1
|
Zhang G, Wei W, Li S, Yang J. Transcription Factor yin-Yang 1 augments nucleoporin 93 oncogene activity and modulates bladder Cancer malignancy. Toxicol In Vitro 2024; 99:105875. [PMID: 38857852 DOI: 10.1016/j.tiv.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE This study aims to investigate the functional interplay between transcription factor YY1 and nucleoporin 93 (NUP93) in regulating the malignancy of bladder cancer cells. METHODS NUP93 expressions in bladder cancer tissues and normal counterparts were analyzed using a public dataset and clinical samples. NUP93 and Yin Yang 1 (YY1) mRNA expression and protein levels in T24 and RT4 cells were determined by Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The effect of NUP93 knockdown on the proliferation, migration, and invasion capabilities of cells was evaluated. Concurrently, transcriptional regulation of NUP93 by YY1 was confirmed using a dual luciferase assay. The effect of NUP93 knockdown on tumorigenesis was evaluate in a subcutaneous xenograft mouse model. RESULTS Elevated levels of NUP93 in bladder cancer tissues and cell lines were observed. Silencing NUP93 significantly suppressed glycolysis, impeded the growth, migration, invasion and tumor formation of bladder cancer cells. The transcription factor YY1 acted as a positive regulator to upregulate NUP93 expression. YY1 overexpression partially rescued the effects of NUP93 silencing on bladder cancer cells. CONCLUSION Our results uncovered transcription factor YY1 as a positive regulator of NUP93 expression, and NUP93 serves as an oncogenic factor to sustain the malignancy of bladder cancer cells. These findings suggest that targeting the YY1-NUP93 axis could offer novel therapeutic strategies for bladder cancer treatment.
Collapse
Affiliation(s)
- Gang Zhang
- Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Wei Wei
- Department of Urology section, Dalian Friendship Hospital, Dalian, Liaoning 116001, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning,116044, China
| | - Jinyi Yang
- Department of Urology section, Dalian Friendship Hospital, Dalian, Liaoning 116001, China.
| |
Collapse
|
2
|
Martinez-Garcia M, Naharro PR, Skinner MW, Baran KA, Lascarez-Lagunas LI, Nadarajan S, Shin N, Silva-García CG, Saito TT, Beese-Sims S, Diaz-Pacheco BN, Berson E, Castañer AB, Pacheco S, Martinez-Perez E, Jordan PW, Colaiácovo MP. GRAS-1 is a novel regulator of early meiotic chromosome dynamics in C. elegans. PLoS Genet 2023; 19:e1010666. [PMID: 36809245 PMCID: PMC9983901 DOI: 10.1371/journal.pgen.1010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.
Collapse
Affiliation(s)
- Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pedro Robles Naharro
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marnie W Skinner
- Biochemistry and Molecular Biology Department, John Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Kerstin A Baran
- Biochemistry and Molecular Biology Department, John Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Laura I Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Takamune T Saito
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara Beese-Sims
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ana B Castañer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarai Pacheco
- MRC London Institute of Medical Sciences, London, United Kingdom
| | | | - Philip W Jordan
- Biochemistry and Molecular Biology Department, John Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Piët ACA, Post M, Dekkers D, Demmers JAA, Fornerod M. Proximity Ligation Mapping of Microcephaly Associated SMPD4 Shows Association with Components of the Nuclear Pore Membrane. Cells 2022; 11:cells11040674. [PMID: 35203325 PMCID: PMC8870324 DOI: 10.3390/cells11040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
SMPD4 is a neutral sphingomyelinase implicated in a specific type of congenital microcephaly. Although not intensively studied, SMPD4 deficiency has also been found to cause cell division defects. This suggests a role for SMPD4 in cell-cycle and differentiation. In order to explore this role, we used proximity ligation to identify the partners of SMPD4 in vivo in HEK293T cells. We found that these partners localize near the endoplasmic reticulum (ER) and the nuclear membrane. Using mass spectrometry, we could identify these partners and discovered that SMPD4 is closely associated with several nucleoporins, including NUP35, a nucleoporin directly involved in pore membrane curvature and pore insertion. This suggests that SMPD4 may play a role in this process.
Collapse
Affiliation(s)
- Alexandra C. A. Piët
- Department of Cell Biology, ErasmusMC, Dr. Molewaterplein 40, 3015 GE Rotterdam, The Netherlands; (A.C.A.P.); (M.P.)
| | - Marco Post
- Department of Cell Biology, ErasmusMC, Dr. Molewaterplein 40, 3015 GE Rotterdam, The Netherlands; (A.C.A.P.); (M.P.)
| | - Dick Dekkers
- Proteomics Center, ErasmusMC, Dr. Molewaterplein 40, 3015 GE Rotterdam, The Netherlands; (D.D.); (J.A.A.D.)
| | - Jeroen A. A. Demmers
- Proteomics Center, ErasmusMC, Dr. Molewaterplein 40, 3015 GE Rotterdam, The Netherlands; (D.D.); (J.A.A.D.)
| | - Maarten Fornerod
- Department of Cell Biology, ErasmusMC, Dr. Molewaterplein 40, 3015 GE Rotterdam, The Netherlands; (A.C.A.P.); (M.P.)
- Correspondence:
| |
Collapse
|
4
|
Nuclear Lamins: Key Proteins for Embryonic Development. BIOLOGY 2022; 11:biology11020198. [PMID: 35205065 PMCID: PMC8869099 DOI: 10.3390/biology11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary The biology of a multicellular organism is extremely complex, leaving behind a realm of compound yet systematic mechanisms still to be unraveled. The nucleus is a vital cellular organelle adapted to storing and regulating the hereditary genetic information. Dysregulation of the nucleus can have profound effects on the physiology and viability of cells. This becomes extremely significant in the context of development, where the whole organism arises from a single cell, the zygote. Therefore, even a mild aberration at this stage can have profound effects on the whole organism. However, studying the function of individual nuclear components at this point is exceptionally complicated because this phase is inherently under the control of maternal factors stored in the female germ cell, the egg. Here, we focus on the lamins, as essential nuclear components, and summarize the current knowledge of their role in development. Although scientists encounter challenges working with these miniscule yet key proteins, the demand to know more is increasing gradually due to the mutations caused in lamins leading to irreversible phenotypic conditions in humans. Abstract Lamins are essential components of the nuclear envelope and have been studied for decades due to their involvement in several devastating human diseases, the laminopathies. Despite intensive research, the molecular basis behind the disease state remains mostly unclear with a number of conflicting results regarding the different cellular functions of nuclear lamins being published. The field of developmental biology is no exception. Across model organisms, the types of lamins present in early mammalian development have been contradictory over the years. Due to the long half-life of the lamin proteins, which is a maternal factor that gets carried over to the zygote after fertilization, investigators are posed with challenges to dive into the functional aspects and significance of lamins in development. Due to these technical limitations, the role of lamins in early mammalian embryos is virtually unexplored. This review aims in converging results that were obtained so far in addition to the complex functions that ceases if lamins are mutated.
Collapse
|
5
|
Nucleoporin 93 mediates β-catenin nuclear import to promote hepatocellular carcinoma progression and metastasis. Cancer Lett 2021; 526:236-247. [PMID: 34767927 DOI: 10.1016/j.canlet.2021.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Nuclear pore complex (NPC) embedded in the nuclear envelope, is the only channel for macromolecule nucleocytoplasmic transportation and has important biological functions. However, the deregulation of specific nucleoporins (Nups) and NPC-Nup-based mechanisms and their function in tumour progression remain poorly understood. Here, we aimed to identify the Nups that contribute to HCC progression and metastasis in 729 primary hepatocellular carcinoma (HCC) cases using molecular, cytological, and biochemical techniques. Our results revealed elevated Nup93 expression in HCC tissues, especially in cases with metastasis, and was linked to worse prognosis. Furthermore, Nup93 knockdown suppressed HCC cell metastasis and proliferation, while Nup93 overexpression promoted these activities. We observed that Nup93 promotes HCC metastasis and proliferation by regulating β-catenin translocation. In addition, we found that Nup93 interacted with β-catenin directly, independent of importin. Furthermore, LEF1 and β-catenin facilitated the Nup93-mediated metastasis and proliferation in HCC via a positive feedback loop. Thus, our findings provide novel insights into the mechanisms underlying the Nup93-induced promotion of HCC metastasis and suggest potential therapeutic targets in the LEF1-Nup93-β-catenin pathway for HCC therapeutics.
Collapse
|
6
|
Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus 2021; 11:347-363. [PMID: 33295233 PMCID: PMC7746251 DOI: 10.1080/19491034.2020.1838697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we explore recent advances in knowledge of the structure and dynamics of the plant nuclear envelope. As a paradigm, we focused our attention on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, a structurally conserved bridging complex comprising SUN domain proteins in the inner nuclear membrane and KASH domain proteins in the outer nuclear membrane. Studies have revealed that this bridging complex has multiple functions with structural roles in positioning the nucleus within the cell, conveying signals across the membrane and organizing chromatin in the 3D nuclear space with impact on gene transcription. We also provide an up-to-date survey in nuclear dynamics research achieved so far in the model plant Arabidopsis thaliana that highlights its potential impact on several key plant functions such as growth, seed maturation and germination, reproduction and response to biotic and abiotic stress. Finally, we bring evidences that most of the constituents of the LINC Complex and associated components are, with some specificities, conserved in monocot and dicot crop species and are displaying very similar functions to those described for Arabidopsis. This leads us to suggest that a better knowledge of this system and a better account of its potential applications will in the future enhance the resilience and productivity of crop plants.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University , Oxford, UK
| | - Sarah Mermet
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| |
Collapse
|
7
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
8
|
Parry G, Pradillo M, Probst AV, Tatout C. Untangling chromatin interactions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5115-5118. [PMID: 32803270 DOI: 10.1093/jxb/eraa334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Christophe Tatout
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| |
Collapse
|