1
|
Patrignoni L, Hurtier A, Orlacchio R, Joushomme A, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Revzani HR, Mahfouf W, Garenne A, Percherancier Y, Lagroye I. Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells. Bioelectromagnetics 2024; 45:110-129. [PMID: 38115173 DOI: 10.1002/bem.22495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.
Collapse
Affiliation(s)
- Lorenza Patrignoni
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Rosa Orlacchio
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | | | | | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM / UMR 7252, RF-ELITE team, Limoges, France
| | | | | | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC / UMR 1312, TRIO2 team, Bordeaux, France
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Isabelle Lagroye
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| |
Collapse
|
2
|
Lai Y, Wang H, Xu X, Dong J, Song Y, Zhao H, Wu Y, Zhao L, Wang H, Zhang J, Yao B, Zou Y, Zhou H, Peng R. Hippocampal ferroptosis is involved in learning and memory impairment in rats induced by microwave and electromagnetic pulse combined exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83717-83727. [PMID: 37349489 PMCID: PMC10359380 DOI: 10.1007/s11356-023-28280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Microwave (MW) and electromagnetic pulse (EMP) are considered environmental pollutants, both of which can induce learning and memory impairments. However, the bioeffects of combined exposure to MW and EMP have never been explored. This paper aimed to investigate the effects of combined exposure to MW and EMP on the learning and memory of rats as well as its association with ferroptosis in the hippocampus. In this study, rats were exposed to EMP, MW, or EMP and MW combined radiation. After exposure, impairment of learning and memory, alterations in brain electrophysiological activity, and damage to hippocampal neurons were observed in rats. Moreover, we also found alterations in ferroptosis hallmarks, including increased levels of iron, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, as well as downregulation of glutathione peroxidase 4 (GPX4) protein in the rat hippocampus after exposure. Our results suggested that either single or combined exposure to MW and EMP radiation could impair learning and memory and damage hippocampal neurons in rats. Moreover, the adverse effects caused by the combined exposure were more severe than the single exposures, which might be due to cumulative effects rather than synergistic effects. Furthermore, ferroptosis in the hippocampus might be a common underlying mechanism of learning and memory impairment induced by both single and combined MW and EMP exposure.
Collapse
Affiliation(s)
- Yunfei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yiwei Song
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haixia Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - You Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hongmei Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
3
|
Phosphorylation of the Human DNA Glycosylase NEIL2 Is Affected by Oxidative Stress and Modulates Its Activity. Antioxidants (Basel) 2023; 12:antiox12020355. [PMID: 36829914 PMCID: PMC9952225 DOI: 10.3390/antiox12020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The DNA glycosylase NEIL2 plays a central role in maintaining genome integrity, in particular during oxidative stress, by recognizing oxidized base lesions and initiating repair of these via the base excision repair (BER) pathway. Post-translational modifications are important molecular switches that regulate and coordinate the BER pathway, and thereby enable a rapid and fine-tuned response to DNA damage. Here, we report for the first time that human NEIL2 is regulated by phosphorylation. We demonstrate that NEIL2 is phosphorylated by the two kinases cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in vitro and in human SH-SY5Y neuroblastoma cells. The phosphorylation of NEIL2 by PKC causes a substantial reduction in NEIL2 repair activity, while CDK5 does not directly alter the enzymatic activity of NEIL2 in vitro, suggesting distinct modes of regulating NEIL2 function by the two kinases. Interestingly, we show a rapid dephosphorylation of NEIL2 in response to oxidative stress in SH-SY5Y cells. This points to phosphorylation as an important modulator of NEIL2 function in this cellular model, not least during oxidative stress.
Collapse
|
4
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
5
|
Zosangzuali M, Lalremruati M, Lalmuansangi C, Nghakliana F, Pachuau L, Bandara P, Zothan Siama. Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice. Electromagn Biol Med 2021; 40:393-407. [PMID: 33687298 DOI: 10.1080/15368378.2021.1895207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was designed to investigate the possible effects of exposure to mobile phone base station (MPBS) emits 1800-MHz RF-EMR on some oxidative stress parameters in the brain, heart, kidney and liver of Swiss albino mice under exposures below thermal levels. Mice were randomly assigned to three experimental groups which were exposed to RF-EMR for 6 hr/day, 12 hr/day and 24 hr/day for 45 consecutive days, respectively, and a control group. The glutathione (GSH) levels and activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) were significantly reduced in mice brain after exposure to RF-EMR for 12 hr and 24 hr per day. Exposure of mice to RF-EMR for 12 hr and 24 hr per day also led to a significant increase in malondialdehyde (an index of lipid peroxidation) levels in mice brain. On the contrary, exposures used in this study did not induce any significant change in various oxidative stress-related parameters in the heart, kidney and liver of mice. Our findings showed no significant variations in the activities of aspartate amino-transferase (AST), alanine amino-transferase (ALT), and on the level of creatinine (CRE) in the exposed mice. This study also revealed a decrease in RBC count with an increase in WBC count in mice subjected to 12 hr/day and 24 hr/day exposures. Exposure to RF-EMR from MPBS may cause adverse effects in mice brain by inducing oxidative stress arising from the generation of reactive oxygen species (ROS) as indicated by enhanced lipid peroxidation, and reduced levels and activities of antioxidants.
Collapse
Affiliation(s)
| | | | - C Lalmuansangi
- Department of Zoology, Mizoram University, Aizawl, India
| | - F Nghakliana
- Department of Zoology, Mizoram University, Aizawl, India
| | - Lalrinthara Pachuau
- Department of Physics, Pachhunga University College, Mizoram University, Aizawl, India
| | - Priyanka Bandara
- Executive Board, Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, Australia
| | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, India
| |
Collapse
|
6
|
Zielinski J, Ducray AD, Moeller AM, Murbach M, Kuster N, Mevissen M. Effects of pulse-modulated radiofrequency magnetic field (RF-EMF) exposure on apoptosis, autophagy, oxidative stress and electron chain transport function in human neuroblastoma and murine microglial cells. Toxicol In Vitro 2020; 68:104963. [PMID: 32777439 DOI: 10.1016/j.tiv.2020.104963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 02/02/2023]
Abstract
The use of body-worn wireless devices with different communication protocols and rapidly changing exposure scenarios is still multiplying and the need to identify possible health effects of radiofrequency electromagnetic field (RF-EMF) exposure with extremely low-frequency (ELF) modulation envelops. In this study, effects of ELF-modulated 935 MHz RF-EMF on apoptosis, autophagy, oxidative stress and electron exchange in N9 microglial and SH-SY5Y neuroblastoma cells were investigated. Cells were exposed at 4 W/kg or sham-exposed for 2 and 24 h. RF-EMF exposure of both cell types did not alter apoptosis, the number of living cells nor the apoptosis-inducing factor (AIF), irrespective of the exposure duration. RF-EMF exposure for 24, but not for 2 h, increased protein levels of the autophagy marker ATG5, whereas LC3B-I and II and pERK were not altered in both cell types and exposure times investigated. A transient increase in glutathione (GSH), but not hydrogen peroxide and cytochrome c oxidase was found only in SH-SY5Y cells, indicating that short-time RF-EMF at SAR levels accepted by today's safety guidelines might cause autophagy and oxidative stress with the effect being dependent on cell type and exposure duration. Further studies are needed to evaluate possible underlying mechanisms involved in pulse-modulated RF-EMF exposure.
Collapse
Affiliation(s)
- Jana Zielinski
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Angélique D Ducray
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Anja M Moeller
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Manuel Murbach
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Rämistrasse 101, Zurich 8092, Switzerland.
| | - Niels Kuster
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Rämistrasse 101, Zurich 8092, Switzerland.
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| |
Collapse
|
7
|
Kesari KK, Dhasmana A, Shandilya S, Prabhakar N, Shaukat A, Dou J, Rosenholm JM, Vuorinen T, Ruokolainen J. Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria. Antioxidants (Basel) 2020; 9:antiox9060552. [PMID: 32630418 PMCID: PMC7346164 DOI: 10.3390/antiox9060552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Several bioactive compounds are in use for the treatment of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Historically, willow (salix sp.) bark has been an important source of salisylic acid and other natural compounds with anti-inflammatory, antipyretic and analgesic properties. Among these, picein isolated from hot water extract of willow bark, has been found to act as a natural secondary metabolite antioxidant. The aim of this study was to investigate the unrevealed pharmacological action of picein. In silico studies were utilized to direct the investigation towards the neuroprotection abilities of picein. Our in vitro studies demonstrate the neuroprotective properties of picein by blocking the oxidative stress effects, induced by free radical generator 2-methyl-1,4-naphthoquinone (menadione, MQ), in neuroblastoma SH-SY5Y cells. Several oxidative stress-related parameters were evaluated to measure the protection for mitochondrial integrity, such as mitochondrial superoxide production, mitochondrial activity (MTT), reactive oxygen species (ROS) and live-cell imaging. A significant increase in the ROS level and mitochondrial superoxide production were measured after MQ treatment, however, a subsequent treatment with picein was able to mitigate this effect by decreasing their levels. Additionally, the mitochondrial activity was significantly decreased by MQ exposure, but a follow-up treatment with picein recovered the normal metabolic activity. In conclusion, the presented results demonstrate that picein can significantly reduce the level of MQ-induced oxidative stress on mitochondria, and thereby plays a role as a potent neuroprotectant.
Collapse
Affiliation(s)
- Kavindra Kumar Kesari
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Anupam Dhasmana
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78539, USA;
- Department of Biosciences, Swami Rama Himalayan University, Dehradun 248016, India
| | - Shruti Shandilya
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Ahmed Shaukat
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jinze Dou
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Tapani Vuorinen
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| |
Collapse
|
8
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
9
|
Zhang T, Liu C, Ma S, Gao Y, Wang R. Protective Effect and Mechanism of Action of Rosmarinic Acid on Radiation-Induced Parotid Gland Injury in Rats. Dose Response 2020; 18:1559325820907782. [PMID: 32127788 PMCID: PMC7036515 DOI: 10.1177/1559325820907782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 12/16/2022] Open
Abstract
The parotid glands are damaged by oxidative stress and a series of
pathophysiological changes after irradiation. Rosmarinic acid (RA) is a natural
antioxidant that provides a radioprotective effect against harmful damage from
ionizing radiation. The present study aims to explore the protective effects of
RA on radiation-induced parotid gland injury and its underlying mechanism.
Sprague-Dawley rats were irradiated with 15 Gy X-ray and treated with different
concentrations of RA (30, 60, and 120 mg/kg) or amifostine (AMI, 250 mg/kg).
Saliva secretion function, oxidative stress, apoptosis, the inflammatory
response, and fibrosis were determined by the measurement of the salivary flow
rate, enzyme-linked immunosorbent assay, transferase-mediated DUTP Nick end
labeling, Western blot, quantitative real time polymerase chain reaction, and
hematoxylin and eosin staining. Here, we show that RA treatment significantly
attenuated reactive oxygen species by a direct hindrance effect and the indirect
activation of peroxisome proliferator-activated receptor gamma coactivator
1-alpha/nicotinamide adenine dinucleotide phosphate oxidase 4 signaling.
Rosmarinic acid not only reduced apoptosis by inhibiting p53/jun N-terminal
kinase activation but also reduced parotid gland tissue fibrosis by
downregulating inflammatory factor levels. Compared to AMI, RA has the obvious
advantages of late efficacy and convenient usage. Moreover, 60 mg/kg is the
minimum effective dose of RA. Therefore, RA can potentially be applied as a
therapeutic radioprotective agent to treat radiation-induced parotid gland
injury in the future.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yirong Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Zhou H, Dong G, Zheng W, Wang S, Wang L, Zhi W, Wang C. Radiofrequency radiation at 2.856 GHz does not affect key cellular endpoints in neuron-like PC12 cells. Electromagn Biol Med 2018; 38:102-110. [PMID: 30482060 DOI: 10.1080/15368378.2018.1550787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To investigate the potential cytotoxicity of radiofrequency (RF) radiation on central nervous system, rat pheochromocytoma (PC12) cells were exposed to 2.856 GHz RF radiation at a specific absorption rate (SAR) of 4 W/kg for 8 h a day for 2 days in 35 mm Petri dishes. During exposure, the real-time variation of the culture medium temperature was monitored in the first hour. Reactive oxygen species (ROS) production, intracellular Ca2+ concentration, and cell apoptosis rate were assessed immediately after exposure by flow cytometry. The results showed that the medium temperature raised about 0.93 °C, but no significant changes were observed in apoptosis, ROS levels or intracellular Ca2+ concentration after treatment. Although several studies suggested that RF radiation does indeed cause neurological effects, this study presented inconsistent results, indicating that 2.856 GHz RF radiation exposure at a SAR of 4 W/kg does not have a dramatic impact on PC12 cells, and suggests the need for further investigation on the key cellular endpoints of other nerve cells after exposure to RF radiation.
Collapse
Affiliation(s)
- Hongmei Zhou
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Guofu Dong
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Wen Zheng
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Shuiming Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Lifeng Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Weijia Zhi
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Changzhen Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| |
Collapse
|
11
|
López-Furelos A, Salas-Sánchez AA, Ares-Pena FJ, Leiro-Vidal JM, López-Martín E. Exposure to radiation from single or combined radio frequencies provokes macrophage dysfunction in the RAW 264.7 cell line. Int J Radiat Biol 2018; 94:607-618. [PMID: 29659305 DOI: 10.1080/09553002.2018.1465610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of this study was to determine whether exposure to radiation from single or multiple radio-frequency (RF) signals at 900 and 2450 MHz would induce effects in the RAW 264.7 cell line. MATERIALS AND METHODS Cell cultures were exposed to single or combined RF for 4, 24, 48, or 72 h in a GTEM electromagnetic test chamber. At the end of the radiation exposure time, viability and cell growth were analyzed by flow cytometry, nitric oxide (NO) production was measured by colorimetry, the expression of HSP70 and TNF-α was ascertained by qPCR, and the phagocytic activity was observed by microscopy. RESULTS NO production increased after 48 h exposure at 2450 MHz, compared with controls. The group subjected to the combined interaction of two RFs showed an increase of HSP70 after 48 h exposure and a significant increase of NO and TNF-α after 72 h. The phagocytic activity of macrophages decreased in all groups as exposure time increased. CONCLUSIONS Our results indicated a decrease in phagocytic activity and an increase in inflammatory, cytoprotective, and cytotoxic responses in macrophages after continuous and combined exposure of multiple RF signals. Multiple RF interact in everyday life, the immune response in humans is unknown.
Collapse
Affiliation(s)
- Alberto López-Furelos
- a Department of Morphological Sciences , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Aarón A Salas-Sánchez
- b Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Francisco J Ares-Pena
- b Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - José M Leiro-Vidal
- c Institute of Alimentary Analysis , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Elena López-Martín
- a Department of Morphological Sciences , University of Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
12
|
Siervo B, Morelli MS, Landini L, Hartwig V. Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop. Bioelectromagnetics 2018; 39:414-422. [PMID: 29709072 DOI: 10.1002/bem.22128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/16/2018] [Indexed: 11/07/2022]
Abstract
The use of wireless communication devices, such as tablets or laptops, is increasing among children. Only a few studies assess specific energy absorption rate (SAR) due to exposure from wireless-enabled tablets and laptops, in particular with Worldwide Interoperability for Microwave Access (WiMax) technology. This paper reports the estimation of the interaction between an E-shaped patch antenna (3.5 GHz) and human models, by means of finite-difference time-domain (FDTD) method. Specifically, four different human models (young adult male, young adult female, pre-teenager female, male child) in different exposure conditions (antenna at different distances from the human model, in different positions, and orientations) were considered and whole-body, 10 and 1 g local SAR and magnetic field value (Bmax) were evaluated. From our results, in some worst-case scenarios involving male and female children's exposure, the maximum radiofrequency energy absorption (hot spots) is located in more sensitive organs such as eye, genitals, and breast. Bioelectromagnetics. 39:414-422, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beatrice Siervo
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Maria Sole Morelli
- Research Center "E. Piaggio," School of Engineering, University of Pisa, Pisa, Italy
| | - Luigi Landini
- Department of Information Engineering, University of Pisa, Pisa, Italy.,Fondazione CNR-Regione Toscana, "G. Monasterio," Pisa, Italy
| | | |
Collapse
|
13
|
López-Furelos A, Leiro-Vidal JM, Salas-Sánchez AÁ, Ares-Pena FJ, López-Martín ME. Evidence of cellular stress and caspase-3 resulting from a combined two-frequency signal in the cerebrum and cerebellum of sprague-dawley rats. Oncotarget 2018; 7:64674-64689. [PMID: 27589837 PMCID: PMC5323107 DOI: 10.18632/oncotarget.11753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/16/2016] [Indexed: 12/30/2022] Open
Abstract
Multiple simultaneous exposures to electromagnetic signals induced adjustments in mammal nervous systems. In this study, we investigated the non-thermal SAR (Specific Absorption Rate) in the cerebral or cerebellar hemispheres of rats exposed in vivo to combined electromagnetic field (EMF) signals at 900 and 2450 MHz. Forty rats divided into four groups of 10 were individually exposed or not exposed to radiation in a GTEM chamber for one or two hours. After radiation, we used the Chemiluminescent Enzyme-Linked Immunosorbent Assay (ChELISA) technique to measure cellular stress levels, indicated by the presence of heat shock proteins (HSP) 90 and 70, as well as caspase-3-dependent pre-apoptotic activity in left and right cerebral and cerebellar hemispheres of Sprague Dawley rats. Twenty-four hours after exposure to combined or single radiation, significant differences were evident in HSP 90 and 70 but not in caspase 3 levels between the hemispheres of the cerebral cortex at high SAR levels. In the cerebellar hemispheres, groups exposed to a single radiofrequency (RF) and high SAR showed significant differences in HSP 90, 70 and caspase-3 levels compared to control animals. The absorbed energy and/or biological effects of combined signals were not additive, suggesting that multiple signals act on nervous tissue by a different mechanism.
Collapse
Affiliation(s)
- Alberto López-Furelos
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Manuel Leiro-Vidal
- Institute of Alimentary Analysis, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aarón Ángel Salas-Sánchez
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco José Ares-Pena
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Elena López-Martín
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Zhao M, Tang S, Xin J, Liu D. Influence of reactive oxygen species on secretory component in the intestinal epithelium during hyperoxia. Exp Ther Med 2017; 14:4033-4040. [PMID: 29075338 PMCID: PMC5648505 DOI: 10.3892/etm.2017.5027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/19/2017] [Indexed: 01/23/2023] Open
Abstract
Redox imbalance is established in various human diseases. Treatment of intestinal epithelial cells with hyperoxia for a prolonged period of time may cause serious effects on redox balance. Secretory component (SC) protein is secreted by intestinal epithelial cells, and has a vital role in mucosal immune systems and intestinal defense. The present study aimed to investigate the influence of reactive oxygen species (ROS) on intestinal epithelial cells and intestinal epithelial SC protein under hyperoxic conditions. Caco-2 cells were treated with increasing concentrations of hydrogen peroxide (H2O2) or 85% O2 (hyperoxia) for 24 h. Flow cytometry, immunohistochemistry staining, western blot analysis and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression levels of SC protein. Significantly increased apoptosis and mortality rates were observed in hyperoxia- and H2O2-treated Caco-2 cells, as compared with the untreated control cells (P<0.05). Protein and mRNA expression levels of SC were significantly increased in hyperoxia- and H2O2-treated groups, as compared with the control group (P<0.05). During hyperoxia, intestinal epithelial cells were destroyed and ROS levels increased. Therefore, the results of the present study suggested that ROS might have an important role in intestinal injury in hyperoxic environments.
Collapse
Affiliation(s)
- Min Zhao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Shimiao Tang
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Junchi Xin
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
15
|
Zhang G, Wang W, Yao C, Ren J, Zhang S, Han M. Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation. Biomed Pharmacother 2017; 91:147-154. [DOI: 10.1016/j.biopha.2017.04.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/10/2023] Open
|
16
|
Kim JY, Kim HJ, Kim N, Kwon JH, Park MJ. Effects of radiofrequency field exposure on glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Int J Radiat Biol 2016; 93:249-256. [PMID: 27648632 DOI: 10.1080/09553002.2017.1237058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To define the impact of radiofrequency (RF) under in vitro experimental Alzheimer's disease conditions, we investigated the effect of RF radiation on glutamate-induced oxidative stress in mouse hippocampal neuronal HT22 cells. MATERIALS AND METHODS Cell survival rate was measured by MTT and trypan blue exclusion assays. Cell cycle distribution, cell death, and ROS production were analyzed using flow cytometry. Expression of proteins was analyzed by Western blot. RESULTS RF exposure alone had a marginal impact on cell proliferation; however, it significantly enhanced glutamate-induced cytotoxicity in HT22 cells. Glutamate augmented the subG1 fraction of cell cycle, annexin/propidium iodide positive cell population, and expression of cleaved poly (ADP ribose) polymerase, which were further increased by RF exposure. Glutamate induced reactive oxygen species (ROS) generation and RF exposure further upregulated it. N-acetylcysteine (NAC) treatment completely abrogated glutamate- and RF-induced ROS production followed by cell death and restored cell proliferation in HT22 cells. Finally, glutamate phosphorylated c-Jun N-terminal kinase (JNK) and RF increased this event further. Treatment with NAC and inhibitor of JNK decreased JNK phosphorylation and restored cell proliferation, respectively. CONCLUSIONS Our results demonstrate that RF exposure enhanced glutamate-induced cytotoxicity by further increase of ROS production in HT22 cells.
Collapse
Affiliation(s)
- Jeong-Yub Kim
- a Korea Institute of Radiological and Medical Sciences , Seoul , Korea.,b Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| | - Hee-Jin Kim
- a Korea Institute of Radiological and Medical Sciences , Seoul , Korea
| | - Nam Kim
- c School of Information and Communication Engineering , Chungbuk National University , Cheongju , Korea
| | - Jong Hwa Kwon
- d Department of Radio Technology Research , Electronics and Telecommunications Research Institute , Daejeon , Korea
| | - Myung-Jin Park
- a Korea Institute of Radiological and Medical Sciences , Seoul , Korea
| |
Collapse
|
17
|
Manna D, Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med 2016; 35:265-301. [PMID: 27053138 DOI: 10.3109/15368378.2015.1092158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.
Collapse
Affiliation(s)
- Debashri Manna
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| | - Rita Ghosh
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| |
Collapse
|
18
|
Lewicka M, Henrykowska GA, Pacholski K, Śmigielski J, Rutkowski M, Dziedziczak-Buczyńska M, Buczyński A. The effect of electromagnetic radiation emitted by display screens on cell oxygen metabolism - in vitro studies. Arch Med Sci 2015; 11:1330-9. [PMID: 26788099 PMCID: PMC4697066 DOI: 10.5114/aoms.2015.56362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/15/2013] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Research studies carried out for decades have not solved the problem of the effect of electromagnetic radiation of various frequency and strength on the human organism. Due to this fact, we decided to investigate the changes taking place in human blood platelets under the effect of electromagnetic radiation (EMR) emitted by LCD monitors. MATERIAL AND METHODS The changes of selected parameters of oxygen metabolism were measured, i.e. reactive oxygen species concentration, enzymatic activity of antioxidant defence proteins - superoxide dismutase (SOD-1) and catalase (CAT) - and malondialdehyde concentration (MDA). A suspension of human blood platelets was exposed to electromagnetic radiation of 1 kHz frequency and 150 V/m and 220 V/m intensity for 30 and 60 min. The level of changes of the selected parameters of oxidative stress was determined after the exposure and compared to the control samples (not exposed). RESULTS The measurements revealed an increase of the concentration of reactive oxygen species. The largest increase of ROS concentration vs. the control sample was observed after exposure to EMF of 220 V/m intensity for 60 min (from x = 54.64 to x = 72.92). The measurement of MDA concentration demonstrated a statistically significant increase after 30-min exposure to an EMF of 220 V/m intensity in relation to the initial values (from x = 3.18 to x = 4.41). The enzymatic activity of SOD-1 decreased after exposure (the most prominent change was observed after 60-min and 220 V/m intensity from x = 3556.41 to x = 1084.83). The most significant change in activity of catalase was observed after 60 min and 220 v/m exposure (from x = 6.28 to x = 4.15). CONCLUSIONS The findings indicate that exposure to electromagnetic radiation of 1 kHz frequency and 150 V/m and 220 V/m intensity may cause adverse effects within blood platelets' oxygen metabolism and thus may lead to physiological dysfunction of the organism.
Collapse
Affiliation(s)
- Małgorzata Lewicka
- Department of Epidemiology and Public Health, Medical University of Lodz, Lodz, Poland
| | | | - Krzysztof Pacholski
- Institute of Electrical Engineering System, Technical University of Lodz, Lodz, Poland
| | - Janusz Śmigielski
- Department of Computer Science and Medical Statistics, Medical University of Lodz, Lodz, Poland
| | - Maciej Rutkowski
- Department of Military Toxicology and Radiological Protection, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej Buczyński
- Department of Epidemiology and Public Health, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Kesari KK, Luukkonen J, Juutilainen J, Naarala J. Genomic instability induced by 50Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:46-51. [PMID: 26653983 DOI: 10.1016/j.mrgentox.2015.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/26/2022]
Abstract
Increased level of micronuclei was observed in SH-SY5Y cells in a previous study at 8 and 15 days after exposure to extremely low frequency (ELF) magnetic fields (MF), indicating possible induction of genomic instability in the progeny of the exposed cells. The aim of this study was to further explore the induction of genomic instability by ELF MFs by increasing the follow-up time up to 45 days after exposure. Human SH-SY5Y neuroblastoma cells were exposed to a 50Hz, 100μT MF for 24h with or without co-exposure to menadione (MQ), a chemical agent that increases cellular superoxide production. Micronuclei, reactive oxygen species (ROS) and lipid peroxidation (LPO) were measured at 15, 30 and 45 days after exposure. To study the possible causal role of ROS in the delayed effects of MF, the antioxidant N-acetylcysteine (NAC) was administered before MF exposure. Consistently with the previous study, the level of micronuclei was statistically significantly elevated 15 days after exposure. A similar effect was observed at 30 days, but not at 45 days after exposure. The level of LPO was statically significantly decreased 30 and 45 days after exposure. Consistently with our previous findings, the MF effect did not depend on co-exposure to MQ. Treatment with NAC effectively decreased cellular ROS level and suppressed the effect of MQ on ROS, but it did not block the MF effect, indicating that increase in ROS is not needed as a causal link between MF exposure and induction of delayed effects. The results presented here are consistent with genomic instability that persists in the progeny of MF-exposed cells up to at least 30 days after exposure. Changes in LPO observed at 30 and 45 days after exposure indicates that the MF-initiated process may continue up to at least 45 days after exposure.
Collapse
Affiliation(s)
- Kavindra Kumar Kesari
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Jukka Luukkonen
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
20
|
Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat 2015; 75:85-93. [PMID: 26371078 DOI: 10.1016/j.jchemneu.2015.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Wireless communication such as cellular telephones and other types of handheld phones working with frequencies of 900MHz, 1800MHz, 2100MHz, 2450MHz have been increasing rapidly. Therefore, public opinion concern about the potential human health hazards of short and long-term effect of exposure to radiofrequency (RF) radiation. Oxidative stress is a biochemical condition, which is defined by the imbalance between reactive oxygen species (ROS) and the anti-oxidative defense. In this review, we evaluated available in vitro and in vivo studies carried out on the relation between RF emitted from mobile phones and oxidative stress. The results of the studies we reviewed here indicated that mobile phones and similar equipment or radars can be thought as a factor, which cause oxidative stress. Even some of them claimed that oxidative stress originated from radiofrequencies can be resulted with DNA damage. For this reason one of the points to think on is relation between mobile phones and oxidative stress. However, more performance is necessary especially on human exposure studies.
Collapse
Affiliation(s)
- Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey.
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, 21280 Diyarbakir, Turkey
| |
Collapse
|
21
|
Marjanovic AM, Pavicic I, Trosic I. Cell oxidation-reduction imbalance after modulated radiofrequency radiation. Electromagn Biol Med 2015; 34:381-6. [PMID: 25119294 DOI: 10.3109/15368378.2014.948184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.
Collapse
Affiliation(s)
- Ana Marija Marjanovic
- a Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Ivan Pavicic
- a Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Ivancica Trosic
- a Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health , Zagreb , Croatia
| |
Collapse
|
22
|
Ye W, Wang F, Zhang W, Fang N, Zhao W, Wang J. Effect of Mobile Phone Radiation on Cardiovascular Development of Chick Embryo. Anat Histol Embryol 2015; 45:197-208. [PMID: 26171674 DOI: 10.1111/ahe.12188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/10/2015] [Indexed: 01/16/2023]
Abstract
The biological effects on cardiovascular development of chicken embryos were examined after radiation exposure using mobile phone (900 MHz; specific absorption rate˜1.07 W/kg) intermittently 3 h per day during incubation. Samples were selected by morphological and histological methods. The results showed the rate of embryonic mortality and cardiac deformity increased significantly in exposed group (P < 0.05). No any histological pathological changes were observed on Day 5-7 (D5-D7) of incubation. A higher distribution of lipid droplets was unexpectedly present in myocardial tissue from the exposure groups on D10-D13. Soon afterwards, myofilament disruption, atrioventricular valve focal necrosis, mitochondria vacuolization and atrial natriuretic peptide (ANP) decrease appeared on D15-D21 of incubation. Comet assay data showed the haemocyte mean tail in the exposed group was significantly larger than that of the control (P < 0.01). The arterial vascular wall of exposed group was thicker (P < 0.05) than that of the control on D13, which was reversed to normal in later stages. Our findings suggest that long-term exposure of MPR may induce myocardium pathological changes, DNA damage and increased mortality; however, there was little effect on vascular development.
Collapse
Affiliation(s)
- W Ye
- Medical College of Henan University, Kaifeng, 475000, China.,Institute of Zoology, School of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - F Wang
- Medical College of Henan University, Kaifeng, 475000, China
| | - W Zhang
- Medical College of Henan University, Kaifeng, 475000, China
| | - N Fang
- Medical College of Henan University, Kaifeng, 475000, China
| | - W Zhao
- Medical College of Henan University, Kaifeng, 475000, China
| | - J Wang
- Institute of Zoology, School of Life Science, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Du Y, Zhang J, Zheng Q, Li M, Liu Y, Zhang B, Liu B, Zhang H, Miao G. Heavy ion and X-ray irradiation alter the cytoskeleton and cytomechanics of cortical neurons. Neural Regen Res 2014; 9:1129-37. [PMID: 25206772 PMCID: PMC4146101 DOI: 10.4103/1673-5374.135315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 12/26/2022] Open
Abstract
Heavy ion beams with high linear energy transfer exhibit more beneficial physical and biological performance than conventional X-rays, thus improving the potential of this type of radiotherapy in the treatment of cancer. However, these two radiotherapy modalities both cause inevitable brain injury. The objective of this study was to evaluate the effects of heavy ion and X-ray irradiation on the cytoskeleton and cytomechanical properties of rat cortical neurons, as well as to determine the potential mechanism of neuronal injury after irradiation. Cortical neurons from 30 new-born mice were irradiated with heavy ion beams at a single dose of 2 Gy and X-rays at a single dose of 4 Gy; subsequent evaluation of their effects were carried out at 24 hours after irradiation. An immunofluorescence assay showed that after irradiation with both the heavy ion beam and X-rays, the number of primary neurons was significantly decreased, and there was evidence of apoptosis. Radiation-induced neuronal injury was more apparent after X-irradiation. Under atomic force microscopy, the neuronal membrane appeared rough and neuronal rigidity had increased. These cell changes were more apparent following exposure to X-rays. Our findings indicated that damage caused by heavy ion and X-ray irradiation resulted in the structural distortion and rearrangement of the cytoskeleton, and affected the cytomechanical properties of the cortical neurons. Moreover, this radiation injury to normal neurons was much severer after irradiation with X-rays than after heavy ion beam irradiation.
Collapse
Affiliation(s)
- Yuting Du
- School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China ; School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jie Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China ; School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Qian Zheng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Mingxin Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yang Liu
- Department of Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Baoping Zhang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu Province, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China ; School of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hong Zhang
- Department of Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Guoying Miao
- Gansu Provincial Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|