1
|
Li X, Bai W, Yang Q, Yin B, Zhang Z, Zhao B, Kuang T, Zhang Y, Zhang D. The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments. Innovation (N Y) 2024; 5:100657. [PMID: 39071942 PMCID: PMC11282406 DOI: 10.1016/j.xinn.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/30/2024] Open
Abstract
Many plans to establish human settlements on other planets focus on adapting crops to growth in controlled environments. However, these settlements will also require pioneer plants that can grow in the soils and harsh conditions found in extraterrestrial environments, such as those on Mars. Here, we report the extraordinary environmental resilience of Syntrichia caninervis, a desert moss that thrives in various extreme environments. S. caninervis has remarkable desiccation tolerance; even after losing >98% of its cellular water content, it can recover photosynthetic and physiological activities within seconds after rehydration. Intact plants can tolerate ultra-low temperatures and regenerate even after being stored in a freezer at -80°C for 5 years or in liquid nitrogen for 1 month. S. caninervis also has super-resistance to gamma irradiation and can survive and maintain vitality in simulated Mars conditions; i.e., when simultaneously exposed to an anoxic atmosphere, extreme desiccation, low temperatures, and intense UV radiation. Our study shows that S. caninervis is among the most stress tolerant organisms. This work provides fundamental insights into the multi-stress tolerance of the desert moss S. caninervis, a promising candidate pioneer plant for colonizing extraterrestrial environments, laying the foundation for building biologically sustainable human habitats beyond Earth.
Collapse
Affiliation(s)
- Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhenlong Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Banchi Zhao
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyun Kuang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Haxim Y, Cao T, Li X, Liu X, Liang Y, Hawar A, Yang R, Zhang D. Autophagy functions as a cytoprotective mechanism by regulating programmed cell death during desiccation in Syntrichia caninervis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108620. [PMID: 38714124 DOI: 10.1016/j.plaphy.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Desiccation is a state of extreme water loss that is lethal to many plant species. Some desert plants have evolved unique strategies to cope with desiccation stress in their natural environment. Here we present the remarkable stress management mechanism of Syntrichia caninervis, a desert moss species which exhibits an 'A' category of desiccation tolerance. Our research demonstrated that desiccation stress triggers autophagy in S. caninervis while inhibiting Programmed Cell Death (PCD). Silencing of two autophagy-related genes, ATG6 and ATG2, in S. caninervis promoted PCD. Desiccation treatment accelerated cell death in ATG6 and ATG2 gene-silenced S. caninervis. Notably, trehalose was not detected during desiccation, and exogenous application of trehalose cannot activate autophagy. These results suggested that S. caninervis is independent of trehalose accumulation to triggered autophagy. Our results showed that autophagy function as prosurvival mechanism to enhance desiccation tolerance of S. caninervis. Our findings enrich the knowledge of the role of autophagy in plant stress response and may provide new insight into understanding of plant desiccation tolerance.
Collapse
Affiliation(s)
- Yakupjan Haxim
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Ting Cao
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Li
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiujin Liu
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yuqing Liang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Amangul Hawar
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Ruirui Yang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Chinese Academy of Sciences, Urumqi, 800311, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000, Urumqi, China; Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
3
|
Yang Q, Yang R, Gao B, Liang Y, Liu X, Li X, Zhang D. Metabolomic Analysis of the Desert Moss Syntrichia caninervis Provides Insights into Plant Dehydration and Rehydration Response. PLANT & CELL PHYSIOLOGY 2023; 64:1419-1432. [PMID: 37706231 DOI: 10.1093/pcp/pcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Desiccation-tolerant (DT) plants can survive extreme dehydration and tolerate the loss of up to 95% of their water content, making them ideal systems to determine the mechanism behind extreme drought stress and identify potential approaches for developing drought-tolerant crops. The desert moss Syntrichia caninervis is an emerging model for extreme desiccation tolerance that has benefited from high-throughput sequencing analyses, allowing identification of stress-tolerant genes; however, its metabolic response to desiccation is unknown. A liquid chromatography-mass spectrometry analysis of S. caninervis at six dehydration-rehydration stages revealed 912 differentially abundant compounds, belonging to 93 metabolic classes. Many (256) metabolites accumulated during rehydration in S. caninervis, whereas only 71 accumulated during the dehydration period, in contrast to the pattern observed in vascular DT plants. During dehydration, nitrogenous amino acids (l-glutamic acid and cysteinylglycine), alkaloids (vinleurosine) and steroids (physalin D) accumulated, whereas glucose 6-phosphate decreased. During rehydration, γ-aminobutyric acid, glucose 6-phosphate and flavonoids (karanjin and aromadendrin) accumulated, as did the plant hormones 12-oxo phytodienoic acid (12-OPDA) and trans-zeatin riboside. The contents ofl-arginine, maltose, turanose, lactulose and sucrose remained high throughout dehydration-rehydration. Syntrichia caninervis thus accumulates antioxidants to scavenge reactive oxygen species, accumulating nitrogenous amino acids and cytoprotective metabolites and decreasing energy metabolism to enter a protective state from dehydration-induced damage. During subsequent rehydration, many metabolites rapidly accumulated to prevent oxidative stress and restore physiological activities while repairing cells, representing a more elaborate rehydration repair mechanism than vascular DT plants, with a faster and greater accumulation of metabolites. This metabolic kinetics analysis in S. caninervis deepens our understanding of its dehydration mechanisms and provides new insights into the different strategies of plant responses to dehydration and rehydration.
Collapse
Affiliation(s)
- Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiujin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| |
Collapse
|
4
|
López-Pozo M, Fernández-Marín B, García-Plazaola J, Seal CE, Ballesteros D. Ageing kinetics of fern chlorophyllous spores during dry storage is determined by its antioxidant potential and likely induced by photosynthetic machinery. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111870. [PMID: 37722506 DOI: 10.1016/j.plantsci.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Ageing in dry chlorophyllous propagules is leaded by photooxidation through the photosynthetic machinery, but why species differ in longevity and the ageing mechanisms of when light and oxygen are absent are unknown. We hypothesize that the cellular antioxidant capacity is key for the inter- and intra-specific differences in the ageing process. We have tested this hypothesis in chlorophyllous spores of two ferns. They were subjected to four different storage regimes resulting from light/dark and normoxia/hypoxia combinations. Lipophilic and hydrophilic antioxidants, reactive oxygen species (ROS), and photosynthetic pigments were analysed in parallel to germination and the recovery of Fv/Fm over a storage period of up to 22-months. We show that light and oxygen accelerate the ageing process, but their mechanisms (ROS, increase, antioxidant capacity decrease, loss of efficiency of the photosystem II, pigment degradation) appear the same under all conditions tested. The end of the asymptomatic phase of longevity, when a sudden drop of germination occurs, seems to be determined by a threshold in the depletion of antioxidants. Our results support the hypothesis that ageing kinetics in dry plant propagules is determined by the antioxidant system, but also suggests an active role of the photosynthetic machinery during ageing, even in darkness and hypoxia.
Collapse
Affiliation(s)
- M López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain.
| | - B Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | - J García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | - C E Seal
- Royal Botanic Gardens Kew, Wakehurst, Ardingly, West Sussex, UK
| | - D Ballesteros
- Royal Botanic Gardens Kew, Wakehurst, Ardingly, West Sussex, UK; Department of Botany and Geology, Universitat de Valencia, Burjassot, Spain
| |
Collapse
|
5
|
Nadarajan J, Walters C, Pritchard HW, Ballesteros D, Colville L. Seed Longevity-The Evolution of Knowledge and a Conceptual Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:471. [PMID: 36771556 PMCID: PMC9919896 DOI: 10.3390/plants12030471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The lifespan or longevity of a seed is the time period over which it can remain viable. Seed longevity is a complex trait and varies greatly between species and even seed lots of the same species. Our scientific understanding of seed longevity has advanced from anecdotal 'Thumb Rules,' to empirically based models, biophysical explanations for why those models sometimes work or fail, and to the profound realisation that seeds are the model of the underexplored realm of biology when water is so limited that the cytoplasm solidifies. The environmental variables of moisture and temperature are essential factors that define survival or death, as well as the timescale to measure lifespan. There is an increasing understanding of how these factors induce cytoplasmic solidification and affect glassy properties. Cytoplasmic solidification slows down, but does not stop, the chemical reactions involved in ageing. Continued degradation of proteins, lipids and nucleic acids damage cell constituents and reduce the seed's metabolic capacity, eventually impairing the ability to germinate. This review captures the evolution of knowledge on seed longevity over the past five decades in relation to seed ageing mechanisms, technology development, including tools to predict seed storage behaviour and non-invasive techniques for seed longevity assessment. It is concluded that seed storage biology is a complex science covering seed physiology, biophysics, biochemistry and multi-omic technologies, and simultaneous knowledge advancement in these areas is necessary to improve seed storage efficacy for crops and wild species biodiversity conservation.
Collapse
Affiliation(s)
- Jayanthi Nadarajan
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Palmerston North 4410, New Zealand
| | - Christina Walters
- USDA—Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA
| | - Hugh W. Pritchard
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming 650201, China
| | - Daniel Ballesteros
- Faculty of Farmacy, Department of Botany and Geology, University of Valencia, Av. Vicent Estelles s/n, 46100 Valencia, Spain
| | - Louise Colville
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, UK
| |
Collapse
|
6
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
7
|
Kranner I, Pichler G, Grube M. The lichen market place. THE NEW PHYTOLOGIST 2022; 234:1541-1543. [PMID: 35478327 PMCID: PMC9321073 DOI: 10.1111/nph.18130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This article is a Commentary on Spribille et al . (2022), 234 : 1566–1582 .
Collapse
Affiliation(s)
- Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| |
Collapse
|
8
|
Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Vidović M, Battisti I, Pantelić A, Morina F, Arrigoni G, Masi A, Jovanović SV. Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:1199. [PMID: 35567200 PMCID: PMC9104375 DOI: 10.3390/plants11091199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Marija Vidović
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (I.B.); (G.A.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
| | - Ana Pantelić
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Filis Morina
- Biology Center of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovska 31/1160, 370 05 Ceske Budejovice, Czech Republic;
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (I.B.); (G.A.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129 Padova, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Pantelić A, Stevanović S, Komić SM, Kilibarda N, Vidović M. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc. Int J Mol Sci 2022; 23:3547. [PMID: 35408906 PMCID: PMC8998581 DOI: 10.3390/ijms23073547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Ana Pantelić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Strahinja Stevanović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Sonja Milić Komić
- Department of Life Science, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia;
| | - Nataša Kilibarda
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| | - Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| |
Collapse
|
11
|
Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122784. [PMID: 34961255 PMCID: PMC8706221 DOI: 10.3390/plants10122784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resiliency Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| |
Collapse
|
12
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
13
|
Nadal M, Brodribb TJ, Fernández-Marín B, García-Plazaola JI, Arzac MI, López-Pozo M, Perera-Castro AV, Gulías J, Flexas J, Farrant JM. Differences in biochemical, gas exchange and hydraulic response to water stress in desiccation tolerant and sensitive fronds of the fern Anemia caffrorum. THE NEW PHYTOLOGIST 2021; 231:1415-1430. [PMID: 33959976 DOI: 10.1111/nph.17445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.
Collapse
Affiliation(s)
- Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Tim J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Miren I Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
- King Abdulaziz University, Jeddah, 80200, Saudi Arabia
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|