1
|
Chen Y, Ma L, Yan Y, Wang X, Cao L, Li Y, Li M. Ophiopogon japonicus polysaccharide reduces doxorubicin-induced myocardial ferroptosis injury by activating Nrf2/GPX4 signaling and alleviating iron accumulation. Mol Med Rep 2025; 31:36. [PMID: 39575489 PMCID: PMC11605273 DOI: 10.3892/mmr.2024.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Doxorubicin (DOX) is a principal chemotherapeutic agent in the domain of oncological intervention. However, its clinical application is constrained due to its severe and irreversible side effects, particularly heart damage. Ferroptosis, characterized by iron accumulation and redox system imbalance, serves a key role in DOX‑induced cardiotoxicity. Ophiopogon japonicus polysaccharide (OJP) exhibits diverse pharmacological activities, including cardiovascular protection, and anti‑inflammatory, anti‑oxidative and immune regulatory effects. However, the role and mechanism of OJP in DOX‑mediated ferroptosis‑triggered injury in cardiomyocytes remain elusive. The present study aimed to assess the effect of OJP on DOX‑induced myocardial ferroptosis injury and to reveal its underlying anti‑ferroptosis mechanism. The detection of myocardial injury markers, such as LDH, indicated that OJP can ameliorate myocardial damage. Additionally, western blot analyses reveal that OJP decreases the expression levels of the ferroptosis‑related marker transferrin receptor 1 (TFR1) while simultaneously increasing expression levels of glutathione peroxidase 4 (GPX4) in a concentration‑dependent manner. Furthermore, fluorescence probe assays demonstrate that OJP not only reduces iron accumulation and oxidative stress but also inhibits the production of lipid peroxidation, as evidenced by a decrease in malondialdehyde (MDA) levels measured. In addition, OJP simultaneously decreased ferroptosis by enhancing mitochondrial function. Mechanistically, OJP attenuated ferroptosis by upregulating the endogenous key antioxidant factor nuclear factor erythroid 2‑related factor 2 (Nrf2), which in turn increased the expression of the downstream signaling molecule GPX4 and reduced the accumulation of the labile iron pool. Therefore, OJP may be a novel therapeutic intervention for DOX‑induced ferroptosis‑triggered myocardial injury.
Collapse
Affiliation(s)
- Yongting Chen
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Linlin Ma
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yuzhong Yan
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiaoying Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Lizhi Cao
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yanfei Li
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Ming Li
- Administration Office, East Hospital Affiliated to Tongji University, Shanghai 201318, P.R. China
| |
Collapse
|
2
|
Nie Y, Wei Y, Zhang Y, Liang Z, Lei Z, Chang M, Peng Y. Design and implication of a breast cancer-targeted drug delivery system utilizing the Kisspeptin/GPR54 system. Int J Pharm 2025; 670:125154. [PMID: 39755342 DOI: 10.1016/j.ijpharm.2024.125154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228. By surface-modifying liposomes with Kp-10-228 (228-K3-EG8-Liposome), we demonstrated enhanced accumulation of these liposomes in tumor cells, both in vitro and in vivo. Doxorubicin-loaded 228-K3-EG8-Liposome exhibited a remarkable inhibition of cancer cell proliferation, significantly extending the median survival time in mice with breast tumors compared to model mice treated with non-targeted liposomes or free doxorubicin. Our results suggest that the liposomal drug delivery system utilizing the Kisspeptin/GPR54 system is a promising novel strategy for the management of breast cancer.
Collapse
Affiliation(s)
- Yaoyan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Yanzhu Wei
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuhuan Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhuansheng Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zelin Lei
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
Hu Y, Wang S, Zhang C, Shen C, Li Z, Jiang Y, Dai J, Chen X. Prx5 overexpression protect against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and inflammation via the TLR4/NF-κB pathway. Int Immunopharmacol 2024; 146:113788. [PMID: 39706046 DOI: 10.1016/j.intimp.2024.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The clinical application of Doxorubicin (DOX) is constrained due to its cardiotoxic side effects. Oxidative stress and inflammation are crucial mechanisms driving doxorubicin-induced cardiotoxicity (DIC). Peroxiredoxin 5 (Prx5) is central to these inflammatory responses. However, the specific role of Prx5 in DIC remains unclear. This study aims to investigate the impacts of Prx5 on DIC and the underlying mechanisms. METHODS A cardiac-specific Prx5-overexpressing mice was used to establish a doxorubicin (DOX)-induced cardiotoxicity (DIC) model. Neonatal mouse cardiomyocytes (NMCMs) were cultured and stimulated with DOX. Prx5 overexpression or knockdown in cardiomyocytes was achieved using a Prx5-overexpressing adenovirus or small interfering RNA (siRNA), respectively. Echocardiography, histopathological assessments, and molecular techniques were employed to examine the effects and mechanisms of Prx5 on DIC. RESULTS Prx5 expression is upregulated in cardiac tissues following DOX administration. In DOX-exposed mice, overexpression of Prx5 significantly improved cardiac function and reduced myocardial injury. It inhibited myocardial hypertrophy and fibrosis, and diminished oxidative stress and inflammatory responses. Conversely, Prx5 knockdown in vitro aggravated DOX-induced cardiomyocyte inflammation and oxidative stress. Mechanistically, overexpression of Prx5 also resulted in the downregulation of Toll-like receptor 4 (TLR4) and phosphorylated P65 expression. Moreover, the protective effects of Prx5 were significantly abrogated by a TLR4 agonist. CONCLUSION Prx5 overexpression could protect against DOX-induced cardiac oxidative stress and inflammation. Mechanistically, Prx5 overexpression potentially inhibits the TLR4/NF-κB signaling pathway to improve DOX-induced myocardial injury. These findings strongly suggest that Prx5 could be a potential candidate target for the treatment of DOX-induced myocardial injury.
Collapse
Affiliation(s)
- Yewen Hu
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Shiqi Wang
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Chaoxia Zhang
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Caijie Shen
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Zhenwei Li
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Yongxing Jiang
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Jiating Dai
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital Of Ningbo University, Ningbo 315000, Zhejiang Province, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315000, Zhejiang Province, China.
| |
Collapse
|
4
|
Alves PKN, Cruz A, Adams V, Moriscot AS, Labeit S. Small-molecule mediated MuRF1 inhibition protects from doxorubicin-induced cardiac atrophy and contractile dysfunction. Eur J Pharmacol 2024; 984:177027. [PMID: 39366504 DOI: 10.1016/j.ejphar.2024.177027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Cancer chemotherapy induces cell stress in rapidly dividing cancer cells to trigger their growth arrest and apoptosis. However, adverse effects related to cardiotoxicity underpinned by a limited regenerative potential of the heart limits clinical application: In particular, chemotherapy with doxorubicin (DOXO) causes acute heart injury that can transition to persisting cardiomyopathy (DOXO-CM). Here, we tested if MuRF1 inhibition ("MuRFi") was able to attenuate DOXO-CM. To mimic DOXO chemotherapy, we treated mice over four weeks with five DOXO injections, resulting in a cumulative dosage of 25 mg/kg. At day 28, mice had lower body and heart weights, reduced cardiac cross-sectional myofibrillar areas (CSAs), and disturbed functional ejection fractions (EFs) and fractional shortenings (FS) as indicated by echocardiography (ECHO). In contrast, mice with a 1 g/kg Myomed#205 spiked diet, a previously described experimental MuRFi therapy, showed lower DOXO-CM at day 28, and also reduced acute DOXO cardiac injury at day 7 (single DOXO dose; 15 mg/kg). Underlying molecular signatures using Western blot (WB) assays showed at day 28 reduced phospho-AKT (AKTp) and phospo-4EBP1 (4 EBP1p) levels following DOXO that were normalized following MuRFi treatment. Taken together, our data suggest that MuRFi treatment is suitable to attenuate DOXO-CM by preserving AKTp and 4 EBP1p levels in DOXO stressed cardiomyocytes, thereby supporting de novo protein translation and cardiomyocyte survival under translational arrest stress.
Collapse
Affiliation(s)
- Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany.
| | - Anselmo S Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Siegfried Labeit
- DZHK Partnersite Mannheim-Heidelberg, Universitätsmedizin Mannheim, Mannheim 68169, Germany.
| |
Collapse
|
5
|
Wang L, Dai Z, Bi J, Chen Y, Wang Z, Sun Z, Ji Z, Wang H, Zhang Y, Wang L, Mao J, Yang J. Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration. Mater Today Bio 2024; 29:101253. [PMID: 39399244 PMCID: PMC11470592 DOI: 10.1016/j.mtbio.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX). The PDA coating endowed the scaffolds with significant photothermal properties, while the gradual release of DOX provided an effective chemotherapeutic effect. The on-demand release of DOX at tumor sites, triggered by dual stimulation (near-infrared (NIR) light and the acidic pH typical of tumor microenvironments), specifically targets cancer cells, thereby mitigating systemic side effects. These unique characteristics facilitated effective osteosarcoma eradication both in vitro and in vivo. Moreover, the scaffold's composition, which mimics the mineral phase of natural bone and is enhanced by PDA's biocompatibility, promotes critical osteogenic and angiogenic processes. This facilitates not only tumor eradication but also the regeneration of healthy bone tissue. Collectively, this study presents a potent candidate for the regeneration of bone defects induced by osteosarcoma.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zihan Dai
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
| | - Ziyu Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Zhongjie Ji
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Yan Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Limei Wang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Junxing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| |
Collapse
|
6
|
Xu T, Na J, Liu Q, Kuang G, Zhang Q, Zhao Y. The function of albumin and its application in tumor therapy. MATERIALS TODAY COMMUNICATIONS 2024; 41:110575. [DOI: 10.1016/j.mtcomm.2024.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Faggiano A, Gherbesi E, Giordano C, Gamberini G, Vicenzi M, Cuspidi C, Carugo S, Cipolla CM, Cardinale DM. Anthracycline-Induced Subclinical Right Ventricular Dysfunction in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3883. [PMID: 39594841 PMCID: PMC11592457 DOI: 10.3390/cancers16223883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
AIM This meta-analysis aims to evaluate the impact of anthracycline chemotherapy on subclinical right ventricular (RV) dysfunction in breast cancer patients, using traditional echocardiographic parameters and strain-based measures, such as the RV global longitudinal strain (RV GLS) and the RV free-wall longitudinal strain (RV FWLS). METHODS AND RESULTS A systematic search was conducted according to PRISMA guidelines, including 15 studies with a total of 1148 breast cancer patients undergoing anthracycline chemotherapy. The primary outcome was the evaluation of changes in RV GLS and RV FWLS pre- and post-chemotherapy. Secondary outcomes included changes in traditional echocardiographic parameters: TAPSE, FAC, and TDI S'. Meta-analysis revealed significant declines in RV function post-chemotherapy across all parameters. RV GLS decreased from 23.99% to 20.35% (SMD: -0.259, p < 0.0001), and RV FWLS from 24.92% to 21.56% (SMD: -0.269, p < 0.0001). Traditional parameters like TAPSE, FAC, and TDI S' also showed reductions, but these were less consistent across studies. A meta-regression analysis showed no significant relationship between post-chemotherapy left ventricular ejection fraction (LVEF) and the changes in RV GLS and RV FWLS, suggesting that RV dysfunction may not be solely a consequence of LV impairment. CONCLUSIONS Anthracycline chemotherapy induces subclinical RV dysfunction in breast cancer patients. RV strain analysis, especially 3D strain, shows greater sensitivity in detecting early dysfunction. However, further research is needed to clarify the clinical significance and prognostic value of these findings, as well as the role of routine RV strain analysis in guiding early interventions.
Collapse
Affiliation(s)
- Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.V.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Elisa Gherbesi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.V.)
| | - Chiara Giordano
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.V.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giacomo Gamberini
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.V.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Vicenzi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.V.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Cesare Cuspidi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.V.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Carlo M. Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., 20141 Milan, Italy (D.M.C.)
| | - Daniela M. Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., 20141 Milan, Italy (D.M.C.)
| |
Collapse
|
8
|
Pal C. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024:10.1007/s12012-024-09941-7. [PMID: 39495464 DOI: 10.1007/s12012-024-09941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Doxorubicin (Dox) is a commonly used chemotherapy drug effective against a range of cancers, but its clinical application is greatly limited by dose-dependent and cumulative cardiotoxicity. Mitochondrial dysfunction is recognized as a key factor in Dox-induced cardiotoxicity, leading to oxidative stress, disrupted calcium balance, and activation of apoptotic pathways. Recent research has emphasized the potential of small molecules that specifically target mitochondria to alleviate these harmful effects. This review provides a comprehensive analysis of small molecules that offer cardioprotection by preserving mitochondrial function in the context of doxorubicin-induced cardiotoxicity (DIC). The mechanisms of action include the reduction of reactive oxygen species (ROS) production, stabilization of mitochondrial membrane potential, enhancement of mitochondrial biogenesis, and modulation of key signaling pathways involved in cell survival and apoptosis. By targeting mitochondria, these small molecules present a promising therapeutic strategy to prevent or reduce the cardiotoxic effects associated with Dox treatment. This review not only discusses the mechanistic actions of these agents but also emphasizes their potential in improving cardiovascular outcomes for cancer patients. Gaining insight into these mechanisms can help in creating more effective strategies to safeguard the heart during chemotherapy, allowing for the ongoing use of Dox with a lower risk to the patient's cardiovascular health. This review highlights the critical role of mitochondria-targeted therapies as a promising approach in addressing DIC.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
9
|
Zhao M, Liu C, Liu Z, Zuo Y, Chen C, Shi S, Shi X, Xie Y, Yang H, Chen Y. Myocardium-targeted liposomal delivery of the antioxidant peptide 8P against doxorubicin-induced myocardial injury. Int J Pharm 2024; 663:124569. [PMID: 39127172 DOI: 10.1016/j.ijpharm.2024.124569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Doxorubicin (Dox) is a broad-spectrum antineoplastic chemotherapeutic agent used in clinical settings, yet it exhibits significant cardiotoxicity, which in severe cases can lead to heart failure. Research indicates that oxidative stress plays a pivotal role in Dox -induced cardiomyocyte injury. Therefore, the application of antioxidants represents an effective strategy to mitigate the cardiotoxic effects of doxorubicin. In preliminary studies, we isolated an antioxidative peptide, PHWWEYRR (8P). This study utilizes a PCM cardiomyocyte-targeting peptide-modified liposome as a carrier to deliver 8P into cardiomyocytes, aiming to prevent Dox-induced cardiac injury through its antioxidative mechanism. The results demonstrated that we prepared the 8P-loaded and PCM-targeting peptide-modified liposome (P-P-8P), which exhibited good dispersibility, encapsulation efficiency, drug loading capacity, and in vitro release, along with myocardial targeting capability. In vitro experiments showed that P-P-8P could prevent oxidative stress injury in H9C2 cells, protect mitochondrial functions, and inhibit cell apoptosis through a mitochondria-dependent pathway. In vivo experiments indicated that P-P-8P could prevent abnormalities in serum biochemical indicators, cardiac dysfunction, and myocardial pathological changes in mice. In conclusion, P-P-8P effectively delivers 8P to cardiomyocytes, offering protection against the cardiotoxic effects of Dox, and holds potential as a future preventative or therapeutic agent for drug-induced cardiomyopathy.
Collapse
Affiliation(s)
- Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China.
| | - Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Zhenye Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Yuanyuan Zuo
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Chen Chen
- Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, PR China
| | - Shuai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Xinlin Shi
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Yining Xie
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Huiying Yang
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Yutong Chen
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
10
|
Hansen J, Xiong Y, Siddiq MM, Dhanan P, Hu B, Shewale B, Yadaw AS, Jayaraman G, Tolentino RE, Chen Y, Martinez P, Beaumont KG, Sebra R, Vidovic D, Schürer SC, Goldfarb J, Gallo JM, Birtwistle MR, Sobie EA, Azeloglu EU, Berger SI, Chan A, Schaniel C, Dubois NC, Iyengar R. Multiscale mapping of transcriptomic signatures for cardiotoxic drugs. Nat Commun 2024; 15:7968. [PMID: 39261481 PMCID: PMC11390749 DOI: 10.1038/s41467-024-52145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Drug-induced gene expression profiles can identify potential mechanisms of toxicity. We focus on obtaining signatures for cardiotoxicity of FDA-approved tyrosine kinase inhibitors (TKIs) in human induced-pluripotent-stem-cell-derived cardiomyocytes, using bulk transcriptomic profiles. We use singular value decomposition to identify drug-selective patterns across cell lines obtained from multiple healthy human subjects. Cellular pathways affected by cardiotoxic TKIs include energy metabolism, contractile, and extracellular matrix dynamics. Projecting these pathways to published single cell expression profiles indicates that TKI responses can be evoked in both cardiomyocytes and fibroblasts. Integration of transcriptomic outlier analysis with whole genomic sequencing of our six cell lines enables us to correctly reidentify a genomic variant causally linked to anthracycline-induced cardiotoxicity and predict genomic variants potentially associated with TKI-induced cardiotoxicity. We conclude that mRNA expression profiles when integrated with publicly available genomic, pathway, and single cell transcriptomic datasets, provide multiscale signatures for cardiotoxicity that could be used for drug development and patient stratification.
Collapse
Affiliation(s)
- Jens Hansen
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Yuguang Xiong
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mustafa M Siddiq
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Priyanka Dhanan
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Hu
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhavana Shewale
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arjun S Yadaw
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gomathi Jayaraman
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rosa E Tolentino
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yibang Chen
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pedro Martinez
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dusica Vidovic
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA
| | - Stephan C Schürer
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA
| | - Joseph Goldfarb
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James M Gallo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- School of Pharmacy and Pharmaceutical Sciences, University of Buffalo SUNY System, Buffalo, NY, 14260, USA
| | - Marc R Birtwistle
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Eric A Sobie
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Evren U Azeloglu
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New, York, NY, 10029, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20012, USA
| | - Angel Chan
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiology Division, Department of Medicine, Memorial Sloan Kettering Cancer Center New York, New York, NY, 10065, USA
| | - Christoph Schaniel
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole C Dubois
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ravi Iyengar
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Huang Y, Gu W, Qin Z, Jin Y. Bromuconazole exposure induces cardiac dysfunction by upregulating the expression LEF1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173113. [PMID: 38735319 DOI: 10.1016/j.scitotenv.2024.173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
With the wide application of bromuconazole (BRO), a kind of triazole fungicide, the environmental problems caused by BRO have been paid more and more attention. In this study, adult male zebrafish were exposed to environmental related concentration and the maximum non-lethal concentration for zebrafish larvae (0,50 ng/L and 7.5 mg/L) for 7 days, respectively. Zebrafish exposed to BRO exhibited a significant reduction in body length and an increase in fatness index, indicating adverse physiological changes. Notably, the exposed zebrafish showed enlarged heart ventricular volumes and thinner heart walls. Transcriptome analysis of heart samples showed that BRO exposure mainly affected pathways related to cardiac energy metabolism. In addition, the amount of ATP in the heart tissue was correspondingly reduced, and the expression levels of genes related to controlling ion balance and myosin synthesis in the heart were also altered. The study extended its findings to the rat cardiomyocytes (H9C2), where similar cardiotoxic effects including changes in transcription of genes related to energy metabolism and heart function were also observed, suggesting a potential universal mechanism of BRO-induced cardiotoxicity. In a doxorubicin (DOX) induced larval zebrafish heart failure model, the expression of lymphoid enhancer-binding factor 1(LEF1), a key gene in the Wnt/β-catenin signaling pathway, was significantly increased in larval zebrafish and adult fish heart tissues and cardiomyocytes, suggesting that LEF1 might play an important role in BRO-induced cardiotoxicity. Taken together, BRO exposure could interfere with cardiac function and metabolic capacity by abnormal activation the expression of LEF1. The study emphasized the urgent need for monitoring and regulating BRO due to its harmful effects on the hearts of aquatic organisms.
Collapse
Affiliation(s)
- Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weijie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
12
|
Passos CLA, Ferreira C, de Carvalho AGA, Silva JL, Garrett R, Fialho E. Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death. Pharmaceutics 2024; 16:873. [PMID: 39065570 PMCID: PMC11279446 DOI: 10.3390/pharmaceutics16070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the second most common type of cancer in the world. Polyphenols can act at all stages of carcinogenesis and oxyresveratrol (OXY) promising anticancer properties, mainly associated with chemotherapy drugs. The aim of this study was to investigate the effect of OXY with doxorubicin (DOX) or melphalan (MEL), either isolated or associated, in MCF-7 and MDA-MB-231 breast cancer cells. Our results showed that OXY, DOX, and MEL presented cytotoxicity, in addition to altering cell morphology. The synergistic association of OXY + DOX and OXY + MEL reduced the cell viability in a dose-dependent manner. The OXY, DOX, or MEL and associations were able to alter the ROS production, ∆Ψm, and cell cycle; DOX and OXY + DOX led the cells to necrosis. Furthermore, OXY and OXY + MEL were able to lead the cells to apoptosis and upregulate caspases-3, -7, -8, and -9 in both cells. LC-HRMS showed that 7-deoxidoxorubicinone and doxorubicinol, responsible for the cardiotoxic effect, were not identified in cells treated with the OXY + DOX association. In summary, our results demonstrate for the first time the synergistic effect of OXY with chemotherapeutic agents in breast cancer cells, offering a new strategy for future animal studies.
Collapse
Affiliation(s)
- Carlos Luan Alves Passos
- Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.A.P.); (C.F.)
| | - Christian Ferreira
- Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.A.P.); (C.F.)
| | | | - Jerson Lima Silva
- Medical Biochemistry Institute Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Rafael Garrett
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (A.G.A.d.C.); (R.G.)
| | - Eliane Fialho
- Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.A.P.); (C.F.)
| |
Collapse
|
13
|
Ito C, Taguchi K, Yamada T, Hanaya K, Enoki Y, Sugai T, Komatsu T, Matsumoto K. Dual delivery of carbon monoxide and doxorubicin using haemoglobin-albumin cluster: proof of concept for well-tolerated cancer therapy. J Mater Chem B 2024; 12:5600-5608. [PMID: 38738920 DOI: 10.1039/d4tb00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A serious concern of doxorubicin (DOX) therapy is that it causes severe adverse effects, particularly cardiotoxicity. Carbon monoxide (CO) possesses powerful cytoprotective effects against drug-induced organ injury and is expected to ameliorate DOX-induced cardiotoxicity. In this study, a dual carrier of DOX and CO (CO-HemoAct-DOX) was fabricated based on a haemoglobin-albumin cluster (HemoAct), which is a protein cluster with a haemoglobin core structure wrapped by serum albumin. CO-HemoAct-DOX was synthesised by binding CO to a haemoglobin core and covalently conjugating (6-maleimidocaproyl)hydrazone derivative of DOX to an albumin shell. The average DOX/cluster ratio was about 2.6. In the in vitro cytotoxicity assay against cancer cells, the anti-tumour activity of CO-HemoAct-DOX was 10-fold lower than that of DOX in a 2D-cultured model, whereas CO-HemoAct-DOX suppressed the growth of tumour spheroids to the same extent as DOX in the 3D-cultured model. In colon-26 tumour-bearing mice, CO-HemoAct-DOX achieved DOX delivery to the tumour site and alleviated tumour growth more effectively than DOX. Furthermore, CO-HemoAct attenuated DOX-induced cardiomyocyte atrophy in H9c2 cells and elevated the levels of cardiac biomarkers in mice exposed to DOX. These results suggest that the dual delivery of CO and DOX using HemoAct is a promising strategy as an anti-tumour agent to realise well-tolerated cancer therapy with minimal cardiotoxicity.
Collapse
Affiliation(s)
- Chihiro Ito
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kengo Hanaya
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
14
|
Li Y, Cao Y, Ma K, Ma R, Zhang M, Guo Y, Song H, Sun N, Zhang Z, Yang W. A Triple-Responsive Polymeric Prodrug Nanoplatform with Extracellular ROS Consumption and Intracellular H 2O 2 Self-Generation for Imaging-Guided Tumor Chemo-Ferroptosis-Immunotherapy. Adv Healthc Mater 2024; 13:e2303568. [PMID: 38319010 DOI: 10.1002/adhm.202303568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Indexed: 02/07/2024]
Abstract
High reactive oxygen species (ROS) levels in tumor microenvironment (TME) impair both immunogenic cell death (ICD) efficacy and T cell activity. Furthermore, tumor escapes immunosurveillance via programmed death-1/programmed death ligand-1 (PD-L1) signal, and the insufficient intracellular hydrogen peroxide weakens ferroptosis efficacy. To tackle the above issues, a glutathione (GSH)/ROS/pH triple-responsive prodrug nanomedicine that encapsulates Fe2O3 nanoparticle via electrostatic interaction is constructed for magnetic resonance imaging (MRI)-guided multi-mode theranostics with chemotherapy/ferroptosis/immunotherapy. The diselenide bond consumes ROS in TME to increase T cells and ICD efficacy, the cleavage of which facilitates PD-L1 antagonist D peptide release to block immune checkpoint. After intracellular internalization, Fe2O3 nanoparticle is released in the acidic endosome for MRI simultaneously with lipid peroxides generation for tumor ferroptosis. Doxorubicin is cleaved from polymers in the condition of high intracellular GSH level accompanied by tumor ICD, which simultaneously potentiates ferroptosis by NADPH oxidase mediated H2O2 self-generation. In vivo results indicate that the nanoplatform strengthens tumor ICD, induces cytotoxic T lymphocytes proliferation, inhibits 4T1 tumor regression and metastasis, and prolongs survival median. In all, a new strategy is proposed in strengthening ICD and T cells activity cascade with ferroptosis as well as immune checkpoint blockade for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- The center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kunru Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673
| | - Nannan Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Zhengzhou University, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, 450001, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Zhengzhou University, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, 450001, China
| |
Collapse
|
15
|
Tonon CR, Monte MG, Balin PS, Fujimori ASS, Ribeiro APD, Ferreira NF, Vieira NM, Cabral RP, Okoshi MP, Okoshi K, Zornoff LAM, Minicucci MF, Paiva SAR, Gomes MJ, Polegato BF. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int J Mol Sci 2024; 25:5833. [PMID: 38892020 PMCID: PMC11172760 DOI: 10.3390/ijms25115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Doxorubicin is an effective drug for cancer treatment; however, cardiotoxicity limits its use. Cardiotoxicity pathophysiology is multifactorial. GLP-1 analogues have been shown to reduce oxidative stress and inflammation. In this study, we evaluated the effect of pretreatment with liraglutide on doxorubicin-induced acute cardiotoxicity. A total of 60 male Wistar rats were allocated into four groups: Control (C), Doxorubicin (D), Liraglutide (L), and Doxorubicin + Liraglutide (DL). L and DL received subcutaneous injection of liraglutide 0.6 mg/kg daily, while C and D received saline for 2 weeks. Afterwards, D and DL received a single intraperitoneal injection of doxorubicin 20 mg/kg; C and L received an injection of saline. Forty-eight hours after doxorubicin administration, the rats were subjected to echocardiogram, isolated heart functional study, and euthanasia. Liraglutide-treated rats ingested significantly less food and gained less body weight than animals that did not receive the drug. Rats lost weight after doxorubicin injection. At echocardiogram and isolated heart study, doxorubicin-treated rats had systolic and diastolic function impairment. Myocardial catalase activity was statistically higher in doxorubicin-treated rats. Myocardial protein expression of tumor necrosis factor alpha (TNF-α), phosphorylated nuclear factor-κB (p-NFκB), troponin T, and B-cell lymphoma 2 (Bcl-2) was significantly lower, and the total NFκB/p-NFκB ratio and TLR-4 higher in doxorubicin-treated rats. Myocardial expression of OPA-1, MFN-2, DRP-1, and topoisomerase 2β did not differ between groups (p > 0.05). In conclusion, doxorubicin-induced cardiotoxicity is accompanied by decreased Bcl-2 and phosphorylated NFκB and increased catalase activity and TLR-4 expression. Liraglutide failed to improve acute doxorubicin-induced cardiotoxicity in rats.
Collapse
Affiliation(s)
- Carolina R. Tonon
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina G. Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Paola S. Balin
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Anderson S. S. Fujimori
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ana Paula D. Ribeiro
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Natália F. Ferreira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Nayane M. Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ronny P. Cabral
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Leonardo A. M. Zornoff
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marcos F. Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Sergio A. R. Paiva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Mariana J. Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA;
| | - Bertha F. Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| |
Collapse
|
16
|
Zheng H, Liang X, Liu B, Huang X, Shen Y, Lin F, Chen J, Gao X, He H, Li W, Hu B, Li X, Zhang Y. Exosomal miR-9-5p derived from iPSC-MSCs ameliorates doxorubicin-induced cardiomyopathy by inhibiting cardiomyocyte senescence. J Nanobiotechnology 2024; 22:195. [PMID: 38643173 PMCID: PMC11032595 DOI: 10.1186/s12951-024-02421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent widely used for tumor treatment. Nonetheless its clinical application is heavily limited by its cardiotoxicity. There is accumulated evidence that transplantation of mesenchymal stem cell-derived exosomes (MSC-EXOs) can protect against Dox-induced cardiomyopathy (DIC). This study aimed to examine the cardioprotective effects of EXOs isolated from human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) against DIC and explore the potential mechanisms. EXOs were isolated from the cultural supernatant of human BM-MSCs (BM-MSC-EXOs) and iPSC-MSCs (iPSC-MSC-EXOs) by ultracentrifugation. A mouse model of DIC was induced by intraperitoneal injection of Dox followed by tail vein injection of PBS, BM-MSC-EXOs, or iPSC-MSC-EXOs. Cardiac function, cardiomyocyte senescence and mitochondrial dynamics in each group were assessed. In vitro, neonatal mouse cardiomyocytes (NMCMs) were subjected to Dox and treated with BM-MSC-EXOs or iPSC-MSC-EXOs. The mitochondrial morphology and cellular senescence of NMCMs were examined by Mitotracker staining and senescence-associated-β-galactosidase assay, respectively. Compared with BM-MSC-EXOs, mice treated with iPSC-MSC-EXOs displayed improved cardiac function and decreased cardiomyocyte mitochondrial fragmentation and senescence. In vitro, iPSC-MSC-EXOs were superior to BM-MSC-EXOs in attenuation of cardiomyocyte mitochondrial fragmentation and senescence caused by DOX. MicroRNA sequencing revealed a higher level of miR-9-5p in iPSC-MSC-EXOs than BM-MSC-EXOs. Mechanistically, iPSC-MSC-EXOs transported miR-9-5p into DOX-treated cardiomyocytes, thereby suppressing cardiomyocyte mitochondrial fragmentation and senescence via regulation of the VPO1/ERK signal pathway. These protective effects and cardioprotection against DIC were largely reversed by knockdown of miR-9-5p in iPSC-MSC-EXOs. Our results showed that miR-9-5p transferred by iPSC-MSC-EXOs protected against DIC by alleviating cardiomyocyte senescence via inhibition of the VPO1/ERK pathway. This study offers new insight into the application of iPSC-MSC-EXOs as a novel therapeutic strategy for DIC treatment.
Collapse
Affiliation(s)
- Huifeng Zheng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Intensive Care Unit, Chongqing General Hospital, Chongqing, China
| | - Xiaoting Liang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Fang Lin
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Gao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Asadi Z, Jalilian S, Arkan E, Aghaz F. How Shilajit-Based Nanocarriers Alter Classical Doxorubicin Delivery to Breast Cancer Cells (MCF-7 and ZR-75-1). ACS Med Chem Lett 2024; 15:449-456. [PMID: 38628801 PMCID: PMC11017394 DOI: 10.1021/acsmedchemlett.3c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Chemotherapy has been ineffective in cancer treatment, and efficient delivery of chemotherapeutic agents remains a challenge. In this study, we developed a doxorubicin-loaded shilajit-based nanocarrier (SHN-Dox) using a nanoprecipitation method to enhance Dox uptake into breast cancer cells (MCF-7 and ZR-75-1). After confirmation of the physicochemical properties of the nanocarriers, the cytotoxic and pro-apoptotic effects of SHN-Dox and the production of reactive oxygen species (ROS) were evaluated on breast cancer cells. SHN-Dox showed a spherical shape with a size of 244 nm and a sustainable release profile of Dox. It exhibited high cytotoxicity against MCF-7 and ZR-75-1 cells, effectively inducing DNA fragmentation in these cells. After 24 h of treatment, SHN-Dox increased the apoptosis rate in MCF-7 cells and raised ROS levels. Therefore, SHN-Dox is a promising carrier that might reduce the side effects of Dox on healthy cells and provide a new strategy for clinical cancer treatment.
Collapse
Affiliation(s)
- Zahra Asadi
- Student
Research Committee, Kermanshah University
of Medical Sciences, Kermanshah 67158 47141, Iran
- Department
of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah 67158 47141, Iran
| | - Saba Jalilian
- Nano
Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158 47141, Iran
| | - Elham Arkan
- Nano
Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158 47141, Iran
| | - Faranak Aghaz
- Nano
Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158 47141, Iran
| |
Collapse
|
18
|
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front Oncol 2024; 14:1296091. [PMID: 38660132 PMCID: PMC11040677 DOI: 10.3389/fonc.2024.1296091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.
Collapse
Affiliation(s)
- Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anwar Ali
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Biochemical and Biotechnological Sciences, School of Precision Medicine, University of Campania, Naples, Italy
| | - Huma Tabassum
- Institute of Social and Cultural Studies, Department of Public Health, University of the Punjab, Lahore, Pakistan
| | - Narjis Khatoon
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Zhang B, Li Y, Liu N, Liu B. AP39, a novel mitochondria-targeted hydrogen sulfide donor ameliorates doxorubicin-induced cardiotoxicity by regulating the AMPK/UCP2 pathway. PLoS One 2024; 19:e0300261. [PMID: 38568919 PMCID: PMC10990198 DOI: 10.1371/journal.pone.0300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.
Collapse
Affiliation(s)
- Bin Zhang
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Yangxue Li
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Ning Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| |
Collapse
|
20
|
Madrid Mendoza MF, Almeida Mota J, de Cassia Evangelista de Oliveira F, Cavalcanti BC, Fabio Turco J, Reyes Torres Y, Ferreira PMP, Barros-Nepomuceno FWA, Rocha DD, Pessoa C, de Moraes Filho MO. Ethanolic extract from leaves of tithonia diversifolia induces apoptosis in HCT-116 cells through oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:275-293. [PMID: 38285019 DOI: 10.1080/15287394.2024.2308256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Tithonia diversifolia is a perennial bushy plant found in South America with significant ethnopharmacological importance as an antimalarial, antidiabetic, antibacterial, and anticancer agent. The aim of the present study was to determine the cytotoxicity of the ethanolic extract from leaves of T. diversifolia (TdE) on human cancer cell lines (HCT-116, SNB-19, NCIH-460 and MCF-7), as well as the mechanism of action involved in cell death and cellular modulation of oxidative stress. The TdE exhibited significant activity with IC50 values ranging from 7.12 to 38.41 μg/ml, with HCT-116 being the most sensitive cell line. Subsequent experiments were conducted with HCT-116 cell line. TdE decreased the number of viable cells, followed by induction of apoptotic events, increase in mitochondrial membrane permeabilization, and enhanced G2/M phase of the cell cycle. Pro-oxidative effects including elevated acidic vesicular organelle formation, lipid peroxidation, and nitric oxide by-products, as well as reduced levels of intracellular glutathione and reactive oxygen species production were also observed following incubation with TdE, which may lead to DNA damage followed by apoptotic cell death. These results demonstrate the potential of TdE ethanolic leaf extraction for biological activity and enhance the importance of continuing to study natural sources of plants for the development of anticancer agents.
Collapse
Affiliation(s)
| | - Jessica Almeida Mota
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - João Fabio Turco
- Department of Chemistry, Midwestern State University of Guarapuava, Guarapuava, Brazil
| | - Yohandra Reyes Torres
- Department of Chemistry, Midwestern State University of Guarapuava, Guarapuava, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | - Danilo Damasceno Rocha
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
21
|
Dhungel L, Rowsey ME, Harris C, Raucher D. Synergistic Effects of Temozolomide and Doxorubicin in the Treatment of Glioblastoma Multiforme: Enhancing Efficacy through Combination Therapy. Molecules 2024; 29:840. [PMID: 38398592 PMCID: PMC10893495 DOI: 10.3390/molecules29040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV (WHO classification) malignant brain tumor, poses significant challenges in treatment. The current standard treatment involves surgical tumor removal followed by radiation and chemotherapeutic interventions. However, despite these efforts, the median survival for GBM patients remains low. Temozolomide, an alkylating agent capable of crossing the blood-brain barrier, is currently the primary drug for GBM treatment. Its efficacy, however, is limited, leading to the exploration of combination treatments. In this study, we have investigated the synergistic effects of combining temozolomide with doxorubicin, a chemotherapeutic agent widely used against various cancers. Our experiments, conducted on both temozolomide-sensitive (U87) and -resistant cells (GBM43 and GBM6), have demonstrated a synergistic inhibition of brain cancer cells with this combination treatment. Notably, the combination enhanced doxorubicin uptake and induced higher apoptosis in temozolomide-resistant GBM43 cells. The significance of our findings lies in the potential application of this combination treatment, even in cases of temozolomide resistance. Despite doxorubicin's inability to cross the blood-brain barrier, our results open avenues for alternative delivery methods, such as conjugation with carriers like albumin or local administration at the surgical site through a hydrogel application system. Our study suggests that the synergistic interaction between temozolomide and doxorubicin holds promise for enhancing the efficacy of glioblastoma treatment. The positive outcomes observed in our experiments provide confidence in considering this strategy for the benefit of patients with glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (L.D.); (M.E.R.); (C.H.)
| |
Collapse
|
22
|
Wang L, Wu Y, Yang N, Yin W, Yang H, Li C, Zhuang Y, Song Z, Cheng X, Shi S, Wu Y. Self-assembly of maltose-albumin nanoparticles for efficient targeting delivery and therapy in liver cancer. Int J Biol Macromol 2024; 258:128691. [PMID: 38072344 DOI: 10.1016/j.ijbiomac.2023.128691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
The effective delivery and targeted release of drugs within tumor cells are critical factors in determining the therapeutic efficacy of nanomedicine. To achieve this objective, a conjugate of maltose (Mal) and bovine serum albumin (BSA) was synthesized by the Maillard reaction and self-assembled into nanoparticles with active-targeting capabilities upon pH/heating induction. This nanoparticle could be effectively loaded with doxorubicin (DOX) to form stable nanodrugs (Mal-BSA/DOX) that were sensitive to low pH or high glutathione (GSH), thereby achieving a rapid drug release (96.82 % within 24 h). In vitro cell experiments indicated that maltose-modified BSA particles efficiently enhance cellular internalization via glucose transporters (GLUT)-mediated endocytosis, resulting in increased intracellular DOX levels and heightened expression of γ-H2AX. Consequently, these results ultimately lead to selective tumor cells death, as evidenced by an IC50 value of 3.83 μg/mL in HepG2 cells compared to 5.87 μg/mL in 293t cells. The efficacy of Mal-BSA/DOX in tumor targeting therapy has been further confirmed by in vivo studies, as it effectively delivered a higher concentration of DOX to tumor tissue. This targeted delivery approach not only reduces the systemic toxicity of DOX but also effectively inhibits tumor growth (TGI, 75.95 %). These findings contribute valuable insights into the advancement of targeting-albumin nanomedicine and further support its potential in tumor treatment.
Collapse
Affiliation(s)
- Lu Wang
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China
| | - Yirui Wu
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China
| | - Niuniu Yang
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China
| | - Wenting Yin
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China
| | - Huang Yang
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China
| | - Conghu Li
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China; Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing 246133, PR China
| | - Yan Zhuang
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China
| | - Ziyi Song
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China
| | - Xu Cheng
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China; Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing 246133, PR China.
| | - Shuiqing Shi
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China; Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing 246133, PR China.
| | - Yan Wu
- Collaborative Innovation Center of targeted Development of Medicinal Resources, Anqing Normal University, Anqing 246133, PR China; Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing 246133, PR China
| |
Collapse
|
23
|
Xu F, Zang T, Chen H, Zhou C, Wang R, Yu Y, Shen L, Qian J, Ge J. Deubiquitinase OTUB1 regulates doxorubicin-induced cardiotoxicity via deubiquitinating c-MYC. Cell Signal 2024; 113:110937. [PMID: 37871668 DOI: 10.1016/j.cellsig.2023.110937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Doxorubicin (DOX), an anthracycline drug widely used in antitumor therapies, has dose-dependent toxicity that can cause cardiomyocyte apoptosis and oxidative stress, thus limiting its clinical application. OTUB1 (ovarian tumor associated proteinase B1) is an OTU superfamily deubiquitinase that effectively regulates cell proliferation, inflammatory responses, apoptosis, and oxidative stress by specifically removing K48- and K63-linked ubiquitination; however, its role in DOX-induced cardiotoxicity remains unknown. MATERIALS AND METHODS A DOX-induced subacute cardiotoxicity mouse model was established by intraperitoneal injection, and cardiac injury was assessed by echocardiography, serum cardiac markers, and histopathological staining. Western blotting, qRT-PCR, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) immunohistochemistry were used to analyze cell apoptosis, tissue oxidative stress was assessed by superoxide dismutase (SOD) activity, malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) activity. Cell counting kit-8 (CCK-8) assay, TUNEL staining, Western blotting, qRT-PCR, and reactive oxygen species (ROS) flow cytometry were applied on isolated neonatal mice cardiomyocytes to assess apoptosis and oxidative stress. Differentially expressed genes were analyzed using RNA sequencing and clustering analyses. c-MYC inhibitor 10,058-F4 and siRNA targeting c-Myc were used to investigate the roles of c-MYC in OTUB1's regulations of DOX-induced cardiotoxicity. Immunoprecipitation and Western blotting were performed to reveal the deubiquitinating effects of OTUB1 on c-MYC expression. RESULTS We found that global Otub1-knockdown in vivo alleviated the subacute DOX treatment-induced cardiac dysfunction, fibrosis, and cardiomyocyte atrophy. Mechanistically, unbiased RNA sequencing and molecular biology experiments revealed that cardiomyocyte apoptosis, inflammation, and oxidative stress in DOX-induced cardiotoxicity were significantly compromised in the Otub1-knockdown group. Further in vitro studies have shown that c-MYC, a critical regulator of apoptosis, is indispensable in OTUB1's regulations of DOX-induced cardiotoxicity. Deubiquitinating effects of OTUB1 on K48- and K63-linked ubiquitination of c-MYC protein are essential for promoting cardiomyocyte apoptosis and oxidative responses. CONCLUSIONS OTUB1-c-MYC inhibition protected cardiomyocytes against DOX-induced apoptosis and oxidative stress, suggesting that OTUB1 is a potential translational therapeutic target for preventing DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Fei Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China; Department of Cardiology and Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tongtong Zang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China
| | - Yue Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, China.
| |
Collapse
|
24
|
Lin X, Wu G, Wang S, Huang J. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity. Front Pharmacol 2023; 14:1255158. [PMID: 38026961 PMCID: PMC10665513 DOI: 10.3389/fphar.2023.1255158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Doxorubicin-induced cardiotoxicity represents a prevalent adverse effect encountered in patients undergoing treatment with doxorubicin. To date, there has been no bibliometric study to summarize the field of doxorubicin-induced cardiotoxicity. In our study, we aim to determine the current status and frontiers of doxorubicin-induced cardiotoxicity by bibliometric analysis. Methods: The documents concerning doxorubicin-induced cardiotoxicity are obtained from the Web of Science Core Collection database (WOSCC), and VOSviewer 1.6.16, CiteSpace 5.1.3 and the WOSCC's literature analysis wire were used to conduct the bibliometric analysis. Results: In total, 7,021 publications were encompassed, which are produced by 37,152 authors and 6,659 organizations, 1,323 journals, and 101 countries/regions. The most productive author, institution, country and journal were Bonnie Ky with 35 publications, University of Texas with 190 documents, the United States with 1,912 publications, and PLOS ONE with 120 documents. The first high-cited article was published in the NEJM with 8,134 citations authored by DJ Slamon et al., in 2001. For keyword analysis, there are four clusters depicted in distinct directions. The keywords in the red cluster are oxidative stress, apoptosis, and cardiomyopathy. The keywords in the green cluster are cardiotoxicity, heart failure, and anthracycline. The keywords in the blue cluster are chemotherapy, trastuzumab, and paclitaxel. The keywords in the purple cluster are doxorubicin, adriamycin, and cancer. Most of the documents were derived from the United States, China and Italy (4,080/7,021, 58.1%). The number of studies from other countries should be increased. Conclusion: In conclusion, the main research hotspots and frontiers in the field of doxorubicin-induced cardiotoxicity include the role of doxorubicin in cardiotoxicity, the mechanisms underlying doxorubicin-induced cardiotoxicity, and the development of treatment strategies for doxorubicin-induced cardiotoxicity. More studies are needed to explore the mechanisms and treatment of doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Shuai Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Huang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
26
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
27
|
Jones IC, Carnagarin R, Armstrong J, Lin DPL, Baxter-Holland M, Elahy M, Dass CR. Pigment Epithelium-Derived Factor: Inhibition of Phosphorylation of Insulin Receptor (IR)/IR Substrate (IRS), Osteogeneration from Adipocytes, and Increased Levels Due to Doxorubicin Exposure. Pharmaceutics 2023; 15:1960. [PMID: 37514146 PMCID: PMC10384968 DOI: 10.3390/pharmaceutics15071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES Pigment epithelium-derived factor (PEDF) has been recently linked to insulin resistance and is capable of differentiating myocytes to bone. We examined in more detail the intricate signalling of the insulin pathway influenced by PEDF in skeletal myocytes. We tested whether this serpin is also capable of generating de novo bone from adipocytes in vitro and in vivo, and how the anticancer drug doxorubicin links with PEDF and cellular metabolism. METHODS AND KEY FINDINGS We demonstrate that PEDF can inhibit phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS) in skeletal myocytes. PEDF constitutively activates p42/44 MAPK/Erk, but paradoxically does not affect mitogenic signalling. PEDF did not perturb either mitochondrial activity or proliferation in cells representing mesenchymal stem cells, cardiomyocytes, and skeletal myocytes and adipocytes. PEDF induced transdifferentiation of adipocytes to osteoblasts, promoting bone formation in cultured adipocytes in vitro and gelfoam fatpad implants in vivo. Bone formation in white adipose tissue (WAT) was better than in brown adipose tissue (BAT). The frontline anticancer drug doxorubicin increased levels of PEDF in a human breast cancer cell line, mirroring the in vivo finding where cardiac muscle tissue was stained increasingly for PEDF as the dose of doxorubicin increased in mice. PEDF also increased levels of reactive oxygen species (ROS) and glutathione (GSH) in the breast cancer cell line. CONCLUSIONS PEDF may be used to regenerate bone from adipose tissue in cases of trauma such as fractures or bone cancers. The increased presence of PEDF in doxorubicin-treated tumour cells need further exploration, and could be useful therapeutically in future. The safety of PEDF administration in vivo was further demonstrated in this study.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA 6160, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, University of Western Australia, Perth, WA 6009, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Jo Armstrong
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Daphne P L Lin
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
| | - Mia Baxter-Holland
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Mina Elahy
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
28
|
Morsy MA, Abdel-Gaber SA, Mokhemer SA, Kandeel M, Sedik WF, Nair AB, Venugopala KN, Khalil HE, Al-Dhubiab BE, Mohamed MZ. Pregnenolone Inhibits Doxorubicin-Induced Cardiac Oxidative Stress, Inflammation, and Apoptosis-Role of Matrix Metalloproteinase 2 and NADPH Oxidase 1. Pharmaceuticals (Basel) 2023; 16:ph16050665. [PMID: 37242448 DOI: 10.3390/ph16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical usefulness of doxorubicin (DOX) is limited by its serious adverse effects, such as cardiotoxicity. Pregnenolone demonstrated both anti-inflammatory and antioxidant activity in animal models. The current study aimed to investigate the cardioprotective potential of pregnenolone against DOX-induced cardiotoxicity. After acclimatization, male Wistar rats were randomly grouped into four groups: control (vehicle-treated), pregnenolone (35 mg/kg/d, p.o.), DOX (15 mg/kg, i.p, once), and pregnenolone + DOX. All treatments continued for seven consecutive days except DOX, which was administered once on day 5. The heart and serum samples were harvested one day after the last treatment for further assays. Pregnenolone ameliorated the DOX-induced increase in markers of cardiotoxicity, namely, histopathological changes and elevated serum levels of creatine kinase-MB and lactate dehydrogenase. Moreover, pregnenolone prevented DOX-induced oxidative changes (significantly lowered cardiac malondialdehyde, total nitrite/nitrate, and NADPH oxidase 1, and elevated reduced glutathione), tissue remodeling (significantly decreased matrix metalloproteinase 2), inflammation (significantly decreased tumor necrosis factor-α and interleukin 6), and proapoptotic changes (significantly lowered cleaved caspase-3). In conclusion, these findings show the cardioprotective effects of pregnenolone in DOX-treated rats. The cardioprotection achieved by pregnenolone treatment can be attributed to its antioxidant, anti-inflammatory, and antiapoptotic actions.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sahar A Mokhemer
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Wael F Sedik
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Bandar E Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
29
|
Maneechote C, Chattipakorn SC, Chattipakorn N. Recent Advances in Mitochondrial Fission/Fusion-Targeted Therapy in Doxorubicin-Induced Cardiotoxicity. Pharmaceutics 2023; 15:pharmaceutics15041182. [PMID: 37111670 PMCID: PMC10143663 DOI: 10.3390/pharmaceutics15041182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Doxorubicin (DOX) has been recognized as one of the most effective chemotherapies and extensively used in the clinical settings of human cancer. However, DOX-mediated cardiotoxicity is known to compromise the clinical effectiveness of chemotherapy, resulting in cardiomyopathy and heart failure. Recently, accumulation of dysfunctional mitochondria via alteration of the mitochondrial fission/fusion dynamic processes has been identified as a potential mechanism underlying DOX cardiotoxicity. DOX-induced excessive fission in conjunction with impaired fusion could severely promote mitochondrial fragmentation and cardiomyocyte death, while modulation of mitochondrial dynamic proteins using either fission inhibitors (e.g., Mdivi-1) or fusion promoters (e.g., M1) can provide cardioprotection against DOX-induced cardiotoxicity. In this review, we focus particularly on the roles of mitochondrial dynamic pathways and the current advanced therapies in mitochondrial dynamics-targeted anti-cardiotoxicity of DOX. This review summarizes all the novel insights into the development of anti-cardiotoxic effects of DOX via the targeting of mitochondrial dynamic pathways, thereby encouraging and guiding future clinical investigations to focus on the potential application of mitochondrial dynamic modulators in the setting of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Roberts JA, Rainbow RD, Sharma P. Mitigation of Cardiovascular Disease and Toxicity through NRF2 Signalling. Int J Mol Sci 2023; 24:ijms24076723. [PMID: 37047696 PMCID: PMC10094784 DOI: 10.3390/ijms24076723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cardiovascular toxicity and diseases are phenomena that have a vastly detrimental impact on morbidity and mortality. The pathophysiology driving the development of these conditions is multifactorial but commonly includes the perturbance of reactive oxygen species (ROS) signalling, iron homeostasis and mitochondrial bioenergetics. The transcription factor nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2), a master regulator of cytoprotective responses, drives the expression of genes that provide resistance to oxidative, electrophilic and xenobiotic stresses. Recent research has suggested that stimulation of the NRF2 signalling pathway can alleviate cardiotoxicity and hallmarks of cardiovascular disease progression. However, dysregulation of NRF2 dynamic responses can be severely impacted by ageing processes and off-target toxicity from clinical medicines including anthracycline chemotherapeutics, rendering cells of the cardiovascular system susceptible to toxicity and subsequent tissue dysfunction. This review addresses the current understanding of NRF2 mechanisms under homeostatic and cardiovascular pathophysiological conditions within the context of wider implications for this diverse transcription factor.
Collapse
Affiliation(s)
- James A. Roberts
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
31
|
Samir R, Hassan EA, Saber AA, Haneen DSA, Saleh EM. Seaweed Sargassum aquifolium extract ameliorates cardiotoxicity induced by doxorubicin in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58226-58242. [PMID: 36977879 PMCID: PMC10163098 DOI: 10.1007/s11356-023-26259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/28/2023] [Indexed: 05/08/2023]
Abstract
Doxorubicin (DOX) is a potent anticancer drug with adverse cardiotoxic effects. Alginates are multifunctional biopolymers and polyelectrolytes derived from the cell walls of brown seaweeds. They are nontoxic, biocompatible, and biodegradable, and hence, utilized in several biomedical and pharmaceutical applications. Here, we investigated the potential cardioprotective effect of thermally treated sodium alginate (TTSA), which was extracted and purified from the seaweed Sargassum aquifolium, in treating acute DOX cardiotoxicity and apoptotic pathways in rats. UV-visible spectroscopy, Fourier-transform infrared, and nuclear magnetic resonance (1H-NMR) spectroscopy techniques were used to characterize TTSA. CK-MB and AST levels in sera samples were determined. The expression levels of Erk-2 (MAPK-1) and iNOS genes were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of Erk-2, anti-apoptotic p53, and caspase-3 were analyzed using western blotting and ELISA. For the in vivo studies, sixty rats were randomly divided equally into six groups and treated with DOX, followed by TTSA. We revealed that treatment with TTSA, which has low molecular weight and enhanced antioxidant properties, improved DOX-mediated cardiac dysfunction and alleviated DOX-induced myocardial apoptosis. Furthermore, TTSA exhibited a cardioprotective effect against DOX-induced cardiac toxicity, indicated by the increased expression of MAPK-1 (Erk2) and iNOS genes, which are implicated in the adaptive responses regulating DOX-induced myocardial damage. Moreover, TTSA significantly (p < 0.05) suppressed caspase-3 and upregulated anti-apoptotic protein p53 expression. TTSA also rebalanced the cardiomyocyte redox potential by significantly (p < 0.05) increasing the levels of endogenous antioxidant enzymes, including catalase and superoxide dismutase. Our findings suggest that TTSA, particularly at a dose of 400 mg/kg b.w., is a potential prophylactic supplement for treating acute DOX-linked cardiotoxicity.
Collapse
Affiliation(s)
- Rania Samir
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| | - Ekrami A. Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| | - Abdullah A. Saber
- Botany Department, Faculty of Science, Ain Shams University, Abbassia Square, Cairo, 11566 Egypt
| | - David S. A. Haneen
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| | - Eman M. Saleh
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566 Egypt
| |
Collapse
|
32
|
Khairnar SI, Kulkarni YA, Singh K. Cardiotoxicity linked to anticancer agents and cardioprotective strategy. Arch Pharm Res 2022; 45:704-730. [DOI: 10.1007/s12272-022-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
|