1
|
Chu L, Shrestha V, Schäfer CC, Niedens J, Meyer GW, Darnell Z, Kling T, Dürr-Mayer T, Abramov A, Frey M, Jessen H, Schaaf G, Hochholdinger F, Nowak-Król A, McSteen P, Angelovici R, Matthes MS. Association of the benzoxazinoid pathway with boron homeostasis in maize. PLANT PHYSIOLOGY 2024; 197:kiae611. [PMID: 39514757 DOI: 10.1093/plphys/kiae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Both deficiency and toxicity of the micronutrient boron lead to severe reductions in crop yield. Despite this agricultural importance, the molecular basis underlying boron homeostasis in plants remains unclear. To identify molecular players involved in boron homeostasis in maize (Zea mays L.), we measured boron levels in the Goodman-Buckler association panel and performed genome-wide association studies. These analyses identified a benzoxazinless (bx) gene, bx3, involved in the biosynthesis of benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which are major defense compounds in maize. Genes involved in DIMBOA biosynthesis are all located in close proximity in the genome, and benzoxazinoid biosynthesis mutants, including bx3, are all DIMBOA deficient. We determined that leaves of the bx3 mutant have a greater boron concentration than those of B73 control plants, which corresponded with enhanced leaf tip necrosis, a phenotype associated with boron toxicity. By contrast, other DIMBOA-deficient maize mutants did not show altered boron levels or the leaf tip necrosis phenotype, suggesting that boron is not associated with DIMBOA. Instead, our analyses suggest that the accumulation of boron is linked to the benzoxazinoid intermediates indolin-2-one (ION) and 3-hydroxy-ION. Therefore, our results connect boron homeostasis to the benzoxazinoid plant defense pathway through bx3 and specific intermediates, rendering the benzoxazinoid biosynthesis pathway a potential target for crop improvement under inadequate boron conditions.
Collapse
Affiliation(s)
- Liuyang Chu
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Vivek Shrestha
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Cay Christin Schäfer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Jan Niedens
- Boron-Containing Functional Materials, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - George W Meyer
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Zoe Darnell
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Tyler Kling
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Tobias Dürr-Mayer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, Freiburg im Breisgau 79104, Germany
| | - Aleksej Abramov
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, Freising 85354, Germany
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, Freising 85354, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, Freiburg im Breisgau 79104, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Plant Nutrition, University of Bonn, Karl-Robert-Kreiten Straße 13, Bonn 53115, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| | - Agnieszka Nowak-Król
- Boron-Containing Functional Materials, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Michaela S Matthes
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Friedrich-Ebert-Allee 144, Bonn 53113, Germany
| |
Collapse
|
2
|
Zhang Z, Yao J, Jiang Z, Huang X, Wang S, Xu F. Golgi-localized APYRASE 1 is critical for Arabidopsis growth by affecting cell wall integrity under boron deficiency. PHYSIOLOGIA PLANTARUM 2024; 176:e14320. [PMID: 38686642 DOI: 10.1111/ppl.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Many nucleoside triphosphate-diphosphohydrolases (NTPDases/APYRASEs, APYs) play a key role in modulating extracellular nucleotide levels. However, the Golgi-localized APYs, which help control glycosylation, have rarely been studied. Here, we identified AtAPY1, a gene encoding an NTPDase in the Golgi apparatus, which is required for cell wall integrity and plant growth under boron (B) limited availability. Loss of function in AtAPY1 hindered cell elongation and division in root tips while increasing the number of cortical cell layers, leading to swelling of the root tip and abundant root hairs under low B stress. Further, expression pattern analysis revealed that B deficiency significantly induced AtAPY1, especially in the root meristem and stele. Fluorescent-labeled AtAPY1-GFP localized to the Golgi stack. Biochemical analysis showed that AtAPY1 exhibited a preference of UDP and GDP hydrolysis activities. Consequently, the loss of function in AtAPY1 might disturb the homoeostasis of NMP-driven NDP-sugar transport, which was closely related to the synthesis of cell wall polysaccharides. Further, cell wall-composition analysis showed that pectin content increased and borate-dimerized RG-II decreased in apy1 mutants, along with a decrease in cellulose content. Eventually, altered polysaccharide characteristics presumably cause growth defects in apy1 mutants under B deficiency. Altogether, these data strongly support a novel role for AtAPY1 in mediating responses to low B availability by regulating cell wall integrity.
Collapse
Affiliation(s)
- Ziwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Jinliang Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - XinXuan Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Liu M, Li Z, Kang Y, Lv J, Jin Z, Mu S, Yue H, Li L, Chen P, Li Y. A mutation in CsGME encoding GDP-mannose 3,5-epimerase results in little and wrinkled leaf in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:114. [PMID: 38678513 DOI: 10.1007/s00122-024-04600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.
Collapse
Affiliation(s)
- Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaowei Li
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Kang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhao Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Xiang M, Yuan S, Zhang Q, Liu X, Li Q, Leng Z, Sha J, Anderson CT, Xiao C. Galactosylation of xyloglucan is essential for the stabilization of the actin cytoskeleton and endomembrane system through the proper assembly of cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5104-5123. [PMID: 37386914 DOI: 10.1093/jxb/erad237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.
Collapse
Affiliation(s)
- Min Xiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shuai Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaohui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhengmei Leng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jingjing Sha
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Onuh AF, Miwa K. Mutations in type II Golgi-localized proton pyrophosphatase AVP2;1/VHP2;1 affect pectic polysaccharide rhamnogalacturonan-II and alter root growth under low boron condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1255486. [PMID: 37662170 PMCID: PMC10469939 DOI: 10.3389/fpls.2023.1255486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
The essential plant nutrient boron is required for the crosslinking of the pectin polysaccharide, rhamnogalacturonan II (RG-II). The synthesis of the pectic polysaccharides takes place in the Golgi apparatus, acidified by proton pumps. AVP2;1/VHP2;1 is a type II proton pyrophosphatase localized in the Golgi apparatus, which possesses proton pumping activity coupled with pyrophosphate hydrolysis. Its activity and expression patterns have been previously revealed but its role in plants remains unknown. The aim of the present work therefore was to explore the physiological role of AVP2;1 in Arabidopsis thaliana. In the screening of mutants under low boron, a mutant carrying a missense mutation in AVP2;1 was isolated. This mutant showed increased primary root growth under low boron conditions but no significant difference under normal boron condition compared to wild type plants. T-DNA insertion caused similar growth, suggesting that reduced function of AVP2;1 was responsible. Root cell observation revealed an increase in meristematic zone length, cell number in meristem and length of matured cell in avp2;1 mutants compared to wild type under low boron. Calcium concentration was reduced in mutant root cell wall under low boron. RG-II specific sugars also tended to be decreased in mutant root cell wall under low and normal boron conditions. These results suggest that changes in cell wall component by mutations in AVP2;1 may possibly explain the increased root length of mutants under low boron. This supports the idea that AVP2;1 plays a role in pH homoeostasis in Golgi apparatus for pectin synthesis.
Collapse
Affiliation(s)
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Kosuth T, Leskova A, Castaings L, Curie C. Golgi in and out: multifaceted role and journey of manganese. THE NEW PHYTOLOGIST 2023; 238:1795-1800. [PMID: 36856330 DOI: 10.1111/nph.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/09/2023] [Indexed: 05/04/2023]
Abstract
Manganese (Mn) is pivotal for plant growth and development but little is known about the processes that control its homeostasis in the cell. A spotlight on the pools of intracellular manganese and their cellular function has recently been gained through the characterization of new Mn transporters. In particular, transporters catalyzing the ins and outs of Mn at the various Golgi membranes have revealed the central role of the Golgi pool of Mn in the synthesis of the cell wall and as a reservoir for the numerous cellular Mn-dependent pathways whose calibration relies on a set of Golgi-resident transporters of the BICAT and NRAMP families.
Collapse
Affiliation(s)
- Thibault Kosuth
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandra Leskova
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Loren Castaings
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
7
|
A Golgi-Located Transmembrane Nine Protein Gene TMN11 Functions in Manganese/Cadmium Homeostasis and Regulates Growth and Seed Development in Rice. Int J Mol Sci 2022; 23:ijms232415883. [PMID: 36555524 PMCID: PMC9779671 DOI: 10.3390/ijms232415883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Metal transporters play crucial roles in plant nutrition, development, and metal homeostasis. To date, several multi-proteins have been identified for metal transport across the plasma membrane and tonoplast. Nevertheless, Golgi endomembrane metal carriers and their mechanisms are less documented. In this study, we identified a new transmembrane nine (TMN) family gene, TMN11, which encodes a Mn transport protein that was localized to the cis-Golgi endomembrane in rice. OsTMN11 contains a typically conserved long luminal N-terminal domain and nine transmembrane domains. OsTMN11 was ubiquitously expressed over the lifespan of rice and strongly upregulated in young rice under excess Mn(II)/Cd(II) stress. Ectopic expression of OsTMN11 in an Mn-sensitive pmr1 mutant (PMR1 is a Golgi-resident Mn exporter) yeast (Saccharomyces cerevisiae) restored the defective phenotype and transported excess Mn out of the cells. As ScPMR1 mediates cellular Mn efflux via a vesicle-secretory pathway, the results suggest that OsTMN11 functions in a similar manner. OsTMN11 knockdown (by RNAi) compromised the growth of young rice, manifested as shorter plant height, reduced biomass, and chlorosis under excessive Mn and Cd conditions. Two lifelong field trials with rice cropped in either normal Mn supply conditions or in Cd-contaminated farmland demonstrated that knockdown of OsTMN11 impaired the capacity of seed development (including panicle, spikelet fertility, seed length, grain weight, etc.). The mature RNAi plants contained less Mn but accumulated Cd in grains and rice straw, confirming that OsTMN11 plays a fundamental role in metal homeostasis associated with rice growth and development even under normal Mn supply conditions.
Collapse
|
8
|
Rui Q, Tan X, Liu F, Bao Y. An Update on the Key Factors Required for Plant Golgi Structure Maintenance. FRONTIERS IN PLANT SCIENCE 2022; 13:933283. [PMID: 35837464 PMCID: PMC9274083 DOI: 10.3389/fpls.2022.933283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant Golgi apparatus serves as the central station of the secretory pathway and is the site where protein modification and cell wall matrix polysaccharides synthesis occur. The polarized and stacked cisternal structure is a prerequisite for Golgi function. Our understanding of Golgi structure maintenance and trafficking are largely obtained from mammals and yeast, yet, plant Golgi has many different aspects. In this review, we summarize the key players in Golgi maintenance demonstrated by genetic studies in plants, which function in ER-Golgi, intra-Golgi and post-Golgi transport pathways. Among these, we emphasize on players in intra-Golgi trafficking.
Collapse
|