen. The virus showed evident brain tropism post inoculation and viral loads peaked at 7 days post inoculation. Furthermore, the virus was isolated from the infected mice; the sequence homology between the origin and isolates was 99.99%. Similar results were observed in adult IFN-α/β receptor-deficient mice. Overall, dengue virus can infect suckling mice and adult immune-deficient mice via the nasal route. This study broadens our perception of atypical dengue transmission routes and provides evidence of nasal transmission of dengue virus in the absence of mosquito vectors.
Collapse
|
3
|
Desgraupes S, Hubert M, Gessain A, Ceccaldi PE, Vidy A. Mother-to-Child Transmission of Arboviruses during Breastfeeding: From Epidemiology to Cellular Mechanisms. Viruses 2021; 13:1312. [PMID: 34372518 PMCID: PMC8310101 DOI: 10.3390/v13071312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Most viruses use several entry sites and modes of transmission to infect their host (parenteral, sexual, respiratory, oro-fecal, transplacental, transcutaneous, etc.). Some of them are known to be essentially transmitted via arthropod bites (mosquitoes, ticks, phlebotomes, sandflies, etc.), and are thus named arthropod-borne viruses, or arboviruses. During the last decades, several arboviruses have emerged or re-emerged in different countries in the form of notable outbreaks, resulting in a growing interest from scientific and medical communities as well as an increase in epidemiological studies. These studies have highlighted the existence of other modes of transmission. Among them, mother-to-child transmission (MTCT) during breastfeeding was highlighted for the vaccine strain of yellow fever virus (YFV) and Zika virus (ZIKV), and suggested for other arboviruses such as Chikungunya virus (CHIKV), dengue virus (DENV), and West Nile virus (WNV). In this review, we summarize all epidemiological and clinical clues that suggest the existence of breastfeeding as a neglected route for MTCT of arboviruses and we decipher some of the mechanisms that chronologically occur during MTCT via breastfeeding by focusing on ZIKV transmission process.
Collapse
Affiliation(s)
- Sophie Desgraupes
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Mathieu Hubert
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Antoine Gessain
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Pierre-Emmanuel Ceccaldi
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| | - Aurore Vidy
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, 75015 Paris, France; (M.H.); (A.G.); (P.-E.C.)
- Université de Paris, 75013 Paris, France
- UMR Centre National de la Recherche Scientifique 3569, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
4
|
Van de Perre P, Molès J, Nagot N, Tuaillon E, Ceccaldi P, Goga A, Prendergast AJ, Rollins N. Revisiting Koch's postulate to determine the plausibility of viral transmission by human milk. Pediatr Allergy Immunol 2021; 32:835-842. [PMID: 33594740 PMCID: PMC8359252 DOI: 10.1111/pai.13473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
As breastfeeding is of utmost importance for child development and survival, identifying whether breast milk is a route of transmission for human viruses is critical. Based on the principle of Koch's postulate, we propose an analytical framework to determine the plausibility of viral transmission by breast milk. This framework is based on five criteria: viral infection in children receiving breast milk from infected mothers; the presence of virus, viral antigen, or viral genome in the breast milk of infected mothers; the evidence for the virus in breast milk being infectious; the attempts to rule out other transmission modalities; and the reproduction of viral transmission by oral inoculation in an animal model. We searched for evidence in published reports to determine whether the 5 criteria are fulfilled for 16 human viruses that are suspected to be transmissible by breast milk. We considered breast milk transmission is proven if all 5 criteria are fulfilled, as probable if 4 of the 5 criteria are met, as possible if 3 of the 5 criteria are fulfilled, and as unlikely if less than 3 criteria are met. Only five viruses have proven transmission through breast milk: human T-cell lymphotropic virus 1, human immunodeficiency virus, human cytomegalovirus, dengue virus, and Zika virus. The other 11 viruses fulfilled some but not all criteria and were categorized accordingly. Our framework analysis is useful for guiding public health recommendations and for identifying knowledge gaps amenable to original experiments.
Collapse
Affiliation(s)
- Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Jean‐Pierre Molès
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging InfectionsUniversity of MontpellierINSERMEtablissement Français du SangAntilles UniversityMontpellierFrance
- CHU MontpellierMontpellierFrance
| | - Pierre‐Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus OncogènesCNRS UMR 3569Institut PasteurUniversité de ParisParisFrance
| | - Ameena Goga
- HIV Prevention Research UnitSouth African Medical Research CouncilCape TownSouth Africa
- Department of Paediatrics and Child HealthUniversity of PretoriaPretoriaSouth Africa
| | - Andrew J. Prendergast
- Blizard InstituteQueen Mary University of LondonUK
- Zvitambo Institute for Maternal and Child Health ResearchHarareZimbabwe
| | - Nigel Rollins
- Department of Maternal, Newborn, Child and Adolescent Health and AgeingWorld Health OrganizationGenevaSwitzerland
| |
Collapse
|
5
|
Hubert M, Jeannin P, Burlaud-Gaillard J, Roingeard P, Gessain A, Ceccaldi PE, Vidy A. Evidence That Zika Virus Is Transmitted by Breastfeeding to Newborn A129 ( Ifnar1 Knock-Out) Mice and Is Able to Infect and Cross a Tight Monolayer of Human Intestinal Epithelial Cells. Front Microbiol 2020; 11:524678. [PMID: 33193119 PMCID: PMC7649816 DOI: 10.3389/fmicb.2020.524678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) belongs to the Flavivirus genus in the Flaviviridae family. Mainly transmitted via mosquito bites (Aedes aegypti, Aedes albopictus), ZIKV has been classified in the large category of arthropod-borne viruses, or arboviruses. However, during the past two outbreaks in French Polynesia (2013–2014) and Latin America (2015–2016), several cases of ZIKV human-to-human transmission were reported, either vertically via transplacental route but also horizontally after sexual intercourse. Interestingly, high viral burdens were detected in the colostrum and breast milk of infected women and mother-to-child transmission of ZIKV during breastfeeding was recently highlighted. In a previous study, we highlighted the implication of the mammary epithelium (blood–milk barrier) in ZIKV infectious particles excretion in breast milk. However, mechanisms of their further transmissibility to the newborn via oral route through contaminated breast milk remain unknown. In this study, we provide the first experimental proof-of-concept of the existence of the breastfeeding as a route for mother-to-child transmission of ZIKV and characterized the neonatal oral transmission in a well-established mouse model of ZIKV infection. From a mechanistical point-of-view, we demonstrated for the first time that ZIKV was able to infect and cross an in vitro model of tight human intestinal epithelium without altering its barrier integrity, permitting us to consider the gut as an entry site for ZIKV after oral exposure. By combining in vitro and in vivo experiments, this study strengthens the plausibility of mother-to-child transmission of ZIKV during breastfeeding and helps to better characterize underlying mechanisms, such as the crossing of the newborn intestinal epithelium by ZIKV. As a consequence, these data could serve as a basis for a reflection about the implementation of measures to prevent ZIKV transmission, while keeping in mind breastfeeding-associated benefits.
Collapse
Affiliation(s)
- Mathieu Hubert
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Patricia Jeannin
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Université de Tours et CHU de Tours, Tours, France.,Plate-forme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U1259, Université de Tours et CHU de Tours, Tours, France.,Plate-forme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, Tours, France
| | - Antoine Gessain
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Pierre-Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| | - Aurore Vidy
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Département Virologie, Institut Pasteur, Paris, France.,Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, Département Virologie, Institut Pasteur, UMR 3569, Paris, France
| |
Collapse
|
6
|
Morsy S, Hashan MR, Hieu TH, Mohammed AT, Elawady SS, Ghosh P, Elgendy MA, Le HH, Hamad WMA, Iqtadar S, Dumre SP, Hirayama K, Huy NT. The association between dengue viremia kinetics and dengue severity: A systemic review and meta-analysis. Rev Med Virol 2020; 30:1-10. [PMID: 32856357 DOI: 10.1002/rmv.2121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/29/2022]
Abstract
In this study, we aim to assess the association of dengue viremia with dengue severity. The study protocol was developed and registered in PROSPERO (CRD42016039864). We searched nine databases to find potential papers. Studies meeting the inclusion criteria were included. We, based our analysis on three outcomes which are disease severity, dengue serotype and disease infection type. Thirty studies with 3316 patients were included. Our analysis revealed that viremia is significantly higher in dengue hemorrhagic fever patients than dengue fever in days 5 to 6. Regarding the serotype of dengue, the maximum viremia titre of serotype 1 was significantly higher than serotype 3 and the viremia in dengue serotype 2 was significantly higher than serotype 4 in days 2 to 4. However, comparison of the daily viremia level between the primary and secondary dengue infection revealed that secondary infection was significantly higher than the primary infection on seventh day and on the eighth day. Viremia is strongly associated with disease severity and type of infection which gave viremia a high indicative power to be used as a clinical predictor. Dengue serotype is also associated with viral load with higher viremia in DENV-2/1.
Collapse
Affiliation(s)
- Sara Morsy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan
| | - Mohammad Rashidul Hashan
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Respiratory and Enteric Infections Department, Infectious Disease Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Truong Hong Hieu
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Abdelrahman Tarek Mohammed
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sameh Samir Elawady
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Prithwish Ghosh
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,College Medicine and Sagore Dutta Hospital, West Bengal University of Health Science, West Bengal, India
| | - Manal A Elgendy
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Biochemistry and Molecular Biology, Ain Shams University, Cairo, Egypt
| | - Huu-Hoai Le
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Saigon General Hospital, Ho Chi Minh City, Vietnam
| | - Walid Mohamed Attiah Hamad
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Internal Medicine Department Infectious Diseases Unit, Zagazig University, Zagazig, Egypt
| | - Somia Iqtadar
- Online research Club (http://www.onlineresearchclub.org), Nagasaki, Japan.,Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
7
|
Regla-Nava JA, Viramontes KM, Vozdolska T, Huynh AT, Villani T, Gardner G, Johnson M, Ferro PJ, Shresta S, Kim K. Detection of Zika virus in mouse mammary gland and breast milk. PLoS Negl Trop Dis 2019; 13:e0007080. [PMID: 30742628 PMCID: PMC6386411 DOI: 10.1371/journal.pntd.0007080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/22/2019] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Clinical reports of Zika Virus (ZIKV) RNA detection in breast milk have been described, but evidence conflicts as to whether this RNA represents infectious virus. We infected post-parturient AG129 murine dams deficient in type I and II interferon receptors with ZIKV. ZIKV RNA was detected in pup stomach milk clots (SMC) as early as 1 day post maternal infection (dpi) and persisted as late as 7 dpi. In mammary tissues, ZIKV replication was demonstrated by immunohistochemistry in multiple cell types including cells morphologically consistent with myoepithelial cells. No mastitis was seen histopathologically. In the SMC and tissues of the nursing pups, no infectious virus was detected via focus forming assay. However, serial passages of fresh milk supernatant yielded infectious virus, and immunohistochemistry showed ZIKV replication protein associated with degraded cells in SMC. These results suggest that breast milk may contain infectious ZIKV. However, breast milk transmission (BMT) does not occur in this mouse strain that is highly sensitive to ZIKV infection. These results suggest a low risk for breast milk transmission of ZIKV, and provide a platform for investigating ZIKV entry into milk and mechanisms which may prevent or permit BMT.
Collapse
Affiliation(s)
- Jose Angel Regla-Nava
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Karla M. Viramontes
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Teodora Vozdolska
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Anh-Thy Huynh
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Tom Villani
- Visikol, New Jersey, United States of America
| | | | | | - Pamela J. Ferro
- Texas Veterinary Medical Diagnostic Laboratory, College Station, TX, United States of America
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Kenneth Kim
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| |
Collapse
|
8
|
Niranjan R, Muthukumaravel S, Jambulingam P. The Involvement of Neuroinflammation in Dengue Viral Disease: Importance of Innate and Adaptive Immunity. Neuroimmunomodulation 2019; 26:111-118. [PMID: 31352457 DOI: 10.1159/000501209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Neuroinflammation (inflammation in brain) has been known to play an important role in the development of dengue virus disease. Recently, studies from both clinical and experimental models suggest the involvement of neuroinflammation in dengue viral disease. Studies in clinical setup demonstrated that, microglial cells are actively involved in the patients having dengue virus infection, showing involvement of innate immune response in neuroinflammation. It was further proved that, clinical isolates of dengue-2 virus were able to initiate the pathologic response when injected in the mice brain. Natural killer cells were also found to play a crucial role to activate adaptive immune response. Notably, CXCL10/IFN-inducible protein 10 and CXCR3 are involved in dengue virus-mediated pathogenesis and play an important role in the development of dengue virus-mediated paralysis. In a latest report, it was seen that intracranial injection of dengue virus increases the CD8+ T-cell infiltration in brain, showing an important mechanism of neuroinflammation during the dengue virus infection. A similar study has described that, when DENV-3 is injected into the mice, it enhances the infiltration of CD8+ and CD4+ T cells as well as neutrophils. Cells immune-reactive against NS3 antigen were found throughout the brain. In conclusion, we focus on the various molecular mechanisms which contribute to the basic understanding about the role of neuroinflammation in dengue fever. These mechanisms will help in better understanding dengue pathophysiology and thus help in the development of possible therapeutics.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry, India,
| | | | | |
Collapse
|
9
|
Tchuandom SB, Tchouangueu TF, Antonio-Nkondjio C, Lissom A, Djang JON, Atabonkeng EP, Kechia A, Nchinda G, Kuiate JR. Seroprevalence of dengue virus among children presenting with febrile illness in some public health facilities in Cameroon. Pan Afr Med J 2018; 31:177. [PMID: 31086629 PMCID: PMC6488248 DOI: 10.11604/pamj.2018.31.177.16390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/21/2018] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION A routine diagnosis of Dengue virus (DENV) infection is not usually conducted in hospitals. Because symptoms overlap, many potential febrile illnesses due to DENV may be confused for malaria, typhoid or paratyphoid (enteric) fever. The absence of data on DENV exposure rates among children attending health facilities could undermine management of this disease. This study aimed to investigate the seroprevalence of dengue virus infection in children presenting febrile illness in some public health facilities in Cameroon. METHODS A cross-sectional study was performed in children ≤ 15 years attending seven urban and three semi-urban public hospitals of Cameroon. From each volunteer, 2ml of whole blood was collected and tested for dengue virus IgM, malaria (Pf/Pan antigens) and enteric fever (Typhoid IgM) using rapid diagnostic tests (RDT); in order to allow the healthcare workers to quickly put the positive cases under appropriate treatment. Positive cases of dengue virus infection were confirmed by indirect ELISA. Data analysis were performed using the statistical package for social sciences software, version 22.1. RESULTS A total of 961 children were enrolled in the study and 492 (51.2%) were infected with at least one of the three pathogens. Overall, DENV IgM seroprevalence among febrile children was 14.4% (138/961). About 390 (40.6%) and 22 (2.3%) had malaria (Pf/Pan Ag) and enteric fever (Typhoid IgM) respectively. Co-infection with dengue virus was found in 51 (5.3%) participants. The dengue virus IgM seroprevalence was higher in Bankim (19.3%), Ntui (18.3%) and Douala (18.2%). CONCLUSION Dengue virus infection seroprevalence appears to be low in children presenting with febrile illness in the studied health centres in Cameroon but call for more attention and research to further characterise the circulating strains of the dengue virus.
Collapse
Affiliation(s)
- Salomon Bonsi Tchuandom
- Department of Biochemistry, University of Dschang, Cameroon
- Public School of medical Laboratory Technicians, Yaoundé, Cameroon
| | - Thibau Flaurant Tchouangueu
- Department of Biochemistry, University of Dschang, Cameroon
- Laboratory of Microbiology and Immunology, Chantal Biya International Reference Centre for Research and Prevention on HIV/AIDS Yaoundé
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroun
| | - Abel Lissom
- Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé
| | | | | | | | - Godwin Nchinda
- Laboratory of Microbiology and Immunology, Chantal Biya International Reference Centre for Research and Prevention on HIV/AIDS Yaoundé
| | | |
Collapse
|
10
|
Mann TZ, Haddad LB, Williams TR, Hills SL, Read JS, Dee DL, Dziuban EJ, Pérez-Padilla J, Jamieson DJ, Honein MA, Shapiro-Mendoza CK. Breast milk transmission of flaviviruses in the context of Zika virus: A systematic review. Paediatr Perinat Epidemiol 2018; 32:358-368. [PMID: 29882971 PMCID: PMC6103797 DOI: 10.1111/ppe.12478] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Since the Zika virus epidemic in the Americas began in 2015, Zika virus transmission has occurred throughout the Americas. However, limited information exists regarding possible risks of transmission of Zika virus and other flaviviruses through breast feeding and human milk. We conducted a systematic review of the evidence regarding flaviviruses detection in and transmission through milk, specifically regarding Zika virus, Japanese encephalitis virus, tick-borne encephalitis virus, Powassan virus, West Nile virus, dengue virus, and yellow fever virus. METHODS Medline, Embase, Global Health, CINAHL, Cochrane Library, Scopus, Popline, Virtual Health Library, and WorldCat were searched through June 2017. Two authors independently screened potential studies for inclusion and extracted data. Human and nonhuman (animal) studies describing: 1) confirmed or suspected cases of mother-to-child transmission through milk; or 2) the presence of flavivirus genomic material in milk. RESULTS Seventeen studies were included, four animal models and thirteen observational studies. Dengue virus, West Nile virus, and Zika virus viral ribonucleic acid was detected in human milk, including infectious Zika virus and dengue virus viral particles. Human breast-feeding transmission was confirmed for only yellow fever virus. There was evidence of milk-related transmission of dengue virus, Powassan virus, and West Nile virus in animal studies. CONCLUSIONS Because the health advantages of breast feeding are considered greater than the potential risk of transmission, the World Health Organization recommends that mothers with possible or confirmed Zika virus infection or exposure continue to breast feed. This review did not identify any data that might alter this recommendation.
Collapse
Affiliation(s)
- Taylor Z. Mann
- Division of Congenital and Developmental Disorders, Centers for
Disease Control and Prevention,Oak Ridge Institute for Science and Education (ORISE) Research
Participation Program
| | - Lisa B. Haddad
- Division of Reproductive Health, Centers for Disease Control and
Prevention,Emory University, Department of Gynecology & Obstetrics,
Atlanta, GA
| | - Tonya R. Williams
- Division of Human Development and Disability, Centers for Disease
Control and Prevention
| | - Susan L. Hills
- Division of Vector-Borne Diseases, Centers for Disease Control and
Prevention
| | - Jennifer S. Read
- Division of Vector-Borne Diseases, Centers for Disease Control and
Prevention
| | - Deborah L. Dee
- Division of Reproductive Health, Centers for Disease Control and
Prevention,United States Public Health Service, Commissioned Corps, Rockville,
MD
| | - Eric J. Dziuban
- Division of Human Development and Disability, Centers for Disease
Control and Prevention,United States Public Health Service, Commissioned Corps, Rockville,
MD
| | | | - Denise J. Jamieson
- Division of Reproductive Health, Centers for Disease Control and
Prevention,Emory University, Department of Gynecology & Obstetrics,
Atlanta, GA
| | - Margaret A. Honein
- Division of Congenital and Developmental Disorders, Centers for
Disease Control and Prevention
| | | |
Collapse
|
11
|
Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T. The neurological complications of chikungunya virus: A systematic review. Rev Med Virol 2018; 28:e1978. [PMID: 29671914 PMCID: PMC5969245 DOI: 10.1002/rmv.1978] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/06/2023]
Abstract
We performed a systematic review on the neurological complications of chikungunya virus. Such complications are being reported increasingly, owing primarily to the scale of recent epidemics but also to a growing understanding of the virus' neurovirulence. We performed a thorough literature search using PubMed and Scopus databases, summating the data on all published reports of neurological disease associated with chikungunya virus. We appraised the data for each major condition in adults, children, and neonates, as well as evaluating the latest evidence on disease pathogenesis and management strategies. The review provides a comprehensive summary for clinicians, public health officials, and researchers tackling the challenges associated with this important emerging pathogen.
Collapse
Affiliation(s)
- Ravi Mehta
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| | - Patrick Gerardin
- INSERM CIC1410Centre Hospitalier Universitaire de la RéunionSaint PierreRéunionFrance
- UM 134 PIMIT CNRS 9192, INSERM U1187, IRD 249Université de la Réunion, CHU, CYROISaint PierreRéunionFrance
| | | | | | | | - Tom Solomon
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
- Department of NeurologyWalton Centre NHS Foundation TrustLiverpoolUK
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
12
|
Mohr EL, Block LN, Newman CM, Stewart LM, Koenig M, Semler M, Breitbach ME, Teixeira LBC, Zeng X, Weiler AM, Barry GL, Thoong TH, Wiepz GJ, Dudley DM, Simmons HA, Mejia A, Morgan TK, Salamat MS, Kohn S, Antony KM, Aliota MT, Mohns MS, Hayes JM, Schultz-Darken N, Schotzko ML, Peterson E, Capuano S, Osorio JE, O’Connor SL, Friedrich TC, O’Connor DH, Golos TG. Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS One 2018; 13:e0190617. [PMID: 29381706 PMCID: PMC5790226 DOI: 10.1371/journal.pone.0190617] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/18/2017] [Indexed: 12/03/2022] Open
Abstract
Congenital Zika virus (ZIKV) infection impacts fetal development and pregnancy outcomes. We infected a pregnant rhesus macaque with a Puerto Rican ZIKV isolate in the first trimester. The pregnancy was complicated by preterm premature rupture of membranes (PPROM), intraamniotic bacterial infection and fetal demise 49 days post infection (gestational day 95). Significant pathology at the maternal-fetal interface included acute chorioamnionitis, placental infarcts, and leukocytoclastic vasculitis of the myometrial radial arteries. ZIKV RNA was disseminated throughout fetal tissues and maternal immune system tissues at necropsy, as assessed by quantitative RT-PCR for viral RNA. Replicating ZIKV was identified in fetal tissues, maternal uterus, and maternal spleen by fluorescent in situ hybridization for viral replication intermediates. Fetal ocular pathology included a choroidal coloboma, suspected anterior segment dysgenesis, and a dysplastic retina. This is the first report of ocular pathology and prolonged viral replication in both maternal and fetal tissues following congenital ZIKV infection in a rhesus macaque. PPROM followed by fetal demise and severe pathology of the visual system have not been described in macaque congenital ZIKV infection previously. While this case of ZIKV infection during pregnancy was complicated by bacterial infection with PPROM, the role of ZIKV on this outcome cannot be precisely defined, and further nonhuman primate studies will determine if increased risk for PPROM or other adverse pregnancy outcomes are associated with congenital ZIKV infection.
Collapse
Affiliation(s)
- Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (ELM); (TGG)
| | - Lindsey N. Block
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laurel M. Stewart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle Koenig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Troy H. Thoong
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gregory J. Wiepz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Terry K. Morgan
- Departments of Pathology and Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - M. Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sarah Kohn
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michele L. Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric Peterson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (ELM); (TGG)
| |
Collapse
|
13
|
Affiliation(s)
- Mobeen H Rathore
- University of Florida Center for HIV/AIDS Research, Education and Service (UF CARES), 910 North Jefferson Street, Jacksonville, FL 32209, USA; Infectious Diseases and Immunology, Wolfson Children's Hospital, 800 Prudential Drive, Jacksonville, FL 32207, USA.
| | - Jonathan Runyon
- Nicklaus Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA
| | - Tanveer-Ul Haque
- Infectious Diseases and Immunology, Wolfson Children's Hospital, 800 Prudential Drive, Jacksonville, FL 32207, USA
| |
Collapse
|