1
|
Park TK, Lee SH, Kim SH, Ko YW, Oh E, Kim YJ, Kim TW. Dual regulation of stomatal development by brassinosteroid in Arabidopsis hypocotyls. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39714086 DOI: 10.1111/jipb.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
Stomata are epidermal pores that are essential for water evaporation and gas exchange in plants. Stomatal development is orchestrated by intrinsic developmental programs, hormonal controls, and environmental cues. The steroid hormone brassinosteroid (BR) inhibits stomatal lineage progression by regulating BIN2 and BSL proteins in leaves. Notably, BR is known to promote stomatal development in hypocotyls as opposed to leaves; however, its molecular mechanism remains elusive. Here, we show that BR signaling has a dual regulatory role in controlling stomatal development in Arabidopsis hypocotyls. We found that brassinolide (BL; the most active BR) regulates stomatal development differently in a concentration-dependent manner. At low and moderate concentrations, BL promoted stomatal formation by upregulating the expression of SPEECHLESS (SPCH) and its target genes independently of BIN2 regulation. In contrast, high concentrations of BL and bikinin, which is a specific inhibitor of BIN2 and its homologs, significantly reduced stomatal formation. Genetic analyses revealed that BIN2 regulates stomatal development in hypocotyls through molecular mechanisms distinct from the regulatory mechanism of the cotyledons. In hypocotyls, BIN2 promoted stomatal development by inactivating BZR1, which suppresses the expression of SPCH and its target genes. Taken together, our results suggest that BR precisely coordinates the stomatal development of hypocotyls using an antagonistic control of SPCH expression via BZR1-dependent and BZR1-independent transcriptional regulation.
Collapse
Affiliation(s)
- Tae-Ki Park
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - So-Hee Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeong-Woo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Zhang C, Liang Q, Wang Y, Liang S, Huang Z, Li H, Escalona VH, Yao X, Cheng W, Chen Z, Zhang F, Wang Q, Tang Y, Sun B. BoaBZR1.1 mediates brassinosteroid-induced carotenoid biosynthesis in Chinese kale. HORTICULTURE RESEARCH 2024; 11:uhae104. [PMID: 38883328 PMCID: PMC11179724 DOI: 10.1093/hr/uhae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/28/2024] [Indexed: 06/18/2024]
Abstract
Brassinazole resistant 1 (BZR1), a brassinosteroid (BR) signaling component, plays a pivotal role in regulating numerous specific developmental processes. Our study demonstrated that exogenous treatment with 2,4-epibrassinolide (EBR) significantly enhanced the accumulation of carotenoids and chlorophylls in Chinese kale (Brassica oleracea var. alboglabra). The underlying mechanism was deciphered through yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays, whereby BoaBZR1.1 directly interacts with the promoters of BoaCRTISO and BoaPSY2, activating their expression. This effect was further validated through overexpression of BoaBZR1.1 in Chinese kale calli and plants, both of which exhibited increased carotenoid accumulation. Additionally, qPCR analysis unveiled upregulation of carotenoid and chlorophyll biosynthetic genes in the T1 generation of BoaBZR1.1-overexpressing plants. These findings underscored the significance of BoaBZR1.1-mediated BR signaling in regulating carotenoid accumulation in Chinese kale and suggested the potential for enhancing the nutritional quality of Chinese kale through genetic engineering of BoaBZR1.1.
Collapse
Affiliation(s)
- Chenlu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiannan Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yilin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Sha Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Victor Hugo Escalona
- Faculty of Agricultural Sciences, University of Chile, Santiago 8820000, Metropolitan Region, Chile
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Zhifeng Chen
- College of Biology and Agriculture Technology, Zunyi Normal University, Zunyi 563000, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Shi L, Li Y, Lin M, Liang Y, Zhang Z. Profiling the Bioactive Compounds in Broccoli Heads with Varying Organ Sizes and Growing Seasons. PLANTS (BASEL, SWITZERLAND) 2024; 13:1329. [PMID: 38794399 PMCID: PMC11125000 DOI: 10.3390/plants13101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Broccoli is a rich source of diverse bioactive compounds, but how their contents are influenced by different growing seasons and variations in broccoli head sizes remains elusive. To address this question, we quantified sixteen known bioactive compounds and seven minerals in broccoli with varying head sizes obtained in two different growing seasons. Our results suggest that the contents of vitamin C, total phenols, carotenoids, and glucoraphanin were significantly higher in samples from the summer-autumn season, showing increases of 157.46%, 34.74%, 51.80%, and 17.78%, respectively, compared with those from the winter-spring season. Moreover, chlorogenic acid is a phenolic compound with relatively high contents among the six detected, while beta-sitosterol is the sterol with relatively high contents. Further, principal component analysis was conducted to rank the comprehensive scores of the profiles of phenolic compounds, phytosterols, and minerals, demonstrating that the broccoli samples grown during the summer-autumn season achieved the highest composite scores. Our results indicate that broccoli heads from the summer-autumn season are richer in a combination of bioactive compounds and minerals than those from the winter-spring season based on the composite score. This study extends our understanding of the nutrition profiles in broccoli and also lays the foundation for breeding broccoli varieties with improved nutrition quality.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Yahui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Menghua Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| | - Ying Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (L.S.); (Y.L.); (M.L.)
| |
Collapse
|
4
|
Kim YW, Youn JH, Roh J, Kim JM, Kim SK, Kim TW. Brassinosteroids enhance salicylic acid-mediated immune responses by inhibiting BIN2 phosphorylation of clade I TGA transcription factors in Arabidopsis. MOLECULAR PLANT 2022; 15:991-1007. [PMID: 35524409 DOI: 10.1016/j.molp.2022.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) plays an important role in plant immune response, including resistance to pathogens and systemic acquired resistance. Two major components, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPRs) and TGACG motif-binding transcription factors (TGAs), are known to mediate SA signaling, which might also be orchestrated by other hormonal and environmental changes. Nevertheless, the molecular and functional interactions between SA signaling components and other cellular signaling pathways remain poorly understood. Here we showed that the steroid plant hormone brassinosteroid (BR) promotes SA responses by inactivating BR-INSENSITIVE 2 (BIN2), which inhibits the redox-sensitive clade I TGAs in Arabidopsis. We found that both BR and the BIN2 inhibitor bikinin synergistically increase SA-mediated physiological responses, such as resistance to Pst DC3000. Our genetic and biochemical analyses indicated that BIN2 functionally interacts with TGA1 and TGA4, but not with other TGAs. We further demonstrated that BIN2 phosphorylates Ser-202 of TGA4, resulting in the suppression of the redox-dependent interaction between TGA4 and NPR1 as well as destabilization of TGA4. Consistently, transgenic Arabidopsis overexpressing TGA4-YFP with a S202A mutation displayed enhanced SA responses compared to the wild-type TGA4-YFP plants. Taken together, these results suggest a novel crosstalk mechanism by which BR signaling coordinates the SA responses mediated by redox-sensitive clade I TGAs.
Collapse
Affiliation(s)
- Yeong-Woo Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jeong-Mok Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06973, Republic of Korea.
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Maize ZmBES1/BZR1-3 and -9 Transcription Factors Negatively Regulate Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23116025. [PMID: 35682705 PMCID: PMC9181540 DOI: 10.3390/ijms23116025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1(BZR1) transcription factors play crucial roles in plant growth, development, and stress response. However, little is known about the function of maize’s BES1/BZR1s. In this study, the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were cloned from maize’s inbred line, B73, and they were functionally evaluated by analyzing their expression pattern, subcellular localization, transcriptional activation activity, as well as their heterologous expression in Arabidopsis, respectively. The results of the qRT-PCR showed that the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were predominantly expressed in the root, and their expression was significantly down-regulated by drought stress. The ZmBES1/BZR1-3 and ZmBES1/BZR1-9 proteins localized in the nucleus but showed no transcriptional activation activity as a monomer. Subsequently, it was found that the heterologous expression of the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes in Arabidopsis decreased drought tolerance, respectively. The transgenic lines showed a more serious wilting phenotype, shorter root length, lower fresh weight, and higher relative electrolyte leakage (REL) and malondialdehyde (MDA) content compared to the control under drought stress. The RNA-sequencing data showed that the 70.67% and 93.27% differentially expressed genes (DEGs) were significantly down-regulated in ZmBES1/BZR1-3 and ZmBES1/BZR1-9 transgenic Arabidopsis, respectively. The DEGs of ZmBES1/BZR1-3 gene’s expressing lines were mainly associated with oxidative stress response and amino acid metabolic process and enriched in phenylpropanoid biosynthesis and protein processing in the endoplasmic reticulum. But the DEGs of the ZmBES1/BZR1-9 gene’s expressing lines were predominantly annotated with water deprivation, extracellular stimuli, and jasmonic acid and enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. Moreover, ZmBES1/BZR1-9 increased stomatal aperture in transgenic Arabidopsis under drought stress. This study indicates that ZmBES1/BZR1-3 and ZmBES1/BZR1-9 negatively regulate drought tolerance via different pathways in transgenic Arabidopsis, and it provides insights into the underlying the function of BES1/BZR1s in crops.
Collapse
|