1
|
Li Y, Shen Q, Feng L, Zhang C, Jiang X, Liu F, Pang B. A nanoscale natural drug delivery system for targeted drug delivery against ovarian cancer: action mechanism, application enlightenment and future potential. Front Immunol 2024; 15:1427573. [PMID: 39464892 PMCID: PMC11502327 DOI: 10.3389/fimmu.2024.1427573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies in the world and is the leading cause of cancer-related death in women. The complexity and difficult-to-treat nature of OC pose a huge challenge to the treatment of the disease, Therefore, it is critical to find green and sustainable drug treatment options. Natural drugs have wide sources, many targets, and high safety, and are currently recognized as ideal drugs for tumor treatment, has previously been found to have a good effect on controlling tumor progression and reducing the burden of metastasis. However, its clinical transformation is often hindered by structural stability, bioavailability, and bioactivity. Emerging technologies for the treatment of OC, such as photodynamic therapy, immunotherapy, targeted therapy, gene therapy, molecular therapy, and nanotherapy, are developing rapidly, particularly, nanotechnology can play a bridging role between different therapies, synergistically drive the complementary role of differentiated treatment schemes, and has a wide range of clinical application prospects. In this review, nanoscale natural drug delivery systems (NNDDS) for targeted drug delivery against OC were extensively explored. We reviewed the mechanism of action of natural drugs against OC, reviewed the morphological composition and delivery potential of drug nanocarriers based on the application of nanotechnology in the treatment of OC, and discussed the limitations of current NNDDS research. After elucidating these problems, it will provide a theoretical basis for future exploration of novel NNDDS for anti-OC therapy.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhou W, Fan T, Yan Y, Chen Y, Ma X, Yang T, Xiang G, Lu Y. A manganese-oxide nano-rambutan as the intrinsic modifier for hypericin delivery and triple-negative breast cancer treatment. Int J Pharm 2024; 666:124824. [PMID: 39396657 DOI: 10.1016/j.ijpharm.2024.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The anti-tumor efficacy of naturally derived photosensitizer-hypericin (Hy) is dampened by hypoxia and over-expressed glutathione in the tumor microenvironment (TME). For rewiring the TME, we encapsulated Hy to an intrinsic modifier-manganese oxide-formed nanorambutan (MnOx-Hy NR). In triple-negative breast cancer cells, MnOx-Hy NR not only consumed glutathione through Mn2+ and hypericin release but also facilitated O2 production to relieve hypoxia, through which the reactive oxygen species (ROS) generation was strengthened by endoplasmic reticulum targeting hypericin. In the meantime, glutathione consumption-induced glutathione peroxidase 4 (GPX4) inactivation and the elevation of lipid hydroperoxide (LPO) level further triggered ferroptosis. Then, the combination of PDT and ferroptosis contributed to a synergic immunogenic cell death (ICD) effect in 4 T1 cells, facilitating the adaptive anti-tumor immune response activation. Thereby, MnOx-Hy NR exhibited excellent anti-tumor effects both in primary and distant tumors through the abscopal effect, as well as significant lung metastasis inhibition in the 4 T1 mouse metastatic tumor model.
Collapse
Affiliation(s)
- Weixin Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Fan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yakai Yan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren, Guizhou 554300, China.
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Gao YT, Liu JH, He K, Guo SL. Advances in two-photon absorption photodynamic therapy of glioma based on porphyrin-based metal-organicframework composites. Photodiagnosis Photodyn Ther 2024; 49:104281. [PMID: 39009207 DOI: 10.1016/j.pdpdt.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Gliomas of the brain are characterised by high aggressiveness, high postoperative recurrence rate, high morbidity and mortality, posing a great challenge to clinical treatment. Traditional treatments include surgery, radiotherapy and chemotherapy; they also have significant associated side effects, leading to difficulties in tumour resection and recurrence. Photodynamic therapy has been shown to be a promising new strategy to help treat malignant tumours of the brain. It irradiates the tumour site at a specific wavelength to activate a photosensitiser, which selectively accumulates at the tumour site, triggering a photochemical reaction that destroys the tumour cells. It has the advantages of being minimally invasive, highly targeted and with few adverse reactions, and is expected to be well used in anti-tumour therapy. However, the therapeutic effect of traditional PDT is limited by the weak tissue penetration ability of photosensitiser, hypoxia and immunosuppression in the tumour microenvironment. This paper reviews the current research status on the therapeutic principle of photodynamic therapy in glioma and the mechanism of tumour cell injury, and also analyses the advantages and disadvantages of the current application in glioma treatment, and clarifies the analysis of ideas to improve the tissue penetration ability of photosensitizers. It aims to provide a feasible direction for the improvement of photodynamic therapy for glioma and a reference for the clinical treatment of deep brain tumours.
Collapse
Affiliation(s)
- Yong-Tao Gao
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000.
| | - Jun-Hui Liu
- School of Physics and Electronics, Henan University, Kaifeng City, Henan Province, PR China, 475004
| | - Kang He
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000
| | - Shuang-Lei Guo
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000
| |
Collapse
|
4
|
Chauhan N, Koli M, Ghosh R, Majumdar AG, Ghosh A, Ghanty TK, Mula S, Patro BS. A BODIPY-Naphtholimine-BF 2 Dyad for Precision Photodynamic Therapy, Targeting, and Dual Imaging of Endoplasmic Reticulum and Lipid Droplets in Cancer. JACS AU 2024; 4:2838-2852. [PMID: 39211629 PMCID: PMC11350743 DOI: 10.1021/jacsau.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
Currently, effective therapeutic modalities for pancreatic ductal adenocarcinoma (PDAC) are quite limited, leading to gloomy prognosis and ∼6-months median patient survival. Recent advances showed the promise of photodynamic therapy (PDT) for PDAC patients. Next generation photosensitizers (PS) are based on "organelle-targeted-PDT" and provide new paradigm in the field of precision medicines to address the current challenge for treating PDAC. In this investigation, we have constructed a novel PS, named as N b B, for precise and simultaneous targeting of endoplasmic reticulum (ER) and lipid droplets (LDs) in PDAC, based on the fact that malignant PDAC cells are heavily relying on ER for hormone synthesis. Our live cell imaging and fluorescence recovery after photobleaching (FRAP) experiments revealed that N b B is quickly targeted to ER and subsequently to LDs and shows simultaneous dual fluorescence color due to polar and nonpolar milieu of ER and LDs. Interestingly, the same molecule generates triplet state and singlet oxygen efficiently and causes robust ER stress and cellular lipid peroxidation, leading to apoptosis in two different PDAC cells in the presence of light. Together, we present, for the first time, a potential next generation precision medicine for ER-LD organelle specific imaging and PDT of pancreatic cancer.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Mrunesh Koli
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Rajib Ghosh
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ananda Guha Majumdar
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ayan Ghosh
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
| | - Tapan K. Ghanty
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Soumyaditya Mula
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Birija Sankar Patro
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
5
|
Hu J, Wen X, Song J. Hypericin-mediated photodynamic therapy inhibits metastasis and EMT of colorectal cancer cells by regulating RhoA-ROCK1 signaling pathway. Photochem Photobiol Sci 2024; 23:1361-1372. [PMID: 38865066 DOI: 10.1007/s43630-024-00601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Colorectal cancer (CRC) is significantly contributed to global cancer mortality rates. Treating CRC is particularly challenging due to metastasis and drug resistance. There is a pressing need for new treatment strategies against metastatic CRC. Photodynamic therapy (PDT) offers a well-established, minimally invasive treatment option for cancer with limited side effects. Hypericin (HYP), a potent photosensitizer for PDT, has been documented to induce cytotoxicity and apoptosis in various types of cancers. However, there are few reports on the inhibitory effects of HYP-mediated PDT on the metastatic ability of CRC cells. Here, we evaluate the inhibitory effects of HYP-mediated PDT against metastatic CRC cells and define its underlying mechanisms. Wound-healing and Transwell assays show that HYP-mediated PDT suppresses migration and invasion of CRC cells. F-actin visualization assays indicate HYP-mediated PDT decreases F-actin formation in CRC cells. TEM assays reveal HYP-mediated PDT disrupts pseudopodia formation of CRC cells. Mechanistically, immunofluorescence and western blotting results show that HYP-mediated PDT upregulates E-cadherin and downregulates N-cadherin and Vimentin. HYP-mediated PDT also suppresses key EMT regulators, including Snail, MMP9, ZEB1 and α-SMA. Additionally, the expressions of RhoA and ROCK1 are downregulated by HYP-mediated PDT. Together, these findings suggest that HYP-mediated PDT inhibits the migration and invasion of HCT116 and SW620 cells by modulating EMT and RhoA-ROCK1 signaling pathway. Thus, HYP-mediated PDT presents a potential therapeutic option for CRC.
Collapse
Affiliation(s)
- Jinhang Hu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xin Wen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Jiangluqi Song
- School of Physics, Xidian University, Xi'an, 710071, People's Republic of China.
| |
Collapse
|
6
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
7
|
Krupka-Olek M, Bożek A, Czuba ZP, Kłósek M, Cieślar G, Kawczyk-Krupka A. Cytotoxic and Immunomodulatory Effects of Hypericin as a Photosensitizer in Photodynamic Therapy Used on Skin Cell Cultures. Pharmaceutics 2024; 16:696. [PMID: 38931819 PMCID: PMC11207107 DOI: 10.3390/pharmaceutics16060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Determination of the hypericin-photodynamic (HY-PDT) effect on the secretion of cytokines secreted by the skin cells, may be the basis for using the immunomodulatory effect of photodynamic action in the treatment of inflammatory skin diseases. The study aimed to evaluate the cytotoxic and immunomodulatory effects of hypericin (HY) in photodynamic therapy (PDT) performed in vitro on cultures of selected skin cell lines. The study used two human cell lines, primary dermal fibroblast (HDFa) and primary epidermal keratinocytes (HEKa). The MTT test was used to define the metabolic activity of treated cells. Cell supernatants subjected to sublethal PDT were assessed to determine the interleukins: IL-2, IL-8, IL-10, IL-11, IL-19, IL-22, and metalloproteinase 1 (MMP-1). The results confirm the destructive effect of HY-PDT and the immunomodulatory effects of sublethal doses on the selected skin cells, depending on the concentration of HY and the light doses. No statistically significant differences were noted in IL-2 and IL-10 concentration after HY-PDT for HEKa and HDFa lines. After using HY-PDT, the concentration of IL-8, MMP-1, IL-22, and IL-11 significantly decreased in the HEKa line. Moreover, the concentration of IL-19 and MMP-1 significantly decreased in the HDFa line. The concentration of IL-11 in the HDFa line after using only the HY, without the light, increased but decreased after HY-PDT. Our experiment confirmed that HY-PDT has not only a cytotoxic effect but, used in sublethal doses, also presents immunomodulatory properties. These may be an advantage of HY-PDT when used in the treatment of persistent skin inflammation, connected with the release of pro-inflammatory cytokines resistant to conventional treatment methods.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Doctoral School of the Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Shen D, Kang S. Comprehensive analysis of mitochondria-related genes indicates that PPP2R2B is a novel biomarker and promotes the progression of bladder cancer via Wnt signaling pathway. Biol Direct 2024; 19:17. [PMID: 38409085 PMCID: PMC10898125 DOI: 10.1186/s13062-024-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bladder cancer (BC) is the fourth and tenth most common malignancy in men and women worldwide, respectively. The complexity of the molecular biological mechanism behind BC is a major contributor to the lack of effective treatment management of the disease. The development and genesis of BC are influenced by mitochondrial retrograde control and mitochondria-nuclear cross-talk. However, the role of mitochondrial-related genes in BC remains unclear. In this study, we analyzed TCGA datasets and identified 752 DE-MRGs in BC samples, including 313 down-regulated MRGs and 439 up-regulated MRGs. Then, the results of machine-learning screened four critical diagnostic genes, including GLRX2, NMT1, PPP2R2B and TRAF3IP3. Moreover, we analyzed their prognostic value and confirmed that only PPP2R2B was associated with clinical prognosis of BC patients and Cox regression assays validated that PPP2R2B expression was a distinct predictor of overall survival in BC patients. Them, we performed RT-PCR and found that PPP2R2B expression was distinctly decreased in BC specimens and cell lines. Functional experiments revealed that overexpression of PPP2R2B distinctly suppressed the proliferation, migration and invasion of BC cells via Wnt signaling pathway. In summary, these research findings offer potential molecular markers for the diagnosis and prognosis of BC, with the discovery of PPP2R2B particularly holding significant biological and clinical significance. This study provides valuable clues for future in-depth investigations into the molecular mechanisms of BC, as well as the development of new diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Du Shen
- College of Clinic Medical, North China University of Science and Technology, Tangshan, China
| | - Shaosan Kang
- North China of Science and Technology Affiliated Hospital, Tangshan, China.
| |
Collapse
|
9
|
Li X, Liu Y, Wu L, Zhao J. Molecular Nanoarchitectonics of Natural Photosensitizers and Their Derivatives Nanostructures for Improved Photodynamic Therapy. ChemMedChem 2024; 19:e202300599. [PMID: 38069595 DOI: 10.1002/cmdc.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Indexed: 01/25/2024]
Abstract
Natural photosensitizers (PSs) and their derivatives have drawn ever-increasing attention in photodynamic therapy (PDT) for their wild range of sources, desirable biocompatibility, and good photosensitivity. Nevertheless, many factors such as poor solubility, high body clearance rate, limited tumor targeting ability, and short excitation wavelengths severely hinder their applications in efficient PDT. In recent years, fabricating nanostructures by utilizing molecular assembly technique is proposed to solve these problems. This technique is easy to put into effect, and the assembled nanostructures could improve the physical properties of the PSs so as to meet the requirement of PDT. In this concept, we focus on the construction of natural PSs and their derivatives nanostructures through molecular assembly technique to enhance PDT efficacy (Figure 1). Furthermore, current challenges and future perspectives of natural PSs and their derivatives for efficient PDT are discussed.
Collapse
Affiliation(s)
- Xiaochen Li
- Shaanxi University of Chinese Medicine, 712046, Xianyang, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
- Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Yilin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
- Key Laboratory of Health Cultivation of Beijing, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
10
|
Gusmão LA, Rodero CF, Pironi AM, Chorilli M, Perussi JR. Hypericin supramolecular assembles: A way to increase the skin availability and photodynamic efficiency in tumor cells. Photodiagnosis Photodyn Ther 2023; 44:103858. [PMID: 37898262 DOI: 10.1016/j.pdpdt.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Cyclodextrins (CDs) are molecules approved by the FDA and show promise in increasing the solubility of hydrophobic molecules and making them more available to the skin. These CDs have been used to form complexes with some photosensitizers for Photodynamic Therapy (PDT), such as Hypericin (HY). HY is a lipophilic photosensitizer known for its exceptional fluorescence and singlet oxygen quantum yield generation of over 20 % under 590 nm irradiation. In this study, we found a six-fold increase in the release of HY in vitro after complexation with β-CD. The β-CDHY assembly also demonstrated better skin retention, which is crucial for the topical application of this photosensitizer. Furthermore, the β-CD complexation led to a significant increase in the phototoxicity of HY at three different light doses (3, 6, and 10 J cm-2) due to its improved water solubility and higher in vitro accumulation (approximately two times compared with free HY) in HeLa and Vero cell lines.
Collapse
Affiliation(s)
- Luiza Araújo Gusmão
- University of São Paulo (USP), Chemical Insititut of São Carlos (IQSC), Sao Carlos, SP, Brazil.
| | - Camila Fernanda Rodero
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Andressa Maria Pironi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | |
Collapse
|
11
|
Peng Z, Lu J, Liu K, Xie L, Wang Y, Cai C, Yang D, Xi J, Yan C, Li X, Shi M. Hypericin as a promising natural bioactive naphthodianthrone: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2023; 37:5639-5656. [PMID: 37690821 DOI: 10.1002/ptr.8011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.
Collapse
Affiliation(s)
- Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Woźniak M, Nowak-Perlak M. Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro. Int J Mol Sci 2023; 24:16897. [PMID: 38069219 PMCID: PMC10707231 DOI: 10.3390/ijms242316897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of this study was to explore the potential of hypericin, a naturally occurring photosensi-tizer, for photodynamic therapy (PDT) in skin cancer, investigating its phototoxic effects and mechanisms of action in cancer cells compared to normal skin keratinocytes, squamous cell cancer (SCC-25) cells and melanoma (MUG-Mel2) cells. Hypericin was applied at concentrations ranging from 0.1-40 μM to HaCaT, SCC-25, and MUG-Mel2 cells. After 24 h of incubation, the cells were exposed to orange light at 3.6 J/cm2 or 7.2 J/cm2. Phototoxicity was assessed using MTT and SRB tests. Cellular uptake was measured by flow cytometry. Apoptosis-positive cells were estimated through TUNEL for apoptotic bodies' visualization. Hypericin exhibited a higher phototoxic reaction in cancer cells compared to normal keratinocytes after irradiation. Cancer cells demonstrated increased and selective uptake of hypericin. Apoptosis was observed in SCC-25 and MUG-Mel2 cells following PDT. Our findings suggest that hypericin-based PDT is a promising and less invasive approach for treating skin cancer. The higher phototoxic reaction, selective uptake by cancer cells, and observed proapoptotic properties support the promising role of hypericin-based PDT in skin cancer treatment.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | |
Collapse
|
13
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
14
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Domka W, Bartusik-Aebisher D, Rudy I, Dynarowicz K, Pięta K, Aebisher D. Photodynamic therapy in brain cancer: mechanisms, clinical and preclinical studies and therapeutic challenges. Front Chem 2023; 11:1250621. [PMID: 38075490 PMCID: PMC10704472 DOI: 10.3389/fchem.2023.1250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 09/13/2024] Open
Abstract
Cancer is a main cause of death and preferred methods of therapy depend on the type of tumor and its location. Gliomas are the most common primary intracranial tumor, accounting for 81% of malignant brain tumors. Although relatively rare, they cause significant mortality. Traditional methods include surgery, radiotherapy and chemotherapy; they also have significant associated side effects that cause difficulties related to tumor excision and recurrence. Photodynamic therapy has potentially fewer side effects, less toxicity, and is a more selective treatment, and is thus attracting increasing interest as an advanced therapeutic strategy. Photodynamic treatment of malignant glioma is considered to be a promising additional therapeutic option that is currently being extensively investigated in vitro and in vivo. This review describes the application of photodynamic therapy for treatment of brain cancer. The mechanism of photodynamic action is also described in this work as it applies to treatment of brain cancers such as glioblastoma multiforme. The pros and cons of photodynamic therapy for brain cancer are also discussed.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Izabela Rudy
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Karolina Pięta
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
16
|
de Araújo PR, Sato MR, Luiz MT, Chorilli M. Validation of an Innovative Chromatographic Method for Hypericin Quantification in Nanostructured Lipid Carriers. J AOAC Int 2023; 106:1438-1442. [PMID: 37672013 DOI: 10.1093/jaoacint/qsad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Hypericin (HYP) is a natural compound widely used as a food supplement. The encapsulation of HYP into nanosystems, such as nanostructured lipid carriers (NLC), is a promising strategy for delivering this lipophilic molecule and protecting it from degradation. OBJECTIVE This study aims to develop and validate an analytical method to quantify the encapsulation efficiency of HYP in NLC. METHOD A reverse-phase high-performance liquid chromatography (HPLC) method was developed and validated according to the International Conference on Harmonization (ICH) guide Q2 (R1). NLC was prepared through the ultrasonication method, and HYP encapsulation efficiency was evaluated using the validated method. RESULTS Separation was achieved using an isocratic mobile phase composed of acetonitrile, methanol, and ammonium acetate buffer (10 mM, pH 5.0) (54:36:10, v/v/v) and a reverse stationary phase. The specificity, linearity, precision, accuracy, and robustness of the method were assessed and confirmed during the validation. Furthermore, the validated method was able to determine the encapsulation efficiency of HYP in NLC. CONCLUSIONS The HPLC method was validated, and the results indicated the ability of NLC to deliver HYP compounds for further application as a food supplement. HIGHLIGHTS HYP is used as a food supplement and for photodynamic therapy (PDT). The developed method was specific, linear, precise, accurate, and robust. NLCs showed a high ability to encapsulate HYP.
Collapse
Affiliation(s)
- Patricia Rocha de Araújo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903 Araraquara, São Paulo, Brazil
| | - Mariana Rillo Sato
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903 Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903 Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903 Araraquara, São Paulo, Brazil
| |
Collapse
|
17
|
Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155035. [PMID: 37603973 DOI: 10.1016/j.phymed.2023.155035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Experimental studies emphasize the therapeutic potential of plant-derived photosensitizers used in photodynamic therapy. Moreover, several in vitro and in vivo research present the promising roles of less-known anthraquinones that can selectively target cancer cells and eliminate them after light irradiation. This literature review summarizes the current knowledge of chosen plant-based-photosensitizers in PDT to show the results of emodin, aloe-emodin, parietin, rubiadin, hypericin, and soranjidiol in photodynamic therapy of cancer treatment and describe the comprehensive perspective of their role as natural photosensitizers. METHODS Literature searches of chosen anthraquinones were conducted on PubMed.gov with keywords: "emodin", "aloe-emodin", "hypericin", "parietin", "rubiadin", "soranjidiol" with "cancer" and "photodynamic therapy". RESULTS According to literature data, this review concentrated on all existing in vitro and in vivo studies of emodin, aloe-emodin, parietin, rubiadin, soranjidiol used as natural photosensitizers emphasizing their effectiveness and detailed mechanism of action in anticancer therapy. Moreover, comprehensive preclinical and clinical studies on hypericin reveal that the above-described substances may be included in the phototoxic treatment of different cancers. CONCLUSIONS Overall, this review presented less-known anthraquinones with their promising molecular mechanisms of action. It is expected that in the future they may be used as natural PSs in cancer treatment as well as hypericin.
Collapse
Affiliation(s)
- Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland.
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| |
Collapse
|
18
|
Kinoshita T, Terai H, Ikemura S, Takada N, Fukui T, Irie H, Miyazawa R, Funatsu Y, Okamura T, Koh H, Yamamoto T, Shigematsu R, Ohgino K, Oka K. Observation of peripheral airways using ultra-thin fiberscope. Respirology 2023; 28:881-884. [PMID: 37408089 DOI: 10.1111/resp.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Tomonari Kinoshita
- Division of General Thoracic Surgery, Department of Surgery, Tachikawa Hospital, Tokyo, Japan
| | - Hideki Terai
- Department of Pulmonology, Keio University Hospital, Tokyo, Japan
| | - Shinnosuke Ikemura
- Department of Pulmonology, University of Yamanashi Hospital, Yamanashi, Japan
| | - Nao Takada
- Department of Pulmonology, Tachikawa Hospital, Tokyo, Japan
| | - Takahiro Fukui
- Department of Pulmonology, Tachikawa Hospital, Tokyo, Japan
| | - Hidehiro Irie
- Department of Pulmonology, Tachikawa Hospital, Tokyo, Japan
| | - Raita Miyazawa
- Department of Diagnostic Radiology, Tachikawa Hospital, Tokyo, Japan
| | - Yohei Funatsu
- Department of Pulmonology, Tachikawa Hospital, Tokyo, Japan
| | - Teppei Okamura
- Department of Diagnostic Radiology, Tachikawa Hospital, Tokyo, Japan
| | - Hidefumi Koh
- Department of Pulmonology, Tachikawa Hospital, Tokyo, Japan
| | - Tatsuya Yamamoto
- Division of General Thoracic Surgery, Department of Surgery, Tachikawa Hospital, Tokyo, Japan
| | - Risa Shigematsu
- Department of Pulmonology, Keio University Hospital, Tokyo, Japan
| | - Keiko Ohgino
- Department of Pulmonology, Keio University Hospital, Tokyo, Japan
| | - Kiyoshi Oka
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, Kyoto, Japan
| |
Collapse
|
19
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
20
|
Conrado PCV, Vaine AA, Arita GS, Sakita KM, Gonçalves RS, Caetano W, de Souza M, Baesso ML, Malacarne LC, Razzolini E, Vicente VA, Kioshima ES, de Mendonça PDSB. Promising onychomycosis treatment with hypericin-mediated photodynamic therapy: case reports. Photodiagnosis Photodyn Ther 2023; 42:103498. [PMID: 36882144 DOI: 10.1016/j.pdpdt.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Onychomycosis (OM) is a common nail plate disorder caused by dermatophyte molds, yeasts, and non-dermatophyte molds, which use keratin in the nail plate as an energy source. OM is characterized by dyschromia, increased nail thickness, subungual hyperkeratosis, and onychodystrophy, and is typically treated with conventional antifungals despite frequent reports of toxicity, fungal resistance, and OM recurrence. Photodynamic therapy (PDT) with hypericin (Hyp) as a photosensitizer (PS) stands out as a promising therapeutic modality. When excited by a specific wavelength of light and in the presence of oxygen, to lead to photochemical and photobiological reactions on the selected targets. METHODS OM diagnosis was made in three suspected cases, and the causative agents were identified by classical and molecular methods, and confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Susceptibility of planktonic cells of the clinical isolates to conventional antifungals and PDT-Hyp was evaluated, and photoacoustic spectroscopy (PAS) of Hyp permeation in nail fragments ex vivo was analyzed. Furthermore, the patients opted to undergo PDT-Hyp treatment and were subsequently followed up. The protocol was approved by the human ethics committee (CAAE, number 14107419.4.0000.0104). RESULTS The etiological agents of OM in patients ID 01 and ID 02 belonged to the Fusarium solani species complex, being identified as Fusarium keratoplasticum (CMRP 5514) and Fusarium solani (CMRP 5515), respectively. For patient ID 03, the OM agent was identified as Trichophyton rubrum (CMRP 5516). PDT-Hyp demonstrated a fungicidal effect in vitro, with reductions of ≥3 log10 (p<0.0051 and p<0.0001), and the PAS analyses indicated that Hyp could completely permeate through both healthy and OM-affected nails. After four sessions of PDT-Hyp, mycological cure was observed in all three cases, and after seventh months, clinical cure was confirmed. PDT-Hyp showed satisfactory results in terms of efficacy and safety, and thus can be considered a promising therapy for the clinical treatment of OM.
Collapse
Affiliation(s)
- Pollyanna Cristina Vincenzi Conrado
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | | | - Glaucia Sayuri Arita
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | - Karina Mayumi Sakita
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Monique de Souza
- Department of Physics, State University of Maringa, Parana, Brazil
| | | | | | - Emanuel Razzolini
- Department of Pathology Basic, Federal University of Parana State, Curitiba, Parana, Brazil
| | | | - Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil.
| |
Collapse
|
21
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
22
|
Su Z, Xi D, Chen Y, Wang R, Zeng X, Xiong T, Xia X, Rong X, Liu T, Liu W, Du J, Fan J, Peng X, Sun W. Carrier-Free ATP-Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near-Infrared Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205825. [PMID: 36587982 DOI: 10.1002/smll.202205825] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The combination of photodynamic therapy (PDT) and chemotherapy (chemo-photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non-suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP-activated nanoparticles (CDNPs) that are directly self-assembled from near-infrared photosensitizer (Cy-I) and amphiphilic Cd(II) complex (DPA-Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy-I is capable of producing single oxygen (1 O2 ) for PDT with 808 nm irradiation and DPA-Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor-bearing mice after intravenous injection of CDNPs. This carrier-free nanoparticle offers a new platform for chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Zehou Su
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Dongmei Xi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolong Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiang Rong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| |
Collapse
|
23
|
Cytotoxic and Antioxidant Activity of Hypericum perforatum L. Extracts against Human Melanoma Cells from Different Stages of Cancer Progression, Cultured under Normoxia and Hypoxia. Molecules 2023; 28:molecules28031509. [PMID: 36771178 PMCID: PMC9921514 DOI: 10.3390/molecules28031509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
Oxidative stress and the hypoxic microenvironment play a key role in the progression of human melanoma, one of the most aggressive skin cancers. The aim of our study was to evaluate the effect of Hypericum perforatum extracts of different origins (both commercially available (HpEx2) and laboratory-prepared from wild grown (HpEx12) and in vitro cultured (HpEx13) plants) and hyperforin salt on WM115 primary and WM266-4 lymph node metastatic human melanoma cells cultured under normoxic and hypoxic conditions. The polyphenol content, radical scavenging activity, and hyperforin concentration were determined in the extracts, while cell viability, apoptosis, ROS production, and expression of NRF2 and HO-1, important oxidative stress-related factors, were analyzed after 24 h of cell stimulation with HpExs and hyperforin salt. We found that cytotoxic, pro-apoptotic and antioxidant effects depend on the extract composition, the stage of melanoma progression, and the oxygen level. Hyperforin salt showed lower activity than H. perforatum extracts. Our study for the first time showed that the anticancer activity of H. perforatum extracts differs in normoxia and hypoxia. Importantly, the composition of extracts of various origins, including in vitro cultured, resulting in their unique properties, may be important in the selection of plants for therapeutic application.
Collapse
|
24
|
Pourhajibagher M, Hosseini N, Bahador A. Antimicrobial activity of D-amino acid in combination with photo-sonoactivated hypericin nanoparticles against Acinetobacter baumannii. BMC Microbiol 2023; 23:23. [PMID: 36658487 PMCID: PMC9850556 DOI: 10.1186/s12866-023-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The emergence of multidrug-resistant Acinetobacter baumannii strains is increasing worldwide. To overcome these life-threatening infections, the development of new treatment approaches is critical. For this purpose, this study was conducted to determine the antimicrobial photo-sonodynamic therapy (aPSDT) using hypericin nanoparticles (HypNP) in combination with D-Tryptophan (D-Trp) against A. baumannii. MATERIALS AND METHODS HypNP was synthesized and characterized, followed by the determination of the fractional inhibitory concentration (FIC) index of HypNP and D-Trp by checkerboard assay. Next, the antimicrobial and anti-biofilm potential of HypNP@D-Trp-mediated aPSDT against A. baumannii was evaluated. Finally, the anti-virulence activity of aPSDT using HypNP@D-Trp was accessed following the characterization of HypNP@D-Trp interaction with AbaI using in silico virtual screening and molecular docking. RESULTS A synergistic activity in the combination of HypNP and D-Trp against A. baumannii was observed with a FIC index value of 0.5. There was a 5.10 log10 CFU/mL reduction in the cell viability of A. baumannii when the bacterial cells were treated with 1/2 × MIC of HypNP@D-Trp and subsequently exposed to ultrasound waves and blue light (P < 0.05). Moreover, a significant biofilm degradation effect on biofilm-associated cells of A. baumannii was observed after treatment with aPSDT using 2 × MIC of HypNP@D-Trp in comparison with the control groups (P < 0.05). According to the molecular docking analysis of the protein-ligand complex, Hyp with a high affinity for AbaI showed a binding affinity of - 9.41 kcal/mol. Also, the expression level of abaI gene was significantly downregulated by 10.32-fold in A. baumannii treated with aPSDT as comprised with the control group (P < 0.05). CONCLUSIONS It can be concluded that HypNP@D-Trp-mediated aPSDT can be considered a promising strategy to overcome the infections caused by A. baumannii by reducing the growth of bacterial biofilm and decreasing the expression of abaI as a gene involved in A. baumannii biofilm formation.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- grid.411705.60000 0001 0166 0922Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- grid.23856.3a0000 0004 1936 8390Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.23856.3a0000 0004 1936 8390Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.421142.00000 0000 8521 1798Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5 Canada
| | - Abbas Bahador
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Gusmão LA, Machado AEH, Perussi JR. Improved Hypericin solubility via β-cyclodextrin complexation: Photochemical and theoretical study for PDT applications. Photodiagnosis Photodyn Ther 2022; 40:103073. [PMID: 35998882 DOI: 10.1016/j.pdpdt.2022.103073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Hypericin (HY) is a lipophilic photosensitizer (PS) extensively employed for photodynamic therapy (PDT), presenting high absorption in the visible region, chemical and photostability, as well as a good triplet quantum yield. Supramolecular complexation of photosensitizers into cyclodextrins (CD) is promising to improve their poor solubility, compromising their bioavailability and upcoming applications in PDT. This research produced an inclusion complex between HY and β-CD through the co-solvent method. HY became soluble after inclusion into β-CD cavities, besides retaining its fluorescent and singlet oxygen quantum yields (ϕf =0.115 and ϕΔ= 0.23, respectively), which are essential parameters for PDT uses and are not reported in the literature. By the theoretical analysis, since ΔG < 0, it was easy to conclude that HY inclusion into β-CD is a spontaneous process. Additionally, the complexes presented no changes in excited states after complexation. β-CDHY was 27% more phototoxic than free HY when tested in MCF7 cells using 3 J cm-2 of irradiation, indicating a better cell uptake of HY. These outcomes suggest that the inclusion complex of HY into β-CD has the potential for use in PDT.
Collapse
Affiliation(s)
- Luiza Araújo Gusmão
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil.
| | - Antonio Eduardo H Machado
- Laboratório de Fotoquímica e Ciência de Materiais, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil; Programa de Pós-Graduação em Ciências Exatas e Tecnológicas, Unidade Acadêmica de Física, Universidade Federal de Catalão, Catalão, GO, Brasil
| | | |
Collapse
|
26
|
Praena B, Mascaraque M, Andreu S, Bello-Morales R, Abarca-Lachen E, Rapozzi V, Gilaberte Y, González S, López-Guerrero JA, Juarranz Á. Potent Virucidal Activity In Vitro of Photodynamic Therapy with Hypericum Extract as Photosensitizer and White Light against Human Coronavirus HCoV-229E. Pharmaceutics 2022; 14:pharmaceutics14112364. [PMID: 36365182 PMCID: PMC9693429 DOI: 10.3390/pharmaceutics14112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new virucidal treatments. In this sense, the use of photodynamic therapy (PDT) with white light, to take advantage of the sunlight, is a potent strategy for decreasing the virulence and pathogenicity of the virus. Here, we report the virucidal effect of PDT based on Hypericum extract (HE) in combination with white light, which exhibits an inhibitory activity of the human coronavirus HCoV-229E on hepatocarcinoma Huh-7 cells. Moreover, despite continuous exposure to white light, HE has long durability, being able to maintain the prevention of viral infection. Given its potent in vitro virucidal capacity, we propose HE in combination with white light as a promising candidate to fight against SARS-CoV-2 as a virucidal compound.
Collapse
Affiliation(s)
- Beatriz Praena
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - Marta Mascaraque
- Departamento de Biología, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Edgar Abarca-Lachen
- Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Spain
| | | | - Yolanda Gilaberte
- Hospital Miguel Servet, Servicio de Dermatología, 50009 Zaragoza, Spain
| | - Salvador González
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, 28805 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (J.A.L.-G.); (Á.J.)
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
- Correspondence: (J.A.L.-G.); (Á.J.)
| |
Collapse
|
27
|
Meng L, Ren J, Li L. Hyaluronic acid-targeted mixed micelles encapsulating hypericin for breast cancer photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Choudhary N, Collignon TE, Tewari D, Bishayee A. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154356. [PMID: 35985181 DOI: 10.1016/j.phymed.2022.154356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging studies indicate that hypericin has diverse pharmacological actions and exhibits potential for treatment of various types of cancer. PURPOSE The current review evaluates the pharmacological activity, associated molecular mechanism, and therapeutic application of hypericin as an anticancer agent according to the most recent state of knowledge with special emphasis on clinical trials and safety profile. METHOD This review follows The Preferred Reporting Items for Systematic Reviews criteria. Various databases, including PubMed, Scopus and Science Direct, were used to search and collect relevant literature. The major keywords used included the following: cancer, distribution, property, signaling pathway, pharmacological effect, treatment, prevention, in vitro and in vivo studies, toxicity, bioavailability, and clinical trials. RESULTS One hundred three articles met the established inclusion and exclusion criteria. Hypericin has shown anticancer activity against the expansion of several cell types including breast cancer, cervical cancer, colorectal cancer, colon cancer, hepatocellular carcinoma, stomach carcinoma, leukemia, lung cancer, melanoma, and glioblastoma cancer. Hypericin exerts its anticancer activity by inhibiting pro-inflammatory mediators, endothelial growth factor, fibroblast growth factor, cell adhesion, angiogenesis, and mitochondrial thioredoxin. It has also been shown to cause an increase in the levels of caspase-3 and caspase-4, arrest the cell cycle at metaphase leading to cancer cell apoptosis, and affect various protein and gene expression patterns. CONCLUSION Hypericin exhibits significant inhibitory activity against various types of in vitro and in vivo cancer models. However, well-designed, high quality, large-scale and multi-center randomized clinical studies are required to establish the safety and clinical utility of hypericin in cancer patients.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab 151101, India
| | - Taylor E Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
29
|
Pevna V, Horvath D, Wagnieres G, Huntosova V. Photobiomodulation and photodynamic therapy-induced switching of autophagy and apoptosis in human dermal fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112539. [PMID: 35973285 DOI: 10.1016/j.jphotobiol.2022.112539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, photobiomodulation (PBM) in combination with chemotherapy or other therapeutic approaches is an attractive adjuvant modality for cancer treatment. Targeted destruction of cancer cells is one of the main advantages of photodynamic therapy (PDT). We have shown in previous studies that the combination of PBM at 808 nm and hypericin-mediated PDT increases PDT efficacy in human glioblastoma cells U87 MG. The study presented here shows significant differences between U87 MG and non-cancerous human dermal fibroblasts (HDF) cells treated by PBM and PDT. This study focuses on mitochondria because PBM mainly affects these organelles. We demonstrated that an interplay between mitochondrial and autophagic proteins plays a crucial role in the response of HDF cells to PBM and PDT. Fluorescence microscopy, flow cytometry, and Western blot analysis were used to examine the autophagic profile of HDF cells after these treatments. An increase in ubiquitin, SQSTM1, LC3BII, and cytochrome c was accompanied by a decrease in M6PR, ATG16L1, and Opa1 in HDF cells exposed to PBM and PDT. Overall, we observed that the switching of autophagy and apoptosis is dose-dependent and also occurs independently of PBM in HDF cells after hypericin-mediated PDT. However, PBM might preferentially induce autophagy in noncancer cells, which might escape apoptosis under certain conditions.
Collapse
Affiliation(s)
- Viktoria Pevna
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Denis Horvath
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | - Georges Wagnieres
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 3, Building PH, 1015 Lausanne, Switzerland.
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| |
Collapse
|
30
|
Loonat A, Chandran R, Pellow J, Abrahamse H. Photodynamic Effects of Thuja occidentalis on Lung Cancer Cells. Front Pharmacol 2022; 13:928135. [PMID: 35910365 PMCID: PMC9334867 DOI: 10.3389/fphar.2022.928135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
The global incidence and mortality rates resulting from lung cancer encapsulate a need to identify more effective treatment protocols. Photodynamic therapy (PDT) and homeopathy offer possible anticancer therapies as part of a multi-disciplinary approach. Studies have identified the anticancer effects of Thuja occidentalis L. plant extracts. The aim of this study was to investigate the effects of Thuja occidentalis (TO) homeopathic mother tincture and TO mediated PDT (TO-PDT) on A549 lung cancer cells. Commercially available A549 cells were pre-treated with TO, or laser irradiation at 660 nm, or the combined treatment (TO-PDT). Cells were analyzed morphologically by inverted light microscopy and Hoechst stain; and biochemically by lactate dehydrogenase (LDH), adenosine triphosphate (ATP), and trypan blue assays. Cells treated with TO and TO-PDT demonstrated morphological changes in the cell and cell nuclei indicative of cell death. These groups exhibited a dose dependent increase in LDH release and a decrease in ATP levels and cell viability indicating its cytotoxic and antiproliferative potential. Furthermore, at the same doses, TO when photoactivated in PDT induced enhanced anticancer responses thereby surpassing the effects of treatment with the tincture alone. Results demonstrate how the direct cytotoxic effects of TO can be improved when administered as a photosensitizer in PDT to promote cancer cell death.
Collapse
Affiliation(s)
- Ayesha Loonat
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
- Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
- *Correspondence: Rahul Chandran,
| | - Janice Pellow
- Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
31
|
Zhang H, Peng Y, Zhang N, Yang J, Wang Y, Ding H. Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical Applications. MICROMACHINES 2022; 13:mi13071069. [PMID: 35888886 PMCID: PMC9323269 DOI: 10.3390/mi13071069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
Thin-film microscale light-emitting diodes (LEDs) are efficient light sources and their integrated applications offer robust capabilities and potential strategies in biomedical science. By leveraging innovations in the design of optoelectronic semiconductor structures, advanced fabrication techniques, biocompatible encapsulation, remote control circuits, wireless power supply strategies, etc., these emerging applications provide implantable probes that differ from conventional tethering techniques such as optical fibers. This review introduces the recent advancements of thin-film microscale LEDs for biomedical applications, covering the device lift-off and transfer printing fabrication processes and the representative biomedical applications for light stimulation, therapy, and photometric biosensing. Wireless power delivery systems have been outlined and discussed to facilitate the operation of implantable probes. With such wireless, battery-free, and minimally invasive implantable light-source probes, these biomedical applications offer excellent opportunities and instruments for both biomedical sciences research and clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Haijian Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Yanxiu Peng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Nuohan Zhang
- GMA Optoelectronic Technology Limited, Xinyang 464000, China;
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
- Correspondence:
| |
Collapse
|
32
|
Foglietta F, Canaparo R, Cossari S, Panzanelli P, Dosio F, Serpe L. Ultrasound Triggers Hypericin Activation Leading to Multifaceted Anticancer Activity. Pharmaceutics 2022; 14:1102. [PMID: 35631688 PMCID: PMC9146189 DOI: 10.3390/pharmaceutics14051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The use of ultrasound (US) in combination with a responsive chemical agent (sonosensitizer) can selectively trigger the agent's anticancer activity in a process called sonodynamic therapy (SDT). SDT shares some properties with photodynamic therapy (PDT), which has been clinically approved, but sets itself apart because of its use of US rather than light to achieve better tissue penetration. SDT provides anticancer effects mainly via the sonosensitizer-mediated generation of reactive oxygen species (ROS), although the precise nature of the underpinning mechanism is still under debate. This work investigates the SDT anticancer activity of hypericin (Hyp) in vitro in two- (2D) and three-dimensional (3D) HT-29 colon cancer models, and uses PDT as a yardstick due to its well-known Hyp phototoxicity. The cancer cell uptake and cellular localization of Hyp were investigated first to determine the proper noncytotoxic concentration and incubation time of Hyp for SDT. Furthermore, ROS production, cell proliferation, and cell death were evaluated after Hyp was exposed to US. Since cancer relapse and transporter-mediated multidrug resistance (MDR) are important causes of cancer treatment failure, the US-mediated ability of Hyp to elicit immunogenic cell death (ICD) and overcome MDR was also investigated. SDT showed strong ROS-mediated anticancer activity 48 h after treatment in both the HT-29 models. Specific damage-associated molecular patterns that are consistent with ICD, such as calreticulin (CRT) exposure and high-mobility group box 1 protein (HMGB1) release, were observed after SDT with Hyp. Moreover, the expression of the ABC transporter, P-glycoprotein (P-gp), in HT-29/MDR cells was not able to hinder cancer cell responsiveness to SDT with Hyp. This work reveals, for the first time, the US responsiveness of Hyp with significant anticancer activity being displayed, making it a full-fledged sonosensitizer for the SDT of cancer.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Simone Cossari
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, 10125 Torino, Italy;
| | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| |
Collapse
|
33
|
Zajičková T, Horváthová E, Kyzek S, Šályová E, Túryová E, Ševčovičová A, Gálová E. Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells. Int J Mol Sci 2022; 23:5339. [PMID: 35628149 PMCID: PMC9142076 DOI: 10.3390/ijms23105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Secondary metabolites as a potential source of anticancer therapeutics have been the subject of many studies. Since hypericin, a metabolite isolated from Hypericum perforatum L., shows several biomedical properties applicable in oncology, the aim of our study was to investigate its potential precursor skyrin in terms of genotoxic and DNA-protective effects. These skyrin effects were analyzed by cell-free methods, and cytotoxicity was estimated by an MTT assay and by a trypan blue exclusion test, while the genotoxic/antigenotoxic potential was examined by comet assay using non-cancerous human lymphocytes and the HepG2 cancer cell line. Skyrin did not show DNA-damaging effects but rather exhibited DNA-protectivity using a DNA-topology assay. However, we observed only weak antioxidant and chelating skyrin properties in other cell-free methods. Regarding the cytotoxic activity of skyrin, HepG2 cells were more prone to skyrin-induced death in comparison to human lymphocytes. Skyrin in non-cytotoxic concentrations did not exhibit elevated genotoxicity in both cell types. On the other hand, skyrin displayed moderate DNA-protective effects that were more noticeable in the case of non-cancerous human lymphocytes. The potential genotoxic effects of skyrin were not observed, and its DNA-protective capacity was more prominent in non-cancerous cells. Therefore, skyrin might be a promising agent used in anticancer therapy.
Collapse
Affiliation(s)
- Terézia Zajičková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eva Horváthová
- Cancer Research Institute, Biomedical Research Centre of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia;
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eva Šályová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eva Túryová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| |
Collapse
|
34
|
Bassler MC, Rammler T, Wackenhut F, Zur Oven-Krockhaus S, Secic I, Ritz R, Meixner AJ, Brecht M. Accumulation and penetration behavior of hypericin in glioma tumor spheroids studied by fluorescence microscopy and confocal fluorescence lifetime imaging microscopy. Anal Bioanal Chem 2022; 414:4849-4860. [PMID: 35538227 PMCID: PMC9234035 DOI: 10.1007/s00216-022-04107-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022]
Abstract
Glioblastoma WHO IV belongs to a group of brain tumors that are still incurable. A promising treatment approach applies photodynamic therapy (PDT) with hypericin as a photosensitizer. To generate a comprehensive understanding of the photosensitizer-tumor interactions, the first part of our study is focused on investigating the distribution and penetration behavior of hypericin in glioma cell spheroids by fluorescence microscopy. In the second part, fluorescence lifetime imaging microscopy (FLIM) was used to correlate fluorescence lifetime (FLT) changes of hypericin to environmental effects inside the spheroids. In this context, 3D tumor spheroids are an excellent model system since they consider 3D cell-cell interactions and the extracellular matrix is similar to tumors in vivo. Our analytical approach considers hypericin as probe molecule for FLIM and as photosensitizer for PDT at the same time, making it possible to directly draw conclusions of the state and location of the drug in a biological system. The knowledge of both state and location of hypericin makes a fundamental understanding of the impact of hypericin PDT in brain tumors possible. Following different incubation conditions, the hypericin distribution in peripheral and central cryosections of the spheroids were analyzed. Both fluorescence microscopy and FLIM revealed a hypericin gradient towards the spheroid core for short incubation periods or small concentrations. On the other hand, a homogeneous hypericin distribution is observed for long incubation times and high concentrations. Especially, the observed FLT change is crucial for the PDT efficiency, since the triplet yield, and hence the O2 activation, is directly proportional to the FLT. Based on the FLT increase inside spheroids, an incubation time > 30 min is required to achieve most suitable conditions for an effective PDT.
Collapse
Affiliation(s)
- Miriam C Bassler
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany.,Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Tim Rammler
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Frank Wackenhut
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany.
| | - Sven Zur Oven-Krockhaus
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Ivona Secic
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Rainer Ritz
- Department of Neurosurgery, Schwarzwald-Baar Clinic, Klinikstr. 11, 78052, Villingen-Schwenningen, Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany. .,Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
35
|
Matos ADR, Caetano BC, de Almeida Filho JL, Martins JSCDC, de Oliveira MGP, Sousa TDC, Horta MAP, Siqueira MM, Fernandez JH. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front Microbiol 2022; 13:828984. [PMID: 35222340 PMCID: PMC8866965 DOI: 10.3389/fmicb.2022.828984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had an unprecedented impact on the global economy and public health. Its etiologic agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic and has a rapid global spread. Currently, the increase in the number of new confirmed cases has been slowed down due to the increase of vaccination in some regions of the world. Still, the rise of new variants has influenced the detection of additional waves of rising cases that some countries have experienced. Since the virus replication cycle is composed of many distinct stages, some viral proteins related to them, as the main-protease (Mpro) and RNA dependent RNA polymerase (RdRp), constitute individual potential antiviral targets. In this study, we challenged the mentioned enzymes against compounds pre-approved by health regulatory agencies in a virtual screening and later in Molecular Mechanics/Poisson–Bolzmann Surface Area (MM/PBSA) analysis. Our results showed that, among the identified potential drugs with anti-SARS-CoV-2 properties, Hypericin, an important component of the Hypericum perforatum that presents antiviral and antitumoral properties, binds with high affinity to viral Mpro and RdRp. Furthermore, we evaluated the activity of Hypericin anti-SARS-CoV-2 replication in an in vitro model of Vero-E6 infected cells. Therefore, we show that Hypericin inhibited viral replication in a dose dependent manner. Moreover, the cytotoxicity of the compound, in cultured cells, was evaluated, but no significant activity was found. Thus, the results observed in this study indicate that Hypericin is an excellent candidate for repurposing for the treatment of COVID-19, with possible inhibition of two important phases of virus maturation.
Collapse
Affiliation(s)
- Aline da Rocha Matos
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Braulia Costa Caetano
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - João Luiz de Almeida Filho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (LQFPP-CBB-UENF), Campos dos Goytacazes, Brazil
| | | | | | - Thiago das Chagas Sousa
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Marco Aurélio Pereira Horta
- Plataforma de Laboratórios de Biossegurança Nível 3, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (NB3-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Jorge Hernandez Fernandez
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (LQFPP-CBB-UENF), Campos dos Goytacazes, Brazil
| |
Collapse
|
36
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
37
|
Ferreira BI, Santos B, Link W, De Sousa-Coelho AL. Tribbles Pseudokinases in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112825. [PMID: 34198908 PMCID: PMC8201230 DOI: 10.3390/cancers13112825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles' role in colorectal cancer.
Collapse
Affiliation(s)
- Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Serviço de Anatomia Patológica, Centro Hospital Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (W.L.); (A.L.D.S.-C.)
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (W.L.); (A.L.D.S.-C.)
| |
Collapse
|