1
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2024. [PMID: 39425547 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City Veterans Affairs (VA) Medical Center, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City Veterans Affairs (VA) Medical Center, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa, USA
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
- Center for Immunology and Immune Based Disease, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Zaletel K, Mihovec A, Gaberscek S. Characteristics of exposure to radioactive iodine during a nuclear incident. Radiol Oncol 2024:raon-2024-0051. [PMID: 39365660 DOI: 10.2478/raon-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND During a nuclear accident, numerous products of nuclear fission are released, including isotopes of radioactive iodine. Among them is iodine-131, with a half-life of 8.02 days, which emits β radiation. For decades, it has been effectively and safely used in medicine. However, in the event of a nuclear accident, uncontrolled exposure can have harmful biological effects. The main sources of internal contamination with iodine-131 are contaminated air, food and water. The most exposed organ is the thyroid gland, where radioactive iodine accumulates via the Na+/I- symporter (NIS). NIS does not distinguish between radioactive iodine isotopes and the stable isotope iodine-127, which is essential for the synthesis of thyroid hormones. Exposure to radioactive iodine during a nuclear accident is primarily associated with papillary thyroid cancer, whose incidence begins to increase a few years after exposure. Children and adolescents are at the highest risk, and the risk is particularly significant for individuals living in iodine-deficient areas. CONCLUSIONS Ensuring an adequate iodine supply is therefore crucial for lowering the risk of the harmful effects of exposure to radioactive iodine at the population level. Protecting the thyroid with potassium iodide tablets significantly reduces radiation exposure, as stable iodine prevents the entry of radioactive iodine into the thyroid. Such protection is effective only within a narrow time window - a few hours before and after the exposure and is recommended only for those under 40 years of age, as the risks of excessive iodine intake outweigh the potential benefits in older individuals.
Collapse
Affiliation(s)
- Katja Zaletel
- Division of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Simona Gaberscek
- Division of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Shao W, Lin X, Huang Y, Qu L, Zhuo W, Liu H. Rapid patient-specific organ dose estimation in computed tomography scans via integration of radiomics features and neural networks. Quant Imaging Med Surg 2024; 14:7379-7391. [PMID: 39429608 PMCID: PMC11485356 DOI: 10.21037/qims-24-645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024]
Abstract
Background Computed tomography (CT) offers detailed cross-sectional images of internal anatomy for disease detection but carries a risk of solid cancer or blood malignancies due to exposure to X-ray radiation. This study aimed to develop a new method to quickly predict patient-specific organ doses from CT examinations by training neural networks (NNs) based on radiomics features. Methods CT Digital Imaging and Communications in Medicine (DICOM) image data were exported to DeepViewer, a clinical autosegmentation software, to segment the regions of interest (ROIs) for patient organs. Radiomics feature extraction was performed based on the selected CT data and ROIs. Reference organ doses were computed using Monte Carlo (MC) simulations. Patient-specific organ doses were predicted by training a NN model based on radiomics features and reference doses. For the dose prediction performance, the relative root mean squared error (RRMSE), mean absolute percentage error (MAPE), and coefficient of determination (R2) were evaluated on the test sets. The robustness of the NN model was evaluated via the random rearrangement of patient samples in the training and test sets. Results The maximal difference between the reference and predicted doses was less than 1 mGy for all investigated organs. The range of MAPE was 1.68% to 5.2% for head organs, 11.42% to 15.2% for chest organs, and 5.0% to 8.0% for abdominal organs; the maximal R2 values were 0.93, 0.86, and 0.89 for the head, chest, and abdominal organs, respectively. Conclusions The radiomics feature-based NN model can achieve accurate prediction of patient-specific organ doses at a high speed of less than 1 second using a single central processing unit, which supports its use as a user-friendly online clinical application.
Collapse
Affiliation(s)
- Wencheng Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Xin Lin
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Ying Huang
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Liangyong Qu
- Department of Radiology, Shanghai Zhongye Hospital, Shanghai, China
| | - Weihai Zhuo
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Haikuan Liu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
5
|
Sado T, Cart JB, Lee CL. Mechanisms Underlying the Development of Murine T-Cell Lymphoblastic Lymphoma/Leukemia Induced by Total-Body Irradiation. Cancers (Basel) 2024; 16:2224. [PMID: 38927929 PMCID: PMC11201593 DOI: 10.3390/cancers16122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to ionizing radiation is associated with an increased risk of hematologic malignancies in myeloid and lymphoid lineages in humans and experimental mice. Given that substantial evidence links radiation exposure with the risk of hematologic malignancies, it is imperative to deeply understand the mechanisms underlying cellular and molecular changes during the latency period between radiation exposure and the emergence of fully transformed malignant cells. One experimental model widely used in the field of radiation and cancer biology to study hematologic malignancies induced by radiation exposure is mouse models of radiation-induced thymic lymphoma. Murine radiation-induced thymic lymphoma is primarily driven by aberrant activation of Notch signaling, which occurs frequently in human precursor T-cell lymphoblastic lymphoma (T-LBL) and T-cell lymphoblastic leukemia (T-ALL). Here, we summarize the literature elucidating cell-autonomous and non-cell-autonomous mechanisms underlying cancer initiation, progression, and malignant transformation in the thymus following total-body irradiation (TBI) in mice.
Collapse
Affiliation(s)
- Toshihiko Sado
- National Institute of Radiological Sciences, Chiba 263-0024, Japan
| | - John B. Cart
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Brookes C, Callister R, Robinson J, Smith S, Gillespie P, Papadakos N, Day A, Coomber R. Low-dose CT: A safe and effective imaging modality in post-operative pelvic & acetabular fixation. Injury 2024; 55:111518. [PMID: 38614834 DOI: 10.1016/j.injury.2024.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Post-operative pelvic & acetabular fixation patients are conventionally imaged using 3-view radiographs (AP, inlet and outlet). The efficacy of such radiographs is inconsistent due to technical difficulties capturing an adequate view, often necessitating repeat radiographs and therefore increasing radiation exposure. Radiographs can be difficult to interpret, limiting the assessment of fracture reduction and fixation, especially with respect to metalwork positioning around articular surfaces. Traditionally, post-operative pelvic & acetabular fixation patients undergo repeat 3-view radiographs post-operatively, at 6 weeks, followed by at 3, 6, 12, 18 and 24 months. We propose a new pathway, in which patients have one low-dose pelvic CT immediately post-operatively, followed by one radiograph (AP pelvis) at the same time points. METHODS A new pelvic CT protocol was created to provide high quality 3D imaging whilst delivering a 5 times lower radiation dose (compared to normal pelvic CT). Data for all pelvic radiographs and CTs between January 2021 and March 2022 was exported. Using dose area product values, effective radiation dose and attributable lifetime cancer risk were calculated. RESULTS There were 42 patients included in the analysis (age range 15 to 87).The average effective dose for the 3-view pelvic X-rays was 0.6mSv (range 0.2 to 2.8mSv), and 1.1mSv (range 0.5 to 2.2mSv) for the low-dose pelvic CT. Traditional 7 × 3-view post-operative radiographs: 7 × 0.6mSv = 4.2mSv (corresponding to 1 in 11,000 cancer risk) Low dose post-operative CT and 6 × 1-view radiographs: 1.1mSv + (6 × 0.6mSv / 3) = 2.3mSv (corresponding to 1 in 20,000 cancer risk) CONCLUSION: Low-dose CT scanning (in conjunction with 1-view radiographs) is an effective and safe imaging modality in the post-operative assessment of pelvic & acetabular fracture fixation, conferring a lower radiation burden, easier logistics, and higher quality images when compared to the traditional pathway of 3-view radiographs.
Collapse
|
7
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
8
|
Lee H, Hanson HA, Logan J, Maguire D, Kapadia A, Dewji S, Agasthya G. Evaluating county-level lung cancer incidence from environmental radiation exposure, PM 2.5, and other exposures with regression and machine learning models. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:82. [PMID: 38367080 PMCID: PMC10874317 DOI: 10.1007/s10653-023-01820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024]
Abstract
Characterizing the interplay between exposures shaping the human exposome is vital for uncovering the etiology of complex diseases. For example, cancer risk is modified by a range of multifactorial external environmental exposures. Environmental, socioeconomic, and lifestyle factors all shape lung cancer risk. However, epidemiological studies of radon aimed at identifying populations at high risk for lung cancer often fail to consider multiple exposures simultaneously. For example, moderating factors, such as PM2.5, may affect the transport of radon progeny to lung tissue. This ecological analysis leveraged a population-level dataset from the National Cancer Institute's Surveillance, Epidemiology, and End-Results data (2013-17) to simultaneously investigate the effect of multiple sources of low-dose radiation (gross [Formula: see text] activity and indoor radon) and PM2.5 on lung cancer incidence rates in the USA. County-level factors (environmental, sociodemographic, lifestyle) were controlled for, and Poisson regression and random forest models were used to assess the association between radon exposure and lung and bronchus cancer incidence rates. Tree-based machine learning (ML) method perform better than traditional regression: Poisson regression: 6.29/7.13 (mean absolute percentage error, MAPE), 12.70/12.77 (root mean square error, RMSE); Poisson random forest regression: 1.22/1.16 (MAPE), 8.01/8.15 (RMSE). The effect of PM2.5 increased with the concentration of environmental radon, thereby confirming findings from previous studies that investigated the possible synergistic effect of radon and PM2.5 on health outcomes. In summary, the results demonstrated (1) a need to consider multiple environmental exposures when assessing radon exposure's association with lung cancer risk, thereby highlighting (1) the importance of an exposomics framework and (2) that employing ML models may capture the complex interplay between environmental exposures and health, as in the case of indoor radon exposure and lung cancer incidence.
Collapse
Affiliation(s)
- Heechan Lee
- Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA, 30332, USA
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Heidi A Hanson
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Jeremy Logan
- Data Engineering Group, Data and AI Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Dakotah Maguire
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Anuj Kapadia
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Shaheen Dewji
- Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA, 30332, USA
| | - Greeshma Agasthya
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| |
Collapse
|
9
|
Delhomme TM, Munteanu M, Buonanno M, Grilj V, Biayna J, Supek F. Proton and alpha radiation-induced mutational profiles in human cells. Sci Rep 2023; 13:9791. [PMID: 37328655 PMCID: PMC10275862 DOI: 10.1038/s41598-023-36845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Ionizing radiation is known to be DNA damaging and mutagenic, however less is known about which mutational footprints result from exposures of human cells to different types of radiation. We were interested in the mutagenic effects of particle radiation exposures on genomes of various human cell types, in order to gauge the genotoxic risks of galactic cosmic radiation, and of certain types of tumor radiotherapy. To this end, we exposed cultured cell lines from the human blood, breast and lung to fractionated proton and alpha particle (helium nuclei) beams at doses sufficient to considerably affect cell viability. Whole-genome sequencing revealed that mutation rates were not overall markedly increased upon proton and alpha exposures. However, there were modest changes in mutation spectra and distributions, such as the increases in clustered mutations and of certain types of indels and structural variants. The spectrum of mutagenic effects of particle beams may be cell-type and/or genetic background specific. Overall, the mutational effects of repeated exposures to proton and alpha radiation on human cells in culture appear subtle, however further work is warranted to understand effects of long-term exposures on various human tissues.
Collapse
Affiliation(s)
- Tiffany M Delhomme
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maia Munteanu
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuela Buonanno
- Radiological Research Accelerator Facility (RARAF), Columbia University, New York, USA
| | - Veljko Grilj
- Radiological Research Accelerator Facility (RARAF), Columbia University, New York, USA
| | - Josep Biayna
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
10
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
11
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
12
|
Risk of second primary neoplasms of the central nervous system. Adv Radiat Oncol 2022; 7:100969. [PMID: 35814854 PMCID: PMC9260125 DOI: 10.1016/j.adro.2022.100969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Second primary (SP) neoplasms of the central nervous system (CNS) among cancer survivors are devastating but poorly understood processes. The absolute risk, or true incidence, of developing an SP CNS tumor among cancer survivors is not well characterized. Methods and Materials Patients diagnosed with cancer between 1975 and 2016 were queried using the Surveillance, Epidemiology, and End Results Program. Cumulative incidence rates (CIRs) were estimated using competitive risk analysis. The effects of covariates were assessed using multivariate competitive risk regression. Results More than 3.8 million patient records were extracted. The absolute risk of developing an SP CNS neoplasm at 25 years was highest among long-term survivors of CNS cancers (CIR, 6.6%). Cranial radiation increased the incidence of SP tumors in pediatric patients (25-year CIR, 5.7% vs 1.1%; P = .0012) but not adults (25-year CIR, 5.8% vs 5.0%; P = .66). Multivariate cumulative risk regression identified radiation among pediatric patients as the greatest risk for an increased CIR (subdistribution hazard ratio, 2.50; 95% CI, 1.86-3.38; P = 2e-9). Meningiomas (42.9% vs 24.1%; P = 2e-7) and glioblastomas (20.5% vs 14.5%; P = .046) represented a greater proportion of the SP CNS tumors in those who received cranial irradiation. The median age of an SP diagnosis was decreased among those who received prior radiation (41 years [interquartile range (IQR), 30-65 years] vs 49 years [IQR, 30-65 years]; P = 7e-5). Conclusions The risk of developing a second primary CNS neoplasm is elevated in patients with a prior CNS cancer independent of treatment history. The association between cranial radiation therapy and risk for subsequent cancers may be limited to the pediatric population.
Collapse
|
13
|
Mahajan A, NiveditaChakrabarty, Shukla S. A narrative review on radiation risk from imaging for COVID-19: Breaking the myths and the mithya. CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
DNA damage response of haematopoietic stem and progenitor cells to high-LET neutron irradiation. Sci Rep 2021; 11:20854. [PMID: 34675263 PMCID: PMC8531011 DOI: 10.1038/s41598-021-00229-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The radiosensitivity of haematopoietic stem and progenitor cells (HSPCs) to neutron radiation remains largely underexplored, notwithstanding their potential role as target cells for radiation-induced leukemogenesis. New insights are required for radiation protection purposes, particularly for aviation, space missions, nuclear accidents and even particle therapy. In this study, HSPCs (CD34+CD38+ cells) were isolated from umbilical cord blood and irradiated with 60Co γ-rays (photons) and high energy p(66)/Be(40) neutrons. At 2 h post-irradiation, a significantly higher number of 1.28 ± 0.12 γ-H2AX foci/cell was observed after 0.5 Gy neutrons compared to 0.84 ± 0.14 foci/cell for photons, but this decreased to similar levels for both radiation qualities after 18 h. However, a significant difference in late apoptosis was observed with Annexin-V+/PI+ assay between photon and neutron irradiation at 18 h, 43.17 ± 6.10% versus 55.55 ± 4.87%, respectively. A significant increase in MN frequency was observed after both 0.5 and 1 Gy neutron irradiation compared to photons illustrating higher levels of neutron-induced cytogenetic damage, while there was no difference in the nuclear division index between both radiation qualities. The results point towards a higher induction of DNA damage after neutron irradiation in HSPCs followed by error-prone DNA repair, which contributes to genomic instability and a higher risk of leukemogenesis.
Collapse
|
15
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
16
|
Klein PM, Alaghband Y, Doan NL, Ru N, Drayson OGG, Baulch JE, Kramár EA, Wood MA, Soltesz I, Limoli CL. Acute, Low-Dose Neutron Exposures Adversely Impact Central Nervous System Function. Int J Mol Sci 2021; 22:9020. [PMID: 34445726 PMCID: PMC8396607 DOI: 10.3390/ijms22169020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.
Collapse
Affiliation(s)
- Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Olivia G. G. Drayson
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| |
Collapse
|
17
|
Dinnessen MA, Visser O, Tonino SH, van der Poel MW, Blijlevens NM, Kersten MJ, Lugtenburg PJ, Dinmohamed AG. The impact of prior malignancies on the development of second malignancies and survival in follicular lymphoma: A population-based study. EJHAEM 2020; 1:489-497. [PMID: 35844986 PMCID: PMC9175939 DOI: 10.1002/jha2.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
We assessed the impact of a prior malignancy diagnosis (PMD) - as a potential proxy for genetic cancer susceptibility - on the development of a second primary malignancy (SPM) and mortality in follicular lymphoma (FL) patients. From the nationwide Netherlands Cancer Registry, we selected all adult FL patients diagnosed in 1994-2012 (n = 8028) and PMDs and SPMs relative to FL, with follow-up until 2017. We constructed two Fine and Gray models - with death as a competing risk - to assess the association between a PMD and SPM incidence. A PMD was associated with an increased incidence of SPMs (subdistribution hazard ratio [SHR], 1.30; 95% confidence interval [CI], 1.03-1.64) - especially carcinomas of the respiratory tract (SHR, 1.83; 95% CI, 1.10-3.05) and cutaneous squamous cell carcinomas (SHR, 1.58; 95% CI, 1.01-2.45) - and a higher risk of mortality in a multivariable model (HR, 1.43; 95% CI, 1.19-1.71). However, when additionally adjusted for the receipt of systemic therapy and/or radiotherapy before FL diagnosis, only patients who received such therapies had an increased incidence of SPMs (SHR, 1.40; 95% CI, 1.02-1.93). In conclusion, patients with a PMD had a higher rate of SPMs and mortality than those without a PMD, which might have resulted from therapy-related carcinogenesis.
Collapse
Affiliation(s)
- Manette A.W. Dinnessen
- Department of Research and DevelopmentNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
| | - Otto Visser
- Department of RegistrationNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
| | - Sanne H. Tonino
- Department of HematologyCancer Center AmsterdamLYMMCARE (Lymphoma and Myeloma Center Amsterdam)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marjolein W.M. van der Poel
- Department of Internal MedicalDivision of HematologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | - Marie José Kersten
- Department of HematologyCancer Center AmsterdamLYMMCARE (Lymphoma and Myeloma Center Amsterdam)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Avinash G. Dinmohamed
- Department of Research and DevelopmentNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
- Department of HematologyCancer Center AmsterdamLYMMCARE (Lymphoma and Myeloma Center Amsterdam)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam UMCVrije Universiteit AmsterdamDepartment of HematologyCancer Center AmsterdamAmsterdamThe Netherlands
- Department of Public HealthErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
18
|
Arıcan S, Dertli R, Baktik S, Hacibeyoglu G, Erol A, Ulukaya SO, Goger E, Erel Ö. Efeito da exposição à radiação ionizante de baixa dose na homeostase dinâmica de tiol‐dissulfeto e níveis de albumina modificada por isquemia: estudo observacional. Braz J Anesthesiol 2020; 70:233-239. [DOI: 10.1016/j.bjan.2020.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022] Open
|
19
|
Arıcan S, Dertli R, Baktik S, Hacibeyoglu G, Erol A, Ulukaya SO, Goger E, Erel Ö. The effect of low dose ionizing radiation exposure on dynamic thiol-disulfide homeostasis and ischemia modified albumin levels: an observational study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2020. [PMID: 32482354 PMCID: PMC9373708 DOI: 10.1016/j.bjane.2020.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The primary objective of this study was to investigate the effect of low dose ionizing radiation exposure on thiol/disulfide homeostasis and ischemia modified albumin levels. The secondary objective is to compare thiol/disulfide homeostasis and ischemia modified albumin levels among the personnel exposed to low dose ionizing radiation in anesthesia application areas, in and out of the operation room. Methods The study included a total of 90 volunteers aged between 18 and 65 years old, with 45 personnel working in a setting with potential for radiation exposure (Exposed Group) and 45 personnel in a setting without radiation exposure (Control Group). Their native thiol, total thiol, disulphide, albumine and IMA levels were measured. Exposed group included personnel who were exposed to radiation outside the operating room – Operation room (−) Group and inside the operating room – Operation room (+) Group. Results Albumin, native and total thiol levels were significantly lower in the participants exposed to radiation in the anesthesia application area; no statistically significant difference was found in terms of disulfide and ischemia modified albumin levels. In the Operation room (−) Group exposed to radiation, native thiol and total thiol values were significantly lower compared to the Operation room (+) Group. Conclusion Awareness of being in danger of oxidative stress should be established in personnel exposed to radiation in the anesthesia application area following low dose ionizing radiation exposure, and the necessary measures should be taken.
Collapse
Affiliation(s)
- Sule Arıcan
- University of Necmettin Erbakan, Medical Faculty, Department of Anaesthesiology, Konya, Turkey.
| | - Ramazan Dertli
- University of Necmettin Erbakan, Medical Faculty, Department of Gastroenterology, Konya, Turkey
| | - Suleyman Baktik
- University of Necmettin Erbakan, Medical Faculty, Department of Radiology, Konya, Turkey
| | - Gulcin Hacibeyoglu
- University of Necmettin Erbakan, Medical Faculty, Department of Anaesthesiology, Konya, Turkey
| | - Atilla Erol
- University of Necmettin Erbakan, Medical Faculty, Department of Anaesthesiology, Konya, Turkey
| | - Sinan Oguzhan Ulukaya
- University of Necmettin Erbakan, Medical Faculty, Department of Anaesthesiology, Konya, Turkey
| | - Esra Goger
- University of Necmettin Erbakan, Medical Faculty, Department of Anaesthesiology, Konya, Turkey
| | - Özcan Erel
- University of Yildirim Beyazit, Medical Faculty, Department of Medical Biochemistry, Ankara, Turkey
| |
Collapse
|
20
|
Inoue T, Kokubo T, Daino K, Yanagihara H, Watanabe F, Tsuruoka C, Amasaki Y, Morioka T, Homma‐Takeda S, Kobayashi T, Hino O, Shimada Y, Kakinuma S. Interstitial chromosomal deletion of the tuberous sclerosis complex 2 locus is a signature for radiation-associated renal tumors in Eker rats. Cancer Sci 2020; 111:840-848. [PMID: 31925975 PMCID: PMC7060461 DOI: 10.1111/cas.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 01/01/2023] Open
Abstract
Ionizing radiation can damage DNA and, therefore, is a risk factor for cancer. Eker rats, which carry a heterozygous germline mutation in the tumor-suppressor gene tuberous sclerosis complex 2 (Tsc2), are susceptible to radiation-induced renal carcinogenesis. However, the molecular mechanisms involved in Tsc2 inactivation are unclear. We subjected Fischer 344 × Eker (Long Evans Tsc2+/- ) F1 hybrid rats to gamma-irradiation (2 Gy) at gestational day 19 (GD19) or postnatal day 5 (PND5) and investigated the patterns of genomic alterations in the Tsc2 allele of renal tumors that developed at 1 year after irradiation (N = 24 tumors for GD19, N = 10 for PND5), in comparison with spontaneously developed tumors (N = 8 tumors). Gamma-irradiation significantly increased the multiplicity of renal tumors. The frequency of LOH at the chromosome 10q12 region, including the Tsc2 locus, was 38%, 29% and 60% in renal carcinomas developed from the nonirradiated, GD19 and PND5 groups, respectively. Array comparative genomic hybridization analysis revealed that the LOH patterns on chromosome 10 in renal carcinomas were classified into chromosomal missegregation, mitotic recombination and chromosomal deletion types. LOH of the interstitial chromosomal deletion type was observed only in radiation-associated carcinomas. Sequence analysis for the wild-type Tsc2 allele in the LOH-negative carcinomas identified deletions (nonirradiated: 26%; GD19: 21%) and base-substitution mutations (GD19: 4%). Reduced expression of Tsc2 was also observed in the majority of the LOH-negative carcinomas. Our results suggest that interstitial chromosomal deletion is a characteristic mutagenic event caused by ionizing radiation, and it may contribute to the assessment of radiation-induced cancer risk.
Collapse
Affiliation(s)
- Tatsuya Inoue
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
- Department of RadiologyJuntendo University Urayasu HospitalChibaJapan
| | - Toshiaki Kokubo
- Laboratory Animal and Genome Sciences SectionNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Kazuhiro Daino
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Hiromi Yanagihara
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Fumiko Watanabe
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Chizuru Tsuruoka
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yoshiko Amasaki
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Takamitsu Morioka
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Shino Homma‐Takeda
- Department of Basic Medical Sciences for Radiation DamagesNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Toshiyuki Kobayashi
- Department of Pathology and OncologyFaculty of MedicineJuntendo UniversityTokyoJapan
| | - Okio Hino
- Department of Pathology and OncologyFaculty of MedicineJuntendo UniversityTokyoJapan
| | - Yoshiya Shimada
- National Institutes for Quantum and Radiological Science and TechnologyChibaJapan
- Present address:
Institute for Environmental SciencesAomoriJapan
| | - Shizuko Kakinuma
- Department of Radiation Effects ResearchNational Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| |
Collapse
|
21
|
Averbeck D, Candéias S, Chandna S, Foray N, Friedl AA, Haghdoost S, Jeggo PA, Lumniczky K, Paris F, Quintens R, Sabatier L. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol 2020; 96:297-323. [PMID: 31852363 DOI: 10.1080/09553002.2019.1704908] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.
Collapse
Affiliation(s)
| | - Serge Candéias
- CEA, CNRS, LCMB, University of Grenoble Alpes, Grenoble, France
| | - Sudhir Chandna
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Nicolas Foray
- Inserm UA8 Unit Radiations: Defense, Health and Environment, Lyon, France
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Siamak Haghdoost
- Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE,), University of Caen Normandy, France.,Centre for Radiation Protection Research, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | | | | | | |
Collapse
|
22
|
Roslee MAAM, Shuaib IL, Napi AFM, Razali MASM, Osman ND. Cumulative organ dose and effective dose in adult population underwent repeated or multiple head CT examination. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Li L, Zhang X, Tian T, Pang L. Mathematical modelling the pathway of genomic instability in lung cancer. Sci Rep 2019; 9:14136. [PMID: 31575883 PMCID: PMC6773729 DOI: 10.1038/s41598-019-50500-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/12/2019] [Indexed: 12/29/2022] Open
Abstract
Genomic instability plays a significant role in lung cancer. Although substantial research has been conducted using both clinical and theoretical studies, it is still a hotly debated issue to whether genomic instability is necessary or whether genomic instability precedes oncogenes activation and tumor suppressor genes inactivation for lung cancer. In response to this issue, we come up with a mathematical model incorporating effects of genomic instability to investigate the genomic instability pathway of human lung cancer. The presented model are applied to match the incidence rate data of lung cancer from the Life Span Study cohort of the atomic bomb survivors in Nagasaki and Hiroshima and the Surveillance Epidemiology and End Results registry in the United States. Model results suggest that genomic instability is necessary in the tumorigenesis of lung cancer, and genomic instability has no significant impact on the net proliferation rate of cells by statistical criteria. By comparing the results of the LSS data to those of the SEER data, we conclude that the genomic instability pathway exhibits a sensitivity to radiation exposure, more intensive in male patients.
Collapse
Affiliation(s)
- Lingling Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China.
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, P.R. China
| | - Tianhai Tian
- School of Mathematical Science, Monash University, Melbourne, Vic 3800, Australia
| | - Liuyong Pang
- School of Mathematics, Huanghuai University, Zhumadian, Henan, P.R. China
| |
Collapse
|
24
|
Schofield PN, Kulka U, Tapio S, Grosche B. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int J Radiat Biol 2019; 95:861-878. [DOI: 10.1080/09553002.2019.1589026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul N. Schofield
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | | |
Collapse
|
25
|
Park J, Kwon T, Lee SS, Jin YW, Seong KM. Mapping the research trends on the biological effects of radiation less than 100 mSv: a bibliometric analysis for 30 years publication. Int J Radiat Biol 2019; 95:527-536. [DOI: 10.1080/09553002.2019.1552373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jina Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - TaeWoo Kwon
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
26
|
Aanenson JW, Till JE, Grogan HA. Understanding and communicating radiation dose and risk from cone beam computed tomography in dentistry. J Prosthet Dent 2018; 120:353-360. [DOI: 10.1016/j.prosdent.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/26/2022]
|
27
|
Murakami M. Importance of risk comparison for individual and societal decision-making after the Fukushima disaster. JOURNAL OF RADIATION RESEARCH 2018; 59:ii23-ii30. [PMID: 29420739 PMCID: PMC5941137 DOI: 10.1093/jrr/rrx094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/07/2017] [Indexed: 05/14/2023]
Abstract
Risk comparison is essential for effective societal and individual decision-making. After the Fukushima disaster, studies compared radiation and other disaster-related risks to determine the effective prioritizing of measures for response. Evaluating the value of risk comparison information can enable effective risk communication. In this review, the value of risk comparison after the Fukushima disaster for societal and individual decision-making is discussed while clarifying the concept of radiation risk assessment at low doses. The objectives of radiation risk assessment are explained within a regulatory science framework, including the historical adoption of the linear non-threshold theory. An example of risk comparison (i.e. radiation risk versus evacuation-related risk in nursing homes) is used to discuss the prioritization of pre-disaster measures. The effective communication of risk information by authorities is discussed with respect to group-based and face-to-face approaches. Furthermore, future perspectives regarding radiation risk comparisons are discussed.
Collapse
Affiliation(s)
- Michio Murakami
- Department of Health Risk Communication, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, 960-1295, Japan
| |
Collapse
|
28
|
Gomolka M, Oestreicher U, Rößler U, Samaga D, Endesfelder D, Lang P, Neumaier K, Belka C, Niemeyer M, Kiechle M, Hasbargen U, Hübener C, Kirlum HJ, Kulka U, Rosenberger A, Walsh L, Baatout S, Kesminiene A, Lindholm C. Age-dependent differences in DNA damage after in vitro CT exposure. Int J Radiat Biol 2018; 94:272-281. [PMID: 29319401 DOI: 10.1080/09553002.2018.1419302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Age dependent radiation sensitivity for DNA damage after in vitro blood exposure by computer tomography (CT) was investigated. MATERIALS AND METHODS Radiation biomarkers (dicentrics and gammaH2AX) in blood samples of newborns, children under five years and adults after sham exposure (0 mGy), low-dose (41 mGy) and high-dose (978 mGy) in vitro CT exposure were analyzed. RESULTS Significantly higher levels of dicentric induction were found for the single and combined newborns/children group compared to adults, by a factor of 1.48 (95% CI 1.30-1.68), after exposure to 978 mGy. Although a significant dose response for damage induction and dose-dependent repair was found, the gammaH2AX assay did not show an age-dependent increase in DNA damage in newborns/children compared to adults. This was the case for the gammaH2AX levels after repair time intervals of 30 minutes and 24 hours, after correcting for the underlying background damage. For the low dose of 41 mGy, the power of the dicentric assay was also not sufficient to detect an age-dependent effect in the sample size investigated. CONCLUSION A 1.5-fold increased level of dicentric aberrations is detected in newborns and children under five years after 1 Gy radiation exposure.
Collapse
Affiliation(s)
- Maria Gomolka
- a Bundesamt für Strahlenschutz, BfS , Ingolstädter Landstrasse 1 , Neuherberg , Germany
| | - Ursula Oestreicher
- a Bundesamt für Strahlenschutz, BfS , Ingolstädter Landstrasse 1 , Neuherberg , Germany
| | - Ute Rößler
- a Bundesamt für Strahlenschutz, BfS , Ingolstädter Landstrasse 1 , Neuherberg , Germany
| | - Daniel Samaga
- a Bundesamt für Strahlenschutz, BfS , Ingolstädter Landstrasse 1 , Neuherberg , Germany
| | - David Endesfelder
- a Bundesamt für Strahlenschutz, BfS , Ingolstädter Landstrasse 1 , Neuherberg , Germany
| | - Peter Lang
- b LMU, Klinik und Poliklinik für Strahlentherapie und Radioonkologie , München , Germany
| | - Klement Neumaier
- b LMU, Klinik und Poliklinik für Strahlentherapie und Radioonkologie , München , Germany
| | - Claus Belka
- b LMU, Klinik und Poliklinik für Strahlentherapie und Radioonkologie , München , Germany
| | - Markus Niemeyer
- c TUM, Klinikum Rechts der Isar, Frauenklinik , München , Germany
| | - Marion Kiechle
- c TUM, Klinikum Rechts der Isar, Frauenklinik , München , Germany
| | - Uwe Hasbargen
- d LMU, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Großhadern , München , Germany
| | - Christoph Hübener
- d LMU, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Großhadern , München , Germany
| | | | - Ulrike Kulka
- a Bundesamt für Strahlenschutz, BfS , Ingolstädter Landstrasse 1 , Neuherberg , Germany
| | - Albert Rosenberger
- f Universitätsmedizin Göttingen, Institut für Genetische Epidemiologie , Humboldtallee 32 , Göttingen , Germany
| | - Linda Walsh
- a Bundesamt für Strahlenschutz, BfS , Ingolstädter Landstrasse 1 , Neuherberg , Germany
- g Medical Physics Group, University of Zurich , Switzerland
| | - Sarah Baatout
- h Belgian Nuclear Research Center, SCK-CEN , Mol , Belgium
| | | | - Carita Lindholm
- j Radiation and Nuclear Safety Authority , STUK , Helsinki , Finland
| |
Collapse
|
29
|
Abstract
Environment factors such as radiation play an important role in the incidence of lung cancer. In spite of substantial efforts in experimental study and mathematical modeling, it is still a significant challenge to estimate lung cancer risk from radiation. To address this issue, we propose a stochastic model to investigate the impact of radiation on the development of lung cancer. The proposed three-stage model with clonal expansion is used to match the data of the male and female patients in the Osaka Cancer Registry (OCR) and Life Span Study (LSS) cohort of atomic bomb survivors in Hiroshima and Nagasaki. Our results indicate that the major effect of radiation on the development of lung cancer is to induce gene mutations for both male and female patients. In particular, for male patients, radiation affects the mutation in normal cells and the transformation from premalignant cells to malignant ones. However, radiation for female patients increases the mutation rates of the first two mutations in the stochastic model. The established relationship between parameters and radiation will provide insightful prediction for the lung cancer incidence in the radiation exposure.
Collapse
Affiliation(s)
- Lingling Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China
| | - Tianhai Tian
- School of Mathematical Science, Monash University, Melbourne Vic 3800, Australia
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
30
|
Singh GK, Yadav V, Singh P, Bhowmik KT. Radiation-Induced Malignancies Making Radiotherapy a "Two-Edged Sword": A Review of Literature. World J Oncol 2017; 8:1-6. [PMID: 28983377 PMCID: PMC5624654 DOI: 10.14740/wjon996w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
Radiotherapy is one of the modalities of treatment of malignancies. Radiation-induced malignancies (RIMs) are late complications of radiotherapy, seen among the survivors of both adult and pediatric cancers. Mutagenesis of normal tissues is the basis for RIMs. The aim of this review of literature was to discuss epidemiology, factors affecting and different settings in which RIM occur.
Collapse
Affiliation(s)
- Gunjesh Kumar Singh
- Department of Radiotherapy, VMMC & Safdarjung Hospital, New Delhi 110029, India
| | - Vikas Yadav
- Department of Radiotherapy, VMMC & Safdarjung Hospital, New Delhi 110029, India
| | - Pragya Singh
- Department of Pathology, VMMC & Safdarjung Hospital, New Delhi 110029, India
| | - K T Bhowmik
- Department of Radiotherapy, VMMC & Safdarjung Hospital, New Delhi 110029, India
| |
Collapse
|
31
|
Seong KM, Kwon T, Seo S, Lee D, Park S, Jin YW, Lee SS. Perception of low dose radiation risks among radiation researchers in Korea. PLoS One 2017; 12:e0171777. [PMID: 28166286 PMCID: PMC5293274 DOI: 10.1371/journal.pone.0171777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 01/13/2023] Open
Abstract
Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public's risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure.
Collapse
Affiliation(s)
- Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - TaeWoo Kwon
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Dalnim Lee
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Departments of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Departments of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
32
|
Siegel JA, Pennington CW, Sacks B. Subjecting Radiologic Imaging to the Linear No-Threshold Hypothesis: A Non Sequitur of Non-Trivial Proportion. J Nucl Med 2016; 58:1-6. [PMID: 27493264 DOI: 10.2967/jnumed.116.180182] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Radiologic imaging is claimed to carry an iatrogenic risk of cancer, based on an uninformed commitment to the 70-y-old linear no-threshold hypothesis (LNTH). Credible evidence of imaging-related low-dose (<100 mGy) carcinogenic risk is nonexistent; it is a hypothetical risk derived from the demonstrably false LNTH. On the contrary, low-dose radiation does not cause, but more likely helps prevent, cancer. The LNTH and its offspring, ALARA (as low as reasonably achievable), are fatally flawed, focusing only on molecular damage while ignoring protective, organismal biologic responses. Although some grant the absence of low-dose harm, they nevertheless advocate the "prudence" of dose optimization (i.e., using ALARA doses); but this is a radiophobia-centered, not scientific, approach. Medical imaging studies achieve a diagnostic purpose and should be governed by the highest science-based principles and policies. The LNTH is an invalidated hypothesis, and its use, in the form of ALARA dosing, is responsible for misguided concerns promoting radiophobia, leading to actual risks far greater than the hypothetical carcinogenic risk purportedly avoided. Further, the myriad benefits of imaging are ignored. The present work calls for ending the radiophobia caused by those asserting the need for dose optimization in imaging: the low-dose radiation of medical imaging has no documented pathway to harm, whereas the LNTH and ALARA most assuredly do.
Collapse
Affiliation(s)
| | - Charles W Pennington
- NAC International (retired), Norcross, Georgia, and executive nuclear energy consultant, Alpharetta, Georgia; and
| | - Bill Sacks
- U.S. Food and Drug Administration (retired), Green Valley, Arizona
| |
Collapse
|