1
|
Yao J, Liu Y, Lin H, Shao C, Jin X, Peng T, Liu Y. Caffeic acid activates Nrf2 enzymes, providing protection against oxidative damage induced by ionizing radiation. Brain Res Bull 2025; 224:111325. [PMID: 40174789 DOI: 10.1016/j.brainresbull.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Caffeic acid (CA) is a prevalent polyphenolic compound commonly found in various plant-derived foods. Due to its diverse pharmacological properties, including antioxidant activity, cardiovascular protection, and immune regulation, CA has garnered significant attention. Ionizing radiation (IR) is extensively utilized across industrial sectors, agriculture, defense applications, scientific research, and clinical medicine; however, the detrimental effects of radiation on human health cannot be ignored. IR can directly damage the DNA, proteins, and lipids within macromolecules or ionize water molecules to generate substantial quantities of free radicals that indirectly harm cells, especially those in the brain which are highly susceptible to radiation exposure. Consequently, effective strategies for preventing and treating IR-induced neurological damage represent an urgent medical challenge that necessitates resolution. Our study aims to investigate the protective effects of CA against IR-induced neuronal cell damage along with elucidating its potential mechanisms of action. The results indicate that CA can covalently modify active cysteine residues on Keap1 protein altering its conformation; this modification disrupts the interaction between Keap1 and Nrf2 while facilitating Nrf2's translocation into the nucleus where it activates downstream expression of cellular protective factors such as heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), Thioredoxin Reductase-1 (TrxR1) and other cellular protective factors to play a role in countering radiation-induced neurological damage. In conclusion, CA emerges as an effective radioprotective agent capable of exerting antiradiation effects. Our findings provide valuable insights for developing novel therapeutic agents aimed at preventing and treating IR-induced neurological impairment.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
2
|
Wang S, Xu D, Xiao L, Liu B, Yuan X. Radiation-induced lung injury: from mechanism to prognosis and drug therapy. Radiat Oncol 2025; 20:39. [PMID: 40082925 PMCID: PMC11907960 DOI: 10.1186/s13014-025-02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Radiation induced lung injury, known as the main complication of thoracic radiation, remains to be a major resistance to tumor treatment. Based on the recent studies on radiation-induced lung injury, this review collated the possible mechanisms at the level of target cells and key pathways, corresponding prognostic models including predictors, patient size, number of centers, radiotherapy technology, construction methods and accuracy, and pharmacotherapy including drugs, targets, therapeutic effects, impact on anti-tumor treatment and research types. The research priorities and limitations are summarized to provide a reference for the research and management of radiation-induced lung injury.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210000, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Zhang Y, Huang J, Zhang Y, Jiang F, Li S, He S, Sun J, Chen D, Tong Y, Pang Q, Wu Y. The Mitochondrial-Derived Peptide MOTS-c Alleviates Radiation Pneumonitis via an Nrf2-Dependent Mechanism. Antioxidants (Basel) 2024; 13:613. [PMID: 38790718 PMCID: PMC11117534 DOI: 10.3390/antiox13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Radiation pneumonitis (RP) is a prevalent and fatal complication of thoracic radiotherapy due to the lack of effective treatment options. RP primarily arises from mitochondrial injury in lung epithelial cells. The mitochondrial-derived peptide MOTS-c has demonstrated protective effects against various diseases by mitigating mitochondrial injury. C57BL/6 mice were exposed to 20 Gy of lung irradiation (IR) and received daily intraperitoneal injections of MOTS-c for 2 weeks. MOTS-c significantly ameliorated lung tissue damage, inflammation, and oxidative stress caused by radiation. Meanwhile, MOTS-c reversed the apoptosis and mitochondrial damage of alveolar epithelial cells in RP mice. Furthermore, MOTS-c significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells and primary mouse lung epithelial cells. Mechanistically, MOTS-c increased the nuclear factor erythroid 2-related factor (Nrf2) level and promoted its nuclear translocation. Notably, Nrf2 deficiency abolished the protective function of MOTS-c in mice with RP. In conclusion, MOTS-c alleviates RP by protecting mitochondrial function through an Nrf2-dependent mechanism, indicating that MOTS-c may be a novel potential protective agent against RP.
Collapse
Affiliation(s)
- Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Jianfeng Huang
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Fengjuan Jiang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Jiaojiao Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Ying Tong
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
4
|
Rudolf AM, Hood WR. Mitochondrial stress in the spaceflight environment. Mitochondrion 2024; 76:101855. [PMID: 38403094 DOI: 10.1016/j.mito.2024.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Space is a challenging environment that deregulates individual homeostasis. The main external hazards associated with spaceflight include ionizing space radiation, microgravity, isolation and confinement, distance from Earth, and hostile environment. Characterizing the biological responses to spaceflight environment is essential to validate the health risks, and to develop effective protection strategies. Mitochondria energetics is a key mechanism underpinning many physiological, ecological and evolutionary processes. Moreover, mitochondrial stress can be considered one of the fundamental features of space travel. So, we attempt to synthesize key information regarding the extensive effects of spaceflight on mitochondria. In summary, mitochondria are affected by all of the five main hazards of spaceflight at multiple levels, including their morphology, respiratory function, protein, and genetics, in various tissues and organ systems. We emphasize that investigating mitochondrial biology in spaceflight conditions should become the central focus of research on the impacts of spaceflight on human health, as this approach will help resolve numerous challenges of space health and combat several health disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Agata M Rudolf
- Department of Biological Sciences, Auburn University, Auburn, AL, USA; Space Technology Centre, AGH University of Science and Technology, Krakow, Poland.
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
5
|
Sleiman A, Lalanne K, Vianna F, Perrot Y, Richaud M, SenGupta T, Cardot-Martin M, Pedini P, Picard C, Nilsen H, Galas S, Adam-Guillermin C. Targeted Central Nervous System Irradiation with Proton Microbeam Induces Mitochondrial Changes in Caenorhabditis elegans. BIOLOGY 2023; 12:839. [PMID: 37372124 DOI: 10.3390/biology12060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. The molecular pathways involved in generating these effects are not completely understood. In this context, we analyzed the impact of proton exposure in the central nervous system area of Caenorhabditis elegans with a focus on mitochondrial function, which is potentially implicated in the occurrence of radiation-induced damage. To achieve this objective, the nematode C. elegans were micro-irradiated with 220 Gy of protons (4 MeV) in the nerve ring (head region) using the proton microbeam, MIRCOM. Our results show that protons induce mitochondrial dysfunction, characterized by an immediate dose-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with oxidative stress 24 h after irradiation, which is itself characterized by the induction of the antioxidant proteins in the targeted region, observed using SOD-1::GFP and SOD-3::GFP strains. Moreover, we demonstrated a two-fold increase in the mtDNA copy number in the targeted region 24 h after irradiation. In addition, using the GFP::LGG-1 strain, an induction of autophagy in the irradiated region was observed 6 h following the irradiation, which is associated with the up-regulation of the gene expression of pink-1 (PTEN-induced kinase) and pdr-1 (C. elegans parkin homolog). Furthermore, our data showed that micro-irradiation of the nerve ring region did not impact the whole-body oxygen consumption 24 h following the irradiation. These results indicate a global mitochondrial dysfunction in the irradiated region following proton exposure. This provides a better understanding of the molecular pathways involved in radiation-induced side effects and may help in finding new therapies.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Kévin Lalanne
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses, France
| | - Myriam Richaud
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Tanima SenGupta
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Mikaël Cardot-Martin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Pascal Pedini
- Aix Marseille University, CNRS, EFS, ADES, 13288 Marseille, France
| | | | - Hilde Nilsen
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| |
Collapse
|
6
|
Su J, Bian C, Zheng Z, Wang H, Meng L, Xin Y, Jiang X. Cooperation effects of radiation and ferroptosis on tumor suppression and radiation injury. Front Cell Dev Biol 2022; 10:951116. [PMID: 36176274 PMCID: PMC9513389 DOI: 10.3389/fcell.2022.951116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroptosis is a kind of oxidative stress-dependent cell death characterized by iron accumulation and lipid peroxidation. It can work in conjunction with radiation to increase reactive oxygen species (ROS) generation and disrupt the antioxidant system, suppressing tumor progression. Radiation can induce ferroptosis by creating ROS, depleting glutathione, activating genes linked to DNA damage and increasing the expression of acyl-CoA synthetase long-chain family member 4 (ACSL4) in tumor cells. Furthermore, ferroptosis can enhance radiosensitivity by causing an iron overload, destruction of the antioxidant system, and lipid peroxidation. Radiation can also cause ferroptosis in normal cells, resulting in radiation injury. The role of ferroptosis in radiation-induced lung, intestinal, skin, and hematological injuries have been studied. In this review, we summarize the potential mechanisms linking ferroptosis, oxidative stress and radiation; analyze the function of ferroptosis in tumor suppression and radiation injury; and discuss the potential of ferroptosis regulation to improve radiotherapy efficacy and reduce adverse effects.
Collapse
Affiliation(s)
- Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
7
|
Liu X, Shao C, Fu J. Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines 2021; 9:1181. [PMID: 34572367 PMCID: PMC8470495 DOI: 10.3390/biomedicines9091181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
8
|
Sun L, Inaba Y, Sogo Y, Ito A, Bekal M, Chida K, Moritake T. Total body irradiation causes a chronic decrease in antioxidant levels. Sci Rep 2021; 11:6716. [PMID: 33762608 PMCID: PMC7990969 DOI: 10.1038/s41598-021-86187-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 01/06/2023] Open
Abstract
Ionizing radiation exposure may not only cause acute radiation syndrome, but also an increased risk of late effects. It has been hypothesized that induction of chronic oxidative stress mediates the late effects of ionizing radiation. However, only a few reports have analyzed changes in long-term antioxidant capacity after irradiation in vivo. Our previous study demonstrated changes in whole-blood antioxidant capacity and red blood cell (RBC) glutathione levels within 50 days after total body irradiation (TBI). In this study, seven-week-old, male, C57BL/6J mice exposed to total body irradiation by X-ray and changes in whole-blood antioxidant capacity and RBC glutathione levels at ≥ 100 days after TBI were investigated. Whole-blood antioxidant capacity was chronically decreased in the 5-Gy group. The RBC reduced glutathione (GSH) level and the GSH/oxidative glutathione (GSSG) ratio were chronically decreased after ≥ 1 Gy of TBI. Interestingly, the complete blood counts (CBC) changed less with 1-Gy exposure, suggesting that GSH and the GSH/GSSG ratio were more sensitive radiation exposure markers than whole-blood antioxidant capacity and CBC counts. It has been reported that GSH depletion is one of the triggers leading to cataracts, hypertension, and atherosclerosis, and these diseases are also known as radiation-induced late effects. The present findings further suggest that chronic antioxidant reduction may contribute to the pathogenesis of late radiation effects.
Collapse
Affiliation(s)
- Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-0845, Japan
| | - Yu Sogo
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Mahesh Bekal
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-0845, Japan
| | - Takashi Moritake
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
9
|
Sharma A, Tewari D, Nabavi SF, Nabavi SM, Habtemariam S. Reactive oxygen species modulators in pulmonary medicine. Curr Opin Pharmacol 2021; 57:157-164. [PMID: 33743400 DOI: 10.1016/j.coph.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Adapted to effectively capture oxygen from inhaled air and deliver it to all other parts of the body, the lungs constitute the organ with the largest surface area. This makes the lungs more susceptible to airborne pathogens and pollutants that mediate pathologies through generation of reactive oxygen species (ROS). One pathological consequence of excessive levels of ROS production is pulmonary diseases that account for a large number of mortality and morbidity in the world. Of the various mechanisms involved in pulmonary disease pathogenesis, mitochondrial dysfunction takes prominent importance. Herein, we briefly describe the significance of oxidative stress caused by ROS in pulmonary diseases and some possible therapeutic strategies.
Collapse
Affiliation(s)
- Ankush Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom.
| |
Collapse
|
10
|
Xie J, Zhao M, Wang C, Yong Y, Gu Z, Zhao Y. Rational Design of Nanomaterials for Various Radiation-Induced Diseases Prevention and Treatment. Adv Healthc Mater 2021; 10:e2001615. [PMID: 33506624 DOI: 10.1002/adhm.202001615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Radiation treatments often unfavorably damage neighboring healthy organs and cause a series of radiation sequelae, such as radiation-induced hematopoietic system diseases, radiation-induced gastrointestinal diseases, radiation-induced lung diseases, and radiation-induced skin diseases. Recently, emerging nanomaterials have exhibited good superiority for these radiation-induced disease treatments. Given this background, the rational design principle of nanomaterials, which helps to optimize the therapeutic efficiency, has been an increasing need. Consequently, it is of great significance to perform a systematic summarization of the advances in this field, which can trigger the development of new high-performance nanoradioprotectors with drug efficiency maximization. Herein, this review highlights the advances and perspectives in the rational design of nanomaterials for preventing and treating various common radiation-induced diseases. Furthermore, the sources, clinical symptoms, and pathogenesis/injury mechanisms of these radiation-induced diseases will also be introduced. Furthermore, current challenges and directions for future efforts in this field are also discussed.
Collapse
Affiliation(s)
- Jiani Xie
- School of Food and Biological Engineering Chengdu University Chengdu 610106 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering Southwest Minzu University Chengdu 610041 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
| | - Yuliang Zhao
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Liao Y, Wang D, Gu Z. Research Progress of Nanomaterials for Radioprotection. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
|
13
|
McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020; 12:E381. [PMID: 32045996 PMCID: PMC7072278 DOI: 10.3390/cancers12020381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. Methods: We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit (LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able to identify distinct biological signatures associating specific ions with specific biological responses due to radiation exposure in space. For example, we discovered changes in mitochondrial function, ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a summary of how the GeneLab's rich database of omics experiments with animal models can be used to generate novel hypotheses to better understand human health risks from GCR exposures.
Collapse
Affiliation(s)
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Jack Miller
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Willian A. da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Komal S. Rathi
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Deanne Taylor
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA;
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| |
Collapse
|