1
|
van Midden KP, Mantz M, Fonovič M, Gazvoda M, Svete J, Huesgen PF, van der Hoorn RAL, Klemenčič M. Mechanistic insights into CrCEP1: A dual-function cysteine protease with endo- and transpeptidase activity. Int J Biol Macromol 2024; 271:132505. [PMID: 38768911 DOI: 10.1016/j.ijbiomac.2024.132505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Proteases, essential regulators of plant stress responses, remain enigmatic in their precise functional roles. By employing activity-based probes for real-time monitoring, this study aimed to delve into protease activities in Chlamydomonas reinhardtii exposed to oxidative stress induced by hydrogen peroxide. However, our work revealed that the activity-based probes strongly labelled three non-proteolytic proteins-PsbO, PsbP, and PsbQ-integral components of photosystem II's oxygen-evolving complex. Subsequent biochemical assays and mass spectrometry experiments revealed the involvement of CrCEP1, a previously uncharacterized papain-like cysteine protease, as the catalyst of this labelling reaction. Further experiments with recombinant CrCEP1 and PsbO proteins replicated the reaction in vitro. Our data unveiled that endopeptidase CrCEP1 also has transpeptidase activity, ligating probes and peptides to the N-termini of Psb proteins, thereby expanding the repertoire of its enzymatic activities. The hitherto unknown transpeptidase activity of CrCEP1, working in conjunction with its proteolytic activity, unveils putative complex and versatile roles for proteases in cellular processes during stress responses.
Collapse
Affiliation(s)
- Katarina P van Midden
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Marko Fonovič
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | - Marina Klemenčič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Zhou L, Yang S, Chen C, Li M, Du Q, Wang J, Yin Y, Xiao H. CaCP15 Gene Negatively Regulates Salt and Osmotic Stress Responses in Capsicum annuum L. Genes (Basel) 2023; 14:1409. [PMID: 37510313 PMCID: PMC10379065 DOI: 10.3390/genes14071409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Salt and osmotic stress seriously restrict the growth, development, and productivity of horticultural crops in the greenhouse. The papain-like cysteine proteases (PLCPs) participate in multi-stress responses in plants. We previously demonstrated that salt and osmotic stress affect cysteine protease 15 of pepper (Capsicum annuum L.) (CaCP15); however, the role of CaCP15 in salt and osmotic stress responses is unknown. Here, the function of CaCP15 in regulating pepper salt and osmotic stress resistance was explored. Pepper plants were subjected to abiotic (sodium chloride, mannitol, salicylic acid, ethrel, methyl jasmonate, etc.) and biotic stress (Phytophthora capsici inoculation). The CaCP15 was silenced through the virus-induced gene silencing (VIGS) and transiently overexpressed in pepper plants. The full-length CaCP15 fragment is 1568 bp, with an open reading frame of 1032 bp, encoding a 343 amino acid protein. CaCP15 is a senescence-associated gene 12 (SAG12) subfamily member containing two highly conserved domains, Inhibitor 129 and Peptidase_C1. CaCP15 expression was the highest in the stems of pepper plants. The expression was induced by salicylic acid, ethrel, methyl jasmonate, and was infected by Phytophthora capsici inoculation. Furthermore, CaCP15 was upregulated under salt and osmotic stress, and CaCP15 silencing in pepper enhanced salt and mannitol stress resistance. Conversely, transient overexpression of CaCP15 increased the sensitivity to salt and osmotic stress by reducing the antioxidant enzyme activities and negatively regulating the stress-related genes. This study indicates that CaCP15 negatively regulates salt and osmotic stress resistance in pepper via the ROS-scavenging.
Collapse
Affiliation(s)
- Luyao Zhou
- Department of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Sizhen Yang
- Department of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunlin Chen
- Department of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingjie Du
- Department of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiqing Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanxu Yin
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Huaijuan Xiao
- Department of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
de Souza EP, Ferro M, Pelá VT, Fernanda-Carlos T, Borges CGG, Taira EA, Ventura TMO, Arencibia AD, Buzalaf MAR, Henrique-Silva F. Maquiberry Cystatins: Recombinant Expression, Characterization, and Use to Protect Tooth Dentin and Enamel. Biomedicines 2023; 11:biomedicines11051360. [PMID: 37239031 DOI: 10.3390/biomedicines11051360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Phytocystatins are proteinaceous competitive inhibitors of cysteine peptidases involved in physiological and defensive roles in plants. Their application as potential therapeutics for human disorders has been suggested, and the hunt for novel cystatin variants in different plants, such as maqui (Aristotelia chilensis), is pertinent. Being an understudied species, the biotechnological potential of maqui proteins is little understood. In the present study, we constructed a transcriptome of maqui plantlets using next-generation sequencing, in which we found six cystatin sequences. Five of them were cloned and recombinantly expressed. Inhibition assays were performed against papain and human cathepsins B and L. Maquicystatins can inhibit the proteases in nanomolar order, except MaquiCPIs 4 and 5, which inhibit cathepsin B in micromolar order. This suggests maquicystatins' potential use for treating human diseases. In addition, since we previously demonstrated the efficacy of a sugarcane-derived cystatin to protect dental enamel, we tested the ability of MaquiCPI-3 to protect both dentin and enamel. Both were protected by this protein (by One-way ANOVA and Tukey's Multiple Comparisons Test, p < 0.05), suggesting its potential usage in dental products.
Collapse
Affiliation(s)
- Eduardo Pereira de Souza
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil
| | - Vinicius Taioqui Pelá
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Thais Fernanda-Carlos
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | | | - Even Akemi Taira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Talita Mendes Oliveira Ventura
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Ariel Domingo Arencibia
- Center of Biotechnology in Natural Resources, Faculty of Agrarian and Forestry Sciences, Catholic University of Maule (UCM), Talca 3466706, Chile
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| |
Collapse
|
4
|
Transcriptomic Analysis of Radish (Raphanus sativus L.) Roots with CLE41 Overexpression. PLANTS 2022; 11:plants11162163. [PMID: 36015466 PMCID: PMC9416626 DOI: 10.3390/plants11162163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
The CLE41 peptide, like all other TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) family CLE peptides, promotes cell division in (pro-)cambium vascular meristem and prevents xylem differentiation. In this work, we analyzed the differential gene expression in the radish primary-growing P35S:RsCLE41-1 roots using the RNA-seq. Our analysis of transcriptomic data revealed a total of 62 differentially expressed genes between transgenic radish roots overexpressing the RsCLE41-1 gene and the glucuronidase (GUS) gene. For genes associated with late embryogenesis, response to abscisic acid and auxin-dependent xylem cell fate determination, an increase in the expression in P35S:RsCLE41-1 roots was found. Among those downregulated, stress-associated genes prevailed. Moreover, several genes involved in xylem specification were also downregulated in the roots with RsCLE41-1 overexpression. Unexpectedly, none of the well-known targets of TDIFs, such as WOX4 and WOX14, were identified as DEGs in our experiment. Herein, we discuss a suggestion that the activation of pathways associated with desiccation resistance, which are more characteristic of late embryogenesis, in roots with RsCLE41-overexpression may be a consequence of water deficiency onset due to impaired vascular specification.
Collapse
|
5
|
Talloji P, Nehlin L, Hüttel B, Winter N, Černý M, Dufková H, Hamali B, Hanczaryk K, Novák J, Hermanns M, Drexler N, Eifler K, Schlaich N, Brzobohatý B, Bachmair A. Transcriptome, metabolome and suppressor analysis reveal an essential role for the ubiquitin-proteasome system in seedling chloroplast development. BMC PLANT BIOLOGY 2022; 22:183. [PMID: 35395773 PMCID: PMC8991883 DOI: 10.1186/s12870-022-03536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Many regulatory circuits in plants contain steps of targeted proteolysis, with the ubiquitin proteasome system (UPS) as the mediator of these proteolytic events. In order to decrease ubiquitin-dependent proteolysis, we inducibly expressed a ubiquitin variant with Arg at position 48 instead of Lys (ubK48R). This variant acts as an inhibitor of proteolysis via the UPS, and allowed us to uncover processes that are particularly sensitive to UPS perturbation. RESULTS Expression of ubK48R during germination leads to seedling death. We analyzed the seedling transcriptome, proteome and metabolome 24 h post ubK48R induction and confirmed defects in chloroplast development. We found that mutations in single genes can suppress seedling lethality, indicating that a single process in seedlings is critically sensitive to decreased performance of the UPS. Suppressor mutations in phototropin 2 (PHOT2) suggest that a contribution of PHOT2 to chloroplast protection is compromised by proteolysis inhibition. CONCLUSIONS Overall, the results reveal protein turnover as an integral part of a signal transduction chain that protects chloroplasts during development.
Collapse
Affiliation(s)
- Prabhavathi Talloji
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Lilian Nehlin
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Bulut Hamali
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
- Present address: Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, 97331, USA
| | - Katarzyna Hanczaryk
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Monika Hermanns
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Nicole Drexler
- Vienna Biocenter Core Facilities, Electron Microscopy, A-1030, Vienna, Austria
| | - Karolin Eifler
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Nikolaus Schlaich
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria.
| |
Collapse
|
6
|
The Papain-like Cysteine Protease HpXBCP3 from Haematococcus pluvialis Involved in the Regulation of Growth, Salt Stress Tolerance and Chlorophyll Synthesis in Microalgae. Int J Mol Sci 2021; 22:ijms222111539. [PMID: 34768970 PMCID: PMC8583958 DOI: 10.3390/ijms222111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.
Collapse
|
7
|
van der Hoorn RAL, Klemenčič M. Plant proteases: from molecular mechanisms to functions in development and immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3337-3339. [PMID: 33847361 PMCID: PMC8042755 DOI: 10.1093/jxb/erab129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
- Correspondence:
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|