1
|
Lu X, Wang Y, Pan M, Chen S, Li R, Geng M, Chen Y, Liu J, Guo J, Yao Y. Mutation of MeMinD increased amyloplast size with a changed starch granule morphologenesis and structures in cassava storage roots. Carbohydr Polym 2025; 348:122884. [PMID: 39567162 DOI: 10.1016/j.carbpol.2024.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Amyloplasts are the sites of starch synthesis and accumulation. Little is known about amyloplast division and its effects on the size, structure, and physicochemical properties of starch granules. In this study, we created mutants of plastid division-related gene MeMinD by CRISPR/Cas9 technology, leading to the disruption of normal division of amyloplasts in cassava storage roots. The memind mutants exhibited significantly enlarged amyloplasts with an increased number of starch granules, and broader range of granule sizes. The loss of MeMinD function led to transcriptional reprogramming of gene expressions related to starch-synthesizing enzymes, affecting the fine structure of starch. Starch in memind mutant storage roots showed a significantly decreased proportion of shorter amylopectin chains and an increased proportion of medium and long chains, which ultimately led to a significant increase in apparent amylose content (AAC) in memind mutants compared to that in WT. The changes in starch granule size and structure resulted in a significant increase in onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc) of the gelatinization process, extending the time to reach peak temperature. These data suggest that regulating amyloplast division affects starch accumulation in cassava, presenting an effective strategy for developing novel cassava starch.
Collapse
Affiliation(s)
- Xiaohua Lu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yajie Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Mu Pan
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China
| | - Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Mengting Geng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
2
|
Mathura SR, Sutton F, Rouse-Miller J, Bowrin V. The molecular coordination of tuberization: Current status and future directions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102655. [PMID: 39520793 DOI: 10.1016/j.pbi.2024.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The integration of bulk transcriptomic, proteomic, and genomic data generated from numerous systems biology studies of tuberizing plants has resulted in a better understanding of the molecular and morphological aspects of tuberization. The identified conserved integrated hormonal, transcriptional, and metabolic pathways of tuberization in crops from various plant lineages support the hypothesis of a fundamental tuberization process. However, further studies are required to specify the additional processes defined by the genomics and phylogeny of the particular plant lineages, which control the morphological diversity of tubers. This review summarizes the latest molecular and morphological discoveries on the tuberization process in stem tubers and tuberous roots and discusses future trajectories of the field.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | | | - Judy Rouse-Miller
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Valerie Bowrin
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
3
|
Liu G, Zhang G, Wu Z, Lu W, Lin Y, Wang C, Shang X, Huang A, Luo J. Comparative proteomic analysis provides insights into wood formation in immature xylem at different ages in Eucalyptus urophylla × Eucalyptus grandis. FRONTIERS IN PLANT SCIENCE 2024; 15:1431164. [PMID: 39539291 PMCID: PMC11557400 DOI: 10.3389/fpls.2024.1431164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Introduction Wood formation is a crucial developmental stage in the life cycle of a woody plant; this process has substantial scientific research implications and practical applications. However, the mechanisms underlying woody plant development, especially the process of wood formation, remain poorly understood. As eucalyptus is one of the fastest growing tree species in the world, understanding the mechanism of wood formation in eucalyptus will greatly promote the development of molecular breeding technology for forest trees. Results In this study, we investigated the proteomic profile of immature xylem at four different ages of Eucalyptus urophylla × Eucalyptus grandis (E. urograndis) using iTARQ technology. We identified 5236 proteins and 492 differentially abundant proteins (DAPs). The expression profiles of the DAPs corresponding to coding genes associated with wood formation were assessed using qRT-PCR. From the different expression profiles, it is inferred that the genes encoding kinesin, CDKD3, EXPA13, EXPA2, XTH27, EGases, UGT76E2, LAC, CCoAMT, CesA3, PAL, and CAD may undergo posttranscriptional regulation (PTR). Additionally, the genes encoding EIN2, ETR, MC4-like, and XCP may undergo posttranslational modifications (PTMs). Conclusions We investigated changes in wood formation-related proteins at the protein abundance level in the immature xylem of E. urograndis, thereby elucidating potential regulatory mechanisms of key proteins involved in eucalyptus wood formation. This study may provide theoretical guidance for further research on molecular breeding techniques and genetic improvement related to the cultivation of rapidly growing and high-quality trees.
Collapse
Affiliation(s)
- Guo Liu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Guowu Zhang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wanhong Lu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yan Lin
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Chubiao Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiuhua Shang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Anying Huang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jianzhong Luo
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Liu N, Guo Q, Shi F, Gao L, Liu Y, Wang Y, Gong Z, Liu H, Sun Y, Li B, Ni B, Zhu RL, Zhao Q. Developmentally controlled subcellular remodeling and VND-initiated vacuole-executed PCD module shape xylem-like cells in peat moss. Commun Biol 2024; 7:1323. [PMID: 39402183 PMCID: PMC11473775 DOI: 10.1038/s42003-024-07003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/02/2024] [Indexed: 10/17/2024] Open
Abstract
Peat moss (Sphagnum) is a non-vascular higher plant with unique xylem-like hyaline (H) cells that are accompanied by photosynthetic chlorophyllous cells. These cellular structures play crucial roles in water storage and carbon sequestration. However, it is largely unknown how peat moss develops the H cells. This study systematically explored the Sphagnum Developmental Cell Atlas and Lineage and classified leaf cell development into two lineages with six stages (S0-S5) based on changes in key cellular traits, including the formation of spiral secondary cell walls (S4) and the presence of water pores (S5). Cell lineage-specific subcellular remodeling was transcriptionally regulated during leaf development, and vacuole-mediated clearance of organelles and cell death led to mature dead H cells. Interestingly, expression of land plant conserved Vascular-related NAC Domain (VND) genes correlated with H cell formation. Overall, these results suggest that the origination of xylem-like H cells is related to VND, likely through the neofunctionalization of vacuole-mediated cell death to attempt xylem formation in peat moss, suggesting potential uncoupling of xylem and phloem cell origins. This study positions peat moss as a potential model organism for studying integrative evolutionary cell biology.
Collapse
Affiliation(s)
- Ningjing Liu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuqi Guo
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Fangming Shi
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Lei Gao
- The IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongqi Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Zhiwei Gong
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Haoran Liu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yue Sun
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Rui-Liang Zhu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, 200241, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
5
|
Rüscher D, Vasina VV, Knoblauch J, Bellin L, Pommerrenig B, Alseekh S, Fernie AR, Neuhaus HE, Knoblauch M, Sonnewald U, Zierer W. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. PLANT PHYSIOLOGY 2024; 196:1322-1339. [PMID: 38775728 PMCID: PMC11483629 DOI: 10.1093/plphys/kiae298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 10/03/2024]
Abstract
Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilating unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.
Collapse
Affiliation(s)
- David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Leo Bellin
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Saleh Alseekh
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Plunkert ML, Martínez-Gómez J, Madrigal Y, Hernández AI, Tribble CM. Tuber, or not tuber: Molecular and morphological basis of underground storage organ development. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102544. [PMID: 38759482 DOI: 10.1016/j.pbi.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.
Collapse
Affiliation(s)
- Madison L Plunkert
- Department of Plant Biology, Michigan State University, East Lansing, USA; Plant Resilience Institute, Michigan State University, East Lansing, USA.
| | - Jesús Martínez-Gómez
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Carrie M Tribble
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, USA
| |
Collapse
|
7
|
Solé-Gil A, López A, Ombrosi D, Urbez C, Brumós J, Agustí J. Identification of MeC3HDZ1/MeCNA as a potential regulator of cassava storage root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111938. [PMID: 38072332 DOI: 10.1016/j.plantsci.2023.111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
The storage root (SR) of cassava is the main staple food in sub-Saharan Africa, where it feeds over 500 million people. However, little is known about the genetic and molecular regulation underlying its development. Unraveling such regulation would pave the way for biotechnology approaches aimed at enhancing cassava productivity. Anatomical studies indicate that SR development relies on the massive accumulation of xylem parenchyma, a cell-type derived from the vascular cambium. The C3HDZ family of transcription factors regulate cambial cells proliferation and xylem differentiation in Arabidopsis and other species. We thus aimed at identifying C3HDZ proteins in cassava and determining whether any of them shows preferential activity in the SR cambium and/or xylem. Using phylogeny and synteny studies, we identified eight C3HDZ proteins in cassava, namely MeCH3DZ1-8. We observed that MeC3HDZ1 is the MeC3HDZ gene displaying the highest expression in SR and that, within that organ, the gene also shows high expression in cambium and xylem. In-silico analyses revealed the existence of a number of potential C3HDZ targets displaying significant preferential expression in the SR. Subsequent Y1H analyses proved that MeC3HDZ1 can bind canonical C3HDZ binding sites, present in the promoters of these targets. Transactivation assays demonstrated that MeC3HDZ1 can regulate the expression of genes downstream of promoters harboring such binding sites, thereby demonstrating that MeC3HDZ1 has C3HDZ transcription factor activity. We conclude that MeC3HDZ1 may be a key factor for the regulation of storage root development in cassava, holding thus great promise for future biotechnology applications.
Collapse
Affiliation(s)
- Anna Solé-Gil
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Anselmo López
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Damiano Ombrosi
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Cristina Urbez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Javier Brumós
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain.
| | - Javier Agustí
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain.
| |
Collapse
|
8
|
Mathura SR, Sutton F, Bowrin V. Genome-wide identification, characterization, and expression analysis of the sweet potato (Ipomoea batatas [L.] Lam.) ARF, Aux/IAA, GH3, and SAUR gene families. BMC PLANT BIOLOGY 2023; 23:622. [PMID: 38057702 DOI: 10.1186/s12870-023-04598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Auxins are known to have roles in the tuberization process in sweet potato (Ipomoea batatas [L.] Lam.) and these effects are mediated by various auxin signalling gene families. In this study, an analysis of the sweet potato genome was performed to identify the ARF, Aux/IAA, GH3, and SAUR auxin signalling gene family members in this crop. RESULTS A total of 29 ARF, 39 Aux/IAA, 13 GH3, and 200 SAUR sequences were obtained, and their biochemical properties and gene expression profiles were analysed. The sequences were relatively conserved based on exon-intron structure, motif analysis, and phylogenetic tree construction. In silico expression analyses of the genes in fibrous and storage roots indicated that many sequences were not differentially expressed in tuberizing and non-tuberizing roots. However, some ARF, Aux/IAA, and SAUR genes were up-regulated in tuberizing storage roots compared to non-tuberizing fibrous roots while many GH3 genes were down-regulated. Additionally, these genes were expressed in a variety of plant parts, with some genes being highly expressed in shoots, leaves, and stems while others had higher expression in the roots. Some of these genes are up-regulated during the plant's response to various hormone treatments and abiotic stresses. Quantitative RT-PCR confirmation of gene expression was also conducted, and the results were concordant with the in silico analyses. A protein-protein interaction network was predicted for the differentially expressed genes, suggesting that these genes likely form part of a complex regulatory network that controls tuberization. These results confirm those of existing studies that show that auxin signalling genes have numerous roles in sweet potato growth and development. CONCLUSION This study provides useful information on the auxin signalling gene families in Ipomoea batatas and suggests putative candidates for further studies on the role of auxin signalling in tuberization and plant development.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago.
| | | | - Valerie Bowrin
- The Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| |
Collapse
|
9
|
Chang E, Guo W, Chen J, Zhang J, Jia Z, Tschaplinski TJ, Yang X, Jiang Z, Liu J. Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111874. [PMID: 37742724 DOI: 10.1016/j.plantsci.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, Shandong 271000, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zeping Jiang
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China.
| |
Collapse
|
10
|
Sukko N, Kalapanulak S, Saithong T. Trehalose metabolism coordinates transcriptional regulatory control and metabolic requirements to trigger the onset of cassava storage root initiation. Sci Rep 2023; 13:19973. [PMID: 37968317 PMCID: PMC10651926 DOI: 10.1038/s41598-023-47095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
Cassava storage roots (SR) are an important source of food energy and raw material for a wide range of applications. Understanding SR initiation and the associated regulation is critical to boosting tuber yield in cassava. Decades of transcriptome studies have identified key regulators relevant to SR formation, transcriptional regulation and sugar metabolism. However, there remain uncertainties over the roles of the regulators in modulating the onset of SR development owing to the limitation of the widely applied differential gene expression analysis. Here, we aimed to investigate the regulation underlying the transition from fibrous (FR) to SR based on Dynamic Network Biomarker (DNB) analysis. Gene expression analysis during cassava root initiation showed the transition period to SR happened in FR during 8 weeks after planting (FR8). Ninety-nine DNB genes associated with SR initiation and development were identified. Interestingly, the role of trehalose metabolism, especially trehalase1 (TRE1), in modulating metabolites abundance and coordinating regulatory signaling and carbon substrate availability via the connection of transcriptional regulation and sugar metabolism was highlighted. The results agree with the associated DNB characters of TRE1 reported in other transcriptome studies of cassava SR initiation and Attre1 loss of function in literature. The findings help fill the knowledge gap regarding the regulation underlying cassava SR initiation.
Collapse
Affiliation(s)
- Nattavat Sukko
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|
11
|
Wang Y, Li J, Guo P, Liu Q, Ren S, Juan L, He J, Tan X, Yan J. Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase gene increased plant height and promoted secondary cell walls deposition in Arabidopsis. PLANTA 2023; 258:65. [PMID: 37566145 DOI: 10.1007/s00425-023-04222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
MAIN CONCLUSION Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis. Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Jian'an Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| | - Purui Guo
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Qian Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Shuangshuang Ren
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Lemei Juan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Jiacheng He
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| | - Jindong Yan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| |
Collapse
|
12
|
Mathura SR. Deciphering the hormone regulatory mechanisms of storage root initiation in sweet potato: challenges and future prospects. AOB PLANTS 2023; 15:plad027. [PMID: 37292251 PMCID: PMC10244897 DOI: 10.1093/aobpla/plad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Sweet potato (Ipomoea batatas) is an economically important food crop that is grown primarily for its edible storage roots. Several researchers have consequently been conducting studies to increase sweet potato yield, and an important aspect of this research involves understanding how storage root initiation occurs. Although significant progress has been made, several challenges associated with studying this crop have resulted in lagging progress compared to other crops and thus sweet potato storage root initiation is not clearly understood. This article highlights the most important aspects of the hormone signalling processes during storage root initiation that needs to be investigated further and suggests candidate genes that should be prioritized for further study, based on their importance in storage organ formation in other crops. Lastly, ways of overcoming the challenges associated with studying this crop are suggested.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
13
|
Song J, Fan B, Shao X, Zang Y, Wang D, Min Y. Single-cell transcriptome sequencing atlas of cassava tuberous root. FRONTIERS IN PLANT SCIENCE 2023; 13:1053669. [PMID: 36684718 PMCID: PMC9848496 DOI: 10.3389/fpls.2022.1053669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Single-cell transcriptome sequencing (ScRNA-seq) has emerged as an effective method for examining cell differentiation and development. In non-model plants, it hasn't been employed very much, especially in sink organs that are abundant in secondary metabolites. RESULTS In this study, we sequenced the single-cell transcriptomes at two developmental phases of cassava tuberous roots using the technology known as 10x Genomics (S1, S2). In total, 14,566 cells were grouped into 15 different cell types, primarily based on the marker genes of model plants known to exist. In the pseudotime study, the cell differentiation trajectory was defined, and the difference in gene expression between the two stages on the pseudotime axis was compared. The differentiation process of the vascular tissue and cerebral tissue was identified by the trajectory. We discovered the rare cell type known as the casparian strip via the use of up-regulated genes and pseudotime analysis, and we explained how it differentiates from endodermis. The successful creation of a protoplast isolation technique for organs rich in starch was also described in our study. DISCUSSION Together, we created the first high-resolution single-cell transcriptome atlas of cassava tuberous roots, which made significant advancements in our understanding of how these roots differentiate and develop.
Collapse
Affiliation(s)
- Jinjia Song
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Benji Fan
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Xiaodie Shao
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Yuwei Zang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Yi Min
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
14
|
Zierer W, Anjanappa RB, Lamm CE, Chang SH, Gruissem W, Sonnewald U. A promoter toolbox for tissue-specific expression supporting translational research in cassava ( Manihot esculenta). FRONTIERS IN PLANT SCIENCE 2022; 13:1042379. [PMID: 36605961 PMCID: PMC9807883 DOI: 10.3389/fpls.2022.1042379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
There is an urgent need to stimulate agricultural output in many tropical and subtropical countries of the world to combat hunger and malnutrition. The starchy crop cassava (Manihot esculenta), growing even under sub-optimal conditions, is a key staple food in these regions, providing millions of people with food. Cassava biotechnology is an important technique benefiting agricultural progress, but successful implementation of many biotechnological concepts depends on the availability of the right spatiotemporal expression tools. Yet, well-characterized cassava promoters are scarce in the public domain. In this study, we investigate the promoter activity and tissue specificity of 24 different promoter elements in stably transformed cassava plants. We show that many of the investigated promoters, especially from other species, have surprisingly low activity and/or tissue specificity, but feature several promoter sequences that can drive tissue-specific expression in either autotrophic-, transport- or storage tissues. We especially highlight pAtCAB1, pMePsbR, and pSlRBCS2 as strong and specific source promoters, pAtSUC2, pMeSWEET1-like, and pMeSUS1 as valuable tools for phloem and phloem parenchyma expression, and pStB33, pMeGPT, pStGBSS1, as well as pStPatatin Class I, as strong and specific promoters for heterotrophic storage tissues. We hope that the provided information and sequences prove valuable to the cassava community by contributing to the successful implementation of biotechnological concepts aimed at the improvement of cassava nutritional value and productivity.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ravi Bodampalli Anjanappa
- Plant Biotechnology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Christian Erwin Lamm
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Shu-Heng Chang
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Uwe Sonnewald
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
15
|
Sergeeva EM, Larichev KT, Salina EA, Kochetov AV. Starch metabolism in potato <i>Solanum tuberosum</i> L. Vavilovskii Zhurnal Genet Selektsii 2022; 26:250-263. [PMID: 35774362 PMCID: PMC9168746 DOI: 10.18699/vjgb-22-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Starch is a major storage carbohydrate in plants. It is an important source of calories in the human and animal diet. Also, it is widely used in various industries. Native starch consists of water-insoluble semicrystalline granules formed by natural glucose polymers amylose and amylopectin. The physicochemical properties of starch are determined by the amylose:amylopectin ratio in the granule and degrees of their polymerization and phosphorylation. Potato Solanum tuberosum L. is one of the main starch-producing crops. Growing industrial needs necessitate the breeding of plant varieties with increased starch content and specified starch properties. This task demands detailed information on starch metabolism in the producing plant. It is a complex process, requiring the orchestrated work of many enzymes, transporter and targeting proteins, transcription factors, and other regulators. Two types of starch are recognized with regard to their biological functions. Transitory starch is synthesized in chloroplasts of photosynthetic organs and degraded in the absence of light, providing carbohydrates for cell needs. Storage starch is synthesized and stored in amyloplasts of storage organs: grains and tubers. The main enzymatic reactions of starch biosynthesis and degradation, as well as carbohydrate transport and metabolism, are well known in the case of transitory starch of the model plant Arabidopsis thaliana. Less is known about features of starch metabolism in storage organs, in particular, potato tubers. Several issues remain obscure: the roles of enzyme isoforms and different regulatory factors in tissues at various plant developmental stages and under different environmental conditions; alternative enzymatic processes; targeting and transport proteins. In this review, the key enzymatic reactions of plant carbohydrate metabolism, transitory and storage starch biosynthesis,
and starch degradation are discussed, and features specific for potato are outlined. Attention is also paid to the
known regulatory factors affecting starch metabolism
Collapse
Affiliation(s)
- E. M. Sergeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - K. T. Larichev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. A. Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
16
|
Zierer W, Rüscher D, Sonnewald U, Sonnewald S. Tuber and Tuberous Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:551-580. [PMID: 33788583 DOI: 10.1146/annurev-arplant-080720-084456] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root and tuber crops have been an important part of human nutrition since the early days of humanity, providing us with essential carbohydrates, proteins, and vitamins. Today, they are especially important in tropical and subtropical regions of the world, where they help to feed an ever-growing population. Early induction and storage organ size are important agricultural traits, as they determine yield over time. During potato tuberization, environmental and metabolic status are sensed, ensuring proper timing of tuberization mediated by phloem-mobile signals. Coordinated cellular restructuring and expansion growth, as well as controlled storage metabolism in the tuber, are executed. This review summarizes our current understanding of potato tuber development and highlights similarities and differences to important tuberous root crop species like sweetpotato and cassava. Finally, we point out knowledge gaps that need to be filled before a complete picture of storage organ development can emerge.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| |
Collapse
|
17
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3688-3703. [PMID: 33712830 PMCID: PMC8096603 DOI: 10.1093/jxb/erab106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Present address: KWS Saat SE, Grimsehlstraße 31, D-37574 Einbeck, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Correspondence:
| |
Collapse
|