1
|
Iqbal MS, Clode PL, Malik AI, Erskine W, Kotula L. Salt tolerance in mungbean is associated with controlling Na and Cl transport across roots, regulating Na and Cl accumulation in chloroplasts and maintaining high K in root and leaf mesophyll cells. PLANT, CELL & ENVIRONMENT 2024; 47:3638-3653. [PMID: 38757412 DOI: 10.1111/pce.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Salinity tolerance requires coordinated responses encompassing salt exclusion in roots and tissue/cellular compartmentation of salt in leaves. We investigated the possible control points for salt ions transport in roots and tissue tolerance to Na+ and Cl- in leaves of two contrasting mungbean genotypes, salt-tolerant Jade AU and salt-sensitive BARI Mung-6, grown in nonsaline and saline (75 mM NaCl) soil. Cryo-SEM X-ray microanalysis was used to determine concentrations of Na, Cl, K, Ca, Mg, P, and S in various cell types in roots related to the development of apoplastic barriers, and in leaves related to photosynthetic performance. Jade AU exhibited superior salt exclusion by accumulating higher [Na] in the inner cortex, endodermis, and pericycle with reduced [Na] in xylem vessels and accumulating [Cl] in cortical cell vacuoles compared to BARI Mung-6. Jade AU maintained higher [K] in root cells than BARI Mung-6. In leaves, Jade AU maintained lower [Na] and [Cl] in chloroplasts and preferentially accumulated [K] in mesophyll cells than BARI Mung-6, resulting in higher photosynthetic efficiency. Salinity tolerance in Jade AU was associated with shoot Na and Cl exclusion, effective regulation of Na and Cl accumulation in chloroplasts, and maintenance of high K in root and leaf mesophyll cells.
Collapse
Affiliation(s)
- Md Shahin Iqbal
- Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Pulses Research Center, Bangladesh Agricultural Research Institute, Ishurdi, Bangladesh
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Al Imran Malik
- Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- International Center for Tropical Agriculture (CIAT-Asia), Lao People's Democratic Republic Office, Vientiane, Laos
| | - William Erskine
- Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Lukasz Kotula
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Bontpart T, Weiss A, Vile D, Gérard F, Lacombe B, Reichheld JP, Mari S. Growing on calcareous soils and facing climate change. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00069-4. [PMID: 38570279 DOI: 10.1016/j.tplants.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Soil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change.
Collapse
Affiliation(s)
- Thibaut Bontpart
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
| | - Denis Vile
- LEPSE, INRAE, Institut Agro, Université de Montpellier, 2 Place P. Viala, F-34060, Montpellier cédex 2, France
| | - Frédéric Gérard
- UMR Eco&Sols, INRAE, IRD, CIRAD, Institut Agro, Université de Montpellier, Montpellier, France
| | - Benoît Lacombe
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Stéphane Mari
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
3
|
Vázquez KRJ, López-Hernández J, García-Cárdenas E, Pelagio-Flores R, López-Bucio JS, Téxon AC, Ibarra-Laclette E, López-Bucio J. The plant growth promoting rhizobacterium Achromobacter sp. 5B1, rescues Arabidopsis seedlings from alkaline stress by enhancing root organogenesis and hormonal responses. Microbiol Res 2024; 281:127594. [PMID: 38211416 DOI: 10.1016/j.micres.2023.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Soil alkalinity is a critical environmental factor for plant growth and distribution in ecosystems. An alkaline condition (pH > 7) is imposed by the rising concentration of hydroxides and cations, and prevails in semiarid and arid environments, which represent more than 25% of the total arable land of the world. Despite the great pressure exerted by alkalinity for root viability and plant survival, scarce information is available to understand how root microbes contribute to alkaline pH adaptation. Here, we assessed the effects of alkalinity on shoot and root biomass production, chlorophyll content, root growth and branching, lateral root primordia formation, and the expression of CYCB1, TOR kinase, and auxin and cytokinin-inducible trangenes in shoots and roots of Arabidopsis seedlings grown in Petri plates with agar-nutrient medium at pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. The results showed an inverse correlation between the rise of pH and most growth, hormonal and genetic traits analyzed. Noteworthy, root inoculation with Achromobacter sp. 5B1, a beneficial rhizospheric bacterium, with plant growth promoting and salt tolerance features, increased biomass production, restored root growth and branching and enhanced auxin responses in WT seedlings and auxin-related mutants aux1-7 and eir1, indicating that stress adaptation operates independently of canonical auxin transporter proteins. Sequencing of the Achromobacter sp. 5B1 genome unveiled 5244 protein-coding genes, including genes possibly involved in auxin biosynthesis, quorum-sensing regulation and stress adaptation, which may account for its plant growth promotion attributes. These data highlight the critical role of rhizobacteria to increase plant resilience under high soil pH conditions potentially through genes for adaptation to an extreme environment and bacteria-plant communication.
Collapse
Affiliation(s)
- Kirán Rubí Jiménez Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - José López-Hernández
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzuntzan 173; Col. Matamoros, 58240 Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- Catedrático CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico
| | - Anahí Canedo Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, C.P. 91070, Xalapa, Ver, Mexico; Departamento de la Conservación de la Biodiversidad, El Colegio de la Frontera Sur., Carretera Villahermosa-Reforma Km 15.5, Ranchería el Guineo, Sección II C.P., 86280 Villahermosa, Tabasco, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, C.P. 91070, Xalapa, Ver, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030 Morelia, Michoacán, Mexico.
| |
Collapse
|
4
|
Chai S, Jiang H, Yang Y, Pan X, Zou R, Tang J, Chen Z, Zeng D, Wei X. Photosynthetic physiological characteristics, growth performance, and element concentrations reveal the calcicole-calcifuge behaviors of three Camellia species. Open Life Sci 2024; 19:20220835. [PMID: 38585630 PMCID: PMC10997145 DOI: 10.1515/biol-2022-0835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 04/09/2024] Open
Abstract
We grew three yellow Camellia species (the calcifuge C. nitidissima and C. tunghinensis, and the calcicole C. pubipetala) in acidic and calcareous soils for 7 months and assessed their photosynthetic physiological characteristics, growth performance, and element concentrations in this developmental context. The calcifuge C. nitidissima and C. tunghinensis species exhibited poor growth with leaf chlorosis, growth stagnation, and root disintegration in calcareous soils, and with their P n, G s, T r, F v/F m, ΦPSII, ETR, qP, leaf Chla, Chlb, and Chl(a + b) concentrations, and root, stem, leaf, and total biomass being significantly lower when grown in calcareous soils relative to in acidic soils. In contrast, the calcicole C. pubipetala grew well in both acidic and calcareous soils, with few differences in the above parameters between these two soil substrates. The absorption and/or transportation of nutrient elements such as N, K, Ca, Mg, and Fe by the two calcifuge Camellia species plants grown in calcareous soils were restrained. Soil type plays a major role in the failure of the two calcifuge Camellia species to establish themselves in calcareous soils, whereas other factors such as competition and human activity are likely more important limiting factors in the reverse case. This study furthers our understanding of the factors influencing the distribution of these rare and endangered yellow Camellia species, allowing for improved management of these species in conservation projects and horticultural production.
Collapse
Affiliation(s)
- Shengfeng Chai
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Haidu Jiang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Yishan Yang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Xinfeng Pan
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Rong Zou
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Jianmin Tang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Zongyou Chen
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Danjuan Zeng
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| | - Xiao Wei
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin541006, China
| |
Collapse
|
5
|
Cera A, Montserrat-Martí G, Palacio S. Nutritional strategy underlying plant specialization to gypsum soils. AOB PLANTS 2023; 15:plad041. [PMID: 37448861 PMCID: PMC10337853 DOI: 10.1093/aobpla/plad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Gypsum soils are amongst the most widespread extreme substrates of the world, occurring in 112 countries. This type of hypercalcic substrate has a suite of extreme physical and chemical properties that make it stressful for plant establishment and growth. Extreme chemical properties include low plant-available nitrogen and phosphorus and high plant-available sulphur and calcium, which impose strong nutritional imbalances on plants. In spite of these edaphic barriers, gypsum soils harbour rich endemic floras that have evolved independently on five continents, with highly specialized species. Plants that only grow on gypsum are considered soil specialists, and they have a foliar elemental composition similar to the elemental availability of gypsum soils, with high calcium, sulphur and magnesium accumulation. However, the physiological and ecological role of the unique foliar elemental composition of gypsum specialists remains poorly understood, and it is unknown whether it provides an ecological advantage over other generalist species on gypsum soils. This article reviews available literature on the impact of gypsum soil features on plant life and the mechanisms underlying plant adaptation to gypsum environments. We conclude with a hypothesis on the potential role of the nutritional strategy underlying plant specialization to gypsum soils: Gypsum specialists primarily use SO42- as a counter anion to tolerate high Ca2+ concentrations in cells and avoid phosphorus depletion, which is one of the most limiting nutrients in gypsum soils.
Collapse
Affiliation(s)
| | - Gabriel Montserrat-Martí
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Avenida de Montañana 1005, Zaragoza, 50059, Spain
| | - Sara Palacio
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Avenida Nuestra Señora de la Victoria 16, Jaca, 22700, Spain
| |
Collapse
|
6
|
Jacobson TKB, Gerber D, Azevedo JC. Invasiveness, Monitoring and Control of Hakea sericea: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:751. [PMID: 36840097 PMCID: PMC9963047 DOI: 10.3390/plants12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Solutions for ecological and economic problems posed by Hakea sericea invasions rely on scientific knowledge. We conducted a systematic review to analyze and synthesize the past and current scientific knowledge concerning H. sericea invasion processes and mechanisms, as well as monitoring and control techniques. We used ISI Web of Science, Scopus, and CAPES Periodicals to look for publications on the ecological and environmental factors involved in H. sericea establishment (question 1); responses of H. sericea to fire in native and invaded ecosystems (question 2); and H. sericea monitoring and control methods (question 3). We identified 207 publications, 47.4% of which related to question 1, mainly from Australia and South Africa, with an increasing trend in the number of publications on monitoring and modeling. The traits identified in our systematic review, such as adaptations to dystrophic environments, drought resistance, sclerophylly, low transpiration rates, high nutrient use efficiency, stomatal conductance and photosynthetic rates, strong serotiny, proteoid roots and high post-fire seed survival and seedling recruitment, highlighted that H. sericea is a successful invader species due to its long adaptive history mediated by an arsenal of ecophysiological mechanisms that place it at a superior competitive level, especially in fire-prone ecosystems. Integrated cost-effective control methods in selected areas and the incorporation of information on the temporal invasion dynamics can significantly improve invasion control and mitigate H. sericea impacts while maintaining the supply of ecosystem services in invaded areas.
Collapse
Affiliation(s)
- Tamiel Khan Baiocchi Jacobson
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Faculdade UnB Planaltina, UnB/FUP—Universidade de Brasília, Brasília 73345-010, Brazil
| | - Dionatan Gerber
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Centro de Ecologia Funcional (CFE), Departamento de Ciência da Vida, Universidade de Coimbra, 300-456 Coimbra, Portugal
- Departamento de Ciências Florestais e Arquitetura Paisagista, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Instituto de Investigação Interdisciplinar, Universidade de Coimbra, 3004-531 Coimbra, Portugal
| | - João Carlos Azevedo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Oi T, Clode PL, Taniguchi M, Colmer TD, Kotula L. Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C 4 monocotyledonous halophyte. PLANT, CELL & ENVIRONMENT 2022; 45:1490-1506. [PMID: 35128687 PMCID: PMC9305513 DOI: 10.1111/pce.14279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/11/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Halophytes accumulate and sequester high concentrations of salt in vacuoles while maintaining lower levels of salt in the cytoplasm. The current data on cellular and subcellular partitioning of salt in halophytes are, however, limited to only a few dicotyledonous C3 species. Using cryo-scanning electron microscopy X-ray microanalysis, we assessed the concentrations of Na, Cl, K, Ca, Mg, P and S in various cell types within the leaf-blades of a monocotyledonous C4 halophyte, Rhodes grass (Chloris gayana). We also linked, for the first time, elemental concentrations in chloroplasts of mesophyll and bundle sheath cells to their ultrastructure and photosynthetic performance of plants grown in nonsaline and saline (200 mM NaCl) conditions. Na and Cl accumulated to the highest levels in xylem parenchyma and epidermal cells, but were maintained at lower concentrations in photosynthetically active mesophyll and bundle sheath cells. Concentrations of Na and Cl in chloroplasts of mesophyll and bundle sheath cells were lower than in their respective vacuoles. No ultrastructural changes were observed in either mesophyll or bundle sheath chloroplasts, and photosynthetic activity was maintained in saline conditions. Salinity tolerance in Rhodes grass is related to specific cellular Na and Cl distributions in leaf tissues, and the ability to regulate Na and Cl concentrations in chloroplasts.
Collapse
Affiliation(s)
- Takao Oi
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Peta L Clode
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | | | - Timothy D Colmer
- The UWA School of Agriculture and EnvironmentThe University of Western AustraliaPerthWestern AustraliaAustralia
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Lukasz Kotula
- The UWA School of Agriculture and EnvironmentThe University of Western AustraliaPerthWestern AustraliaAustralia
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
8
|
Wu D, Li L, Li C, Dun B, Zhang J, Li T, Zhou C, Tan D, Yang C, Huang G, Zhang X. Apoplastic histochemical features of plant root walls that may facilitate ion uptake and retention. Open Life Sci 2022; 16:1347-1356. [PMID: 35071769 PMCID: PMC8749128 DOI: 10.1515/biol-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
We used brightfield and epifluorescence microscopy, as well as permeability tests, to investigate the apoplastic histochemical features of plant roots associated with ion hyperaccumulation, invasion, and tolerance of oligotrophic conditions. In hyperaccumulator species with a hypodermis (exodermis absent), ions penetrated the root apex, including the root cap. By contrast, in non-hyperaccumulator species possessing an exodermis, ions did not penetrate the root cap. In vivo, the lignified hypodermis blocked the entry of ions into the cortex, while root exodermis absorbed ions and restricted them to the cortex. The roots of the hyperaccumulators Pteris vittata and Cardamine hupingshanensis, as well as the aquatic invasives Alternanthera philoxeroides, Eichhornia crassipes, and Pistia stratiotes, contained lignin and pectins. These compounds may trap and store ions before hypodermis maturation, facilitating ion hyperaccumulation and retention in the apoplastic spaces of the roots. These apoplastic histochemical features were consistent with certain species-specific characters, including ion hyperaccumulation, invasive behaviors in aquatic environments, or tolerance of oligotrophic conditions. We suggest that apoplastic histochemical features of the root may act as invasion mechanisms, allowing these invasive aquatic plants to outcompete indigenous plants for ions.
Collapse
Affiliation(s)
- Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Chengdao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Bicheng Dun
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Ten Li
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| | - Cunyu Zhou
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| | - Debao Tan
- Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China
| | - Chaodong Yang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, Hubei, 443000, China
| | - Xia Zhang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, and Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
9
|
Lux A, Kohanová J, White PJ. The secrets of calcicole species revealed. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:968-970. [PMID: 33626153 PMCID: PMC7904150 DOI: 10.1093/jxb/eraa555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on: Kotula L, Clode PL, Ranathunge K, Lambers H. 2021. Role of roots in adaptation of soil-indifferent Proteaceae to calcareous soils in south-western Australia. Journal of Experimental Botany 72, 1490–1505.
Collapse
Affiliation(s)
- Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Kohanová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Philip J White
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, UK
| |
Collapse
|