1
|
Hu J, Bettembourg M, Xue L, Hu R, Schnürer A, Sun C, Jin Y, Sundström JF. A low-methane rice with high-yield potential realized via optimized carbon partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170980. [PMID: 38373456 DOI: 10.1016/j.scitotenv.2024.170980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Global rice cultivation significantly contributes to anthropogenic methane emissions. The methane emissions are caused by methane-producing microorganisms (methanogenic archaea) that are favoured by the anoxic conditions of paddy soils and small carbon molecules released from rice roots. However, different rice cultivars are associated with differences in methane emission rates suggesting that there is a considerable natural variation in this trait. Starting from the hypothesis that sugar allocation within a plant is an important factor influencing both yields and methane emissions, the aim of this study was to produce high-yielding rice lines associated with low methane emissions. In this study, the offspring (here termed progeny lines) of crosses between a newly characterized low-methane rice variety, Heijing 5, and three high-yielding elite varieties, Xiushui, Huayu and Jiahua, were selected for combined low-methane and high-yield properties. Analyses of total organic carbon and carbohydrates showed that the progeny lines stored more carbon in above-ground tissues than the maternal elite varieties. Also, metabolomic analysis of rhizospheric soil surrounding the progeny lines showed reduced levels of glucose and other carbohydrates. The carbon allocation, from roots to shoots, was further supported by a transcriptome analysis using massively parallel sequencing of mRNAs that demonstrated elevated expression of the sugar transporters SUT-C and SWEET in the progeny lines as compared to the parental varieties. Furthermore, measurement of methane emissions from plants, grown in greenhouse as well as outdoor rice paddies, showed a reduction in methane emissions by approximately 70 % in the progeny lines compared to the maternal elite varieties. Taken together, we report here on three independent low-methane-emission rice lines with high yield potential. We also provide a first molecular characterisation of the progeny lines that can serve as a foundation for further studies of candidate genes involved in sugar allocation and reduced methane emissions from rice cultivation.
Collapse
Affiliation(s)
- Jia Hu
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Mathilde Bettembourg
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Lihong Xue
- Key Laboratory of Agro-environment in Downstream of Yangtze plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 43070, China
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Yunkai Jin
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Jens F Sundström
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden.
| |
Collapse
|
2
|
Merchant A, Smith MR, Windt CW. In situ pod growth rate reveals contrasting diurnal sensitivity to water deficit in Phaseolus vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3774-3786. [PMID: 35323925 PMCID: PMC9162186 DOI: 10.1093/jxb/erac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The development of reproductive tissues determines plant fecundity and yield. Loading of resources into the developing reproductive tissue is thought to be under the co-limiting effects of source and sink strength. The dynamics of this co-limitation are unknown, largely due to an inability to measure the flux of resources into a developing sink. Here we use nuclear magnetic resonance (NMR) sensors to measure sink strength by quantifying rates of pod dry matter accumulation (pod loading) in Phaseolus vulgaris at 13-min intervals across the diel period. Rates of pod loading showed contrasting variation across light and dark periods during the onset of water deficit. In addition, rates of pod loading appeared decoupled from net photosynthetic rates when adjusted to the plant scale. Combined, these observations illustrate that the rate of pod development varies under water limitation and that continuous, non-invasive methodologies to measure sink strength provide insight into the governing processes that determine the development of reproductive tissues.
Collapse
Affiliation(s)
| | - Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Carel W Windt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
3
|
Wakabayashi Y, Morita R, Aoki N. Metabolic factors restricting sink strength in superior and inferior spikelets in high-yielding rice cultivars. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153536. [PMID: 34619558 DOI: 10.1016/j.jplph.2021.153536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Many high-yielding rice cultivars with large sink size (total number of spikelet per unit area × mean grain weight) have been developed, but some japonica cultivars developed in Japan often fail to attain the expected high yield due to low sink strength of spikelets. Although there is natural variation in sink strength of spikelets among high-yielding cultivars, metabolic factors involved in the natural variation and relationships of sink strength in spikelets with final percentage of filled spikelets are not fully understood. In the present study, we examined cultivar differences in sink strength for superior and inferior spikelets (i.e. earlier fertilizing spikelets with faster growth and later fertilizing ones with slower growth, respectively) in a panicle, using each spikelet at 10 d after the onset of development (10 DAD) when starch accumulation in endosperm was actively proceeding. Nine high-yielding cultivars were used: five japonica-dominant and four indica-dominant cultivars. Cultivar differences were observed in starch contents at 10 DAD in each spikelet type, and indica cultivars had higher starch contents than japonica cultivars in both superior and inferior spikelets. In addition, starch contents at 10 DAD were closely related to percentage of filled grains at maturity in both spikelet types. The activities of sucrose synthase (SUS) and uridine diphosphoglucose pyrophosphorylase (UGP), and the protein levels of phosphorylase 1 (Pho1), were higher in indica than japonica cultivars, and were positively correlated with starch contents at 10 DAD for both superior and inferior spikelets; although metabolic states, revealed from relations between intermediate metabolites and starch contents, differed among spikelet types. Consequently, it was considered that SUS and UGP at the step from sucrose cleavage to adenosine diphosphoglucose synthesis, and Pho1 at the starch biosynthesis step, were key metabolic factors involved in cultivar differences of sink strength (ability to synthesize starch).
Collapse
Affiliation(s)
- Yu Wakabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryutaro Morita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naohiro Aoki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|