1
|
Li W, Zhan Q, Guan Y, Wang L, Li S, Zheng S, Ma H, Liu Y, Ding L, Zhao S, Wang Z, Jiang J, Fang W, Chen F, Chen S, Guan Z. Heterografting enhances chrysanthemum resistance to Alternaria alternata via jasmonate-mediated increases in trichomes and terpenoids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6523-6541. [PMID: 38745476 DOI: 10.1093/jxb/erae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Trichomes are specialized hair-like structures in the epidermal cells of the above-ground parts of plants and help to protect them from pests and pathogens, and produce valuable metabolites. Chrysanthemum morifolium, which is used in tea products, has both ornamental and medicinal value; however, it is susceptible to infection by the fungus Alternaria alternata, which can result in substantial economic losses. Increasing the density of glandular trichomes enhances disease resistance and improves the production of medicinal metabolites in chrysanthemums, and jasmonate (JA) is known to promote the formation of trichomes in various plants. However, it remains unclear whether glandular trichomes in chrysanthemums are regulated by JA. In addition, grafting, a technique that can improve plant resistance to biotic stresses, has been poorly examined for its impact on glandular trichomes, terpenoids, and disease resistance. In this study, we demonstrate that grafting with Artemisia vulgaris rootstocks improves the resistance of chrysanthemum scions to A. alternata. Heterografted chrysanthemums exhibited higher trichome density and terpenoid content compared to self-grafted counterparts. Transcriptome analysis highlighted the significant role of CmJAZ1-like in disease resistance in heterografted chrysanthemums. Lines overexpressing CmJAZ1-like exhibited sensitivity to A. alternata, and this was characterized by reduced glandular trichome density and limited terpenoid content. Conversely, CmJAZ1-like silenced lines exhibited resistance to A. alternata and showed increased glandular trichome density and terpenoid content. Higher JA content was found in the heterografted chrysanthemum scions compared to self-grafted ones. Furthermore, we established that JA promoted the development of glandular trichomes and the synthesis of terpenoids while also inducing the degradation of CmJAZ1-like proteins in chrysanthemums. Our findings suggest that higher JA increases trichome density and terpenoid content, thereby enhancing resistance to A. alternata by regulating CmJAZ1-like in heterografted chrysanthemums.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingling Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxiao Guan
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanhu Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Peng Q, Shrestha A, Zhang Y, Fan J, Yu F, Wang G. How lignin biosynthesis responds to nitrogen in plants: a scoping review. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:881-895. [PMID: 39032003 DOI: 10.1111/plb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 07/22/2024]
Abstract
Nitrogen (N) plays a critical role in the functioning of key amino acids and synthetic enzymes responsible for the various stages of lignin biosynthesis. However, the precise mechanisms through which N influences lignin biosynthesis have not been fully elucidated. This scoping review explores how lignin biosynthesis responds to N in plants. A systematic search of the literature in several databases was conducted using relevant keywords. Only 44 of the 1842 selected studies contained a range of plant species, experimental conditions, and research approaches. Lignin content, structure, and biosynthetic pathways in response to N are discussed, and possible response mechanisms of lignin under low N are proposed. Among the selected studies, 64.52% of the studies reter to lignin content found a negative correlation between N availability and lignin content. Usually, high N decreases the lignin content, delays cell lignification, increases p-hydroxyphenyl propane (H) monomer content, and regulates lignin synthesis through the expression of key genes (PAL, 4CL, CCR, CAD, COMT, LAC, and POD) encoding miRNAs and transcription factors (e.g., MYB, bHLH). N deficiency enhances lignin synthesis through the accumulation of phenylpropanoids, phenolics, and soluble carbohydrates, and indirect changes in phytohormones, secondary metabolites, etc. This review provides new insights and important references for future studies on the regulation of lignin biosynthesis.
Collapse
Affiliation(s)
- Q Peng
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - A Shrestha
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Zhang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J Fan
- College of Horticulture, Jinling Institute of Technology, Nanjing, Jiangsu, China
| | - F Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - G Wang
- Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Gulzar F, Yang H, Chen J, Hassan B, Huang X, Qiong F. 6-BA Reduced Yield Loss under Waterlogging Stress by Regulating the Phenylpropanoid Pathway in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:1991. [PMID: 39065518 PMCID: PMC11281113 DOI: 10.3390/plants13141991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Waterlogging stress causes substantial destruction to plant growth and production under climatic fluctuations globally. Plants hormones have been widely explored in numerous crops, displaying an imperative role in crop defense and growth mechanism. However, there is a paucity of research on the subject of plant hormones regulating waterlogging stress responses in wheat crop. In this study, we clarified the role of 6-BA in waterlogging stress through inducing phenylpropanoid biosynthesis in wheat. The application of 6-BA (6-benzyladenine) enhanced the growth and development of wheat plants under waterlogging stress, which was accompanied by reduced electrolyte leakage, high chlorophyll, and soluble sugar content. ROS scavenging was also enhanced by 6-BA, resulting in reduced MDA and H2O2 accumulation and amplified antioxidant enzyme activities. Additionally, under the effect of 6-BA, the acceleration of lignin content and accumulation in the cell walls of wheat tissues, along with the activation of PAL (phenylalanine ammonia lyase), TAL (tyrosine ammonia lyase), and 4CL (4-hydroxycinnamate CoA ligase) activities and the increase in the level of transcription of the TaPAL and Ta4CL genes, were observed under waterlogging stress. Also, 6-BA improved the root growth system under waterlogging stress conditions. Further qPCR analysis revealed increased auxin signaling (TaPR1) in 6-BA-treated plants under waterlogging stress that was consistent with the induction of endogenous IAA hormone content under waterlogging stress conditions. Here, 6-BA also reduced yield loss, as compared to control plants. Thus, the obtained data suggested that, under the application of 6-BA, phenylpropanoid metabolism (i.e., lignin) was stimulated, playing a significant role in reducing the negative effects of waterlogging stress on yield, as evinced by the improved plant growth parameters.
Collapse
Affiliation(s)
- Faiza Gulzar
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
| | - Jiabo Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
| | - Beenish Hassan
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Fangao Qiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, China; (F.G.); (J.C.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
- Key Laboratory of Crop Ecophysiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| |
Collapse
|
4
|
Li C, Wang L, Su J, Li W, Tang Y, Zhao N, Lou L, Ou X, Jia D, Jiang J, Chen S, Chen F. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in chrysanthemum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1479-1492. [PMID: 37952115 DOI: 10.1093/jxb/erad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ethylene-responsive factors (ERF) play an important role in plant responses to waterlogging stress. However, the function and mechanism of action of ERFVIII in response to waterlogging stress remain poorly understood. In this study, we found that expression of the ERF VIIIa gene CmERF4 in chrysanthemum was induced by waterlogging stress. CmERF4 localized to the nucleus when expressed in tobacco leaves. Yeast two-hybrid and luciferase assays showed that CmERF4 is a transcriptional inhibitor. CmERF4 overexpression in chrysanthemum reduced plant waterlogging tolerance, whereas overexpression of the chimeric activator CmERF4-VP64 reversed its transcriptional activity, promoting higher waterlogging tolerance than that observed in wild-type plants, indicating that CmERF4 negatively regulates waterlogging tolerance. Transcriptome profiling showed that energy metabolism and reactive oxygen species (ROS) pathway-associated genes were differentially expressed between CmERF4-VP64 and wild-type plants. RT-qPCR analysis of selected energy metabolism and reactive oxygen species-related genes showed that the gene expression patterns were consistent with the expression levels obtained from RNA-seq analysis. Overall, we identified new functions of CmERF4 in negatively regulating chrysanthemum waterlogging tolerance by modulating energy metabolism and ROS pathway genes.
Collapse
Affiliation(s)
- Chuanwei Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenjie Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yun Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Nan Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - La Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaoli Ou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
5
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Li Q, Wang G, Zhang L, Zhu S. AcbHLH144 transcription factor negatively regulates phenolic biosynthesis to modulate pineapple internal browning. HORTICULTURE RESEARCH 2023; 10:uhad185. [PMID: 37899952 PMCID: PMC10611554 DOI: 10.1093/hr/uhad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/03/2023] [Indexed: 10/31/2023]
Abstract
Internal browning (IB), a major physiological disorder of pineapples, usually happens in postharvest processes, but the underlying mechanism remains elusive. The bHLH transcription factors are involved in regulating various biological processes, but whether they could regulate tissue browning in fruit during storage remains unknown. Here we showed that the phenolic biosynthesis pathway was activated in pineapples showing IB following 9 days of storage. AcbHLH144 expression was the highest of the 180 transcription factors identified, downregulated in pineapple with IB, and negatively correlated with the major phenolic biosynthetic genes. AcbHLH144 was shown to be localized in the nucleus and its transient overexpression in pineapples and overexpression in Arabidopsis decreased phenolic biosynthesis. The yeast one-hybrid assay and electrophoretic mobility shift assay showed that AcbHLH144 directly bound to the Ac4CL5 promoter and the dual-luciferase reporter assay showed that it inactivated Ac4CL5 transcription. These results strongly suggest AcbHLH144 as a repressor for phenolic biosynthesis. Abscisic acid (ABA) alleviated IB, reduced phenolic accumulation, and downregulated phenolic biosynthetic genes, including Ac4CL5. Transcriptomic analysis showed that AcbHLH144 was the most upregulated of all 39 bHLHs in response to ABA. ABA enhanced AcbHLH144 expression, reduced phenolic contents, and downregulated phenolic biosynthetic genes in pineapples transiently overexpressing AcbHLH144. Moreover, ABA enhanced enzyme activity of GUS driven by the AcbHLH144 promoter. These results showed that AcbHLH144 as a repressor for phenolic biosynthesis could be activated by ABA. Collectively, the work demonstrated that AcbHLH144 negatively regulated phenolic biosynthesis via inactivating Ac4CL5 transcription to modulate pineapple IB. The findings provide novel insight into the role of AcbHLH144 in modulating pineapple IB during postharvest processes.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guang Wang
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijiang Zhu
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Xu J, Du R, Wang Y, Chen J. Wound-Induced Temporal Reprogramming of Gene Expression during Agarwood Formation in Aquilaria sinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2901. [PMID: 37631113 PMCID: PMC10459772 DOI: 10.3390/plants12162901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
Agarwood is a resinous heartwood of Aquilaria sinensis that is formed in response to mechanical wounding. However, the transcriptional response of A. sinensis to mechanical wounding during the agarwood formation process is still unclear. Here, three five-year-old A. sinensis trees were mechanically damaged by a chisel, and time-series transcriptomic analysis of xylem tissues in the treated area (TA) was performed at 15 (TA1), 70 (TA2) and 180 days after treatment (TA3). Samples from untreated areas at the corresponding time points (UA1, UA2, UA3, respectively) were collected as controls. A total of 1862 (TA1 vs. UA1), 961 (TA2 vs. UA2), 1370 (TA3 vs. UA3), 3305 (TA2 vs. TA1), 2625 (TA3 vs. TA1), 2899 (TA3 vs. TA2), 782 (UA2 vs. UA1), 4443 (UA3 vs. UA1) and 4031 (UA3 vs. UA2) genes were differentially expressed (DEGs). Functional enrichment analysis showed that DEGs were significantly enriched for secondary metabolic processes, signal transduction and transcriptional regulation processes. Most of the genes involved in lignin biosynthesis were more abundant in the TA groups, which included phenylalanine ammonia-lyase, 4-coumarate CoA ligase, cinnamate 4-hydroxylase, caffeoyl-CoA O-methyltransferase and cinnamoyl-CoA reductase. DEGs involved in sesquiterpene biosynthesis were also identified. Hydroxymethylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, phosphomevalonate kinase and terpene synthase genes were significantly increased in the TA groups, promoting sesquiterpene biosynthesis in the wounded xylem tissues. The TF-gene transcriptomic networks suggested that MYB DNA-binding, NAM, WRKY, HLH and AP2 TFs co-expressed with genes related to lignin and sesquiterpene synthesis, indicating their critical regulatory roles in the biosynthesis of these compounds. Overall, our study reveals a dynamic transcriptional response of A. sinensis to mechanical wounding, provides a resource for identifying candidate genes for molecular breeding of agarwood quality, and sheds light on the molecular mechanisms of agarwood formation in A. sinensis.
Collapse
Affiliation(s)
- Jieru Xu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ruyue Du
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yue Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jinhui Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Yu A, Zou H, Li P, Yao X, Guo J, Sun R, Wang G, Xi X, Liu A. Global Transcriptomic Analyses Provide New Insight into the Molecular Mechanisms of Endocarp Formation and Development in Iron Walnut (Juglans sigillata Dode). Int J Mol Sci 2023; 24:ijms24076543. [PMID: 37047516 PMCID: PMC10094949 DOI: 10.3390/ijms24076543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Iron walnut (Juglans sigillata Dode) is a native species in southwestern China that exhibits variation in both fruit morphology and shell thickness. However, the underlying molecular processes controlling hardened endocarp development in walnut has not yet been reported. Here, we generated transcriptional profiles of iron walnut endocarp at three developmental stages using “Dapao”, the most common commercial variety. Using pairwise comparisons between these three stages, a total of 8555 non-redundant differentially expressed genes (DEGs) were identified, and more than one-half of the total DEGs exhibited significant differential expression in stage I as compared with stage II or stage III, suggesting that the first stage may ultimately determine the final characteristics of the mature walnut shell. Furthermore, in the clustering analysis of the above DEGs, 3682, 2349, and 2388 genes exhibited the highest expression in stages I, II, and III, respectively. GO enrichment analysis demonstrated that the major transcriptional variation among the three developmental stages was caused by differences in cell growth, plant hormones, metabolic process, and phenylpropanoid metabolism. Namely, using the tissue-specific expression analysis and a gene co-expression network, we identified MADS-box transcription factor JsiFBP2 and bHLH transcription factor JsibHLH94 as candidate regulators of endocarp formation in the early stage, and JsiNAC56 and JsiMYB78 might play key roles in regulating the lignification process of endocarp in the late stage. This study provides useful information for further research to dissect the molecular mechanisms governing the shell formation and development of iron walnut.
Collapse
Affiliation(s)
- Anmin Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Hanyu Zou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Ping Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiaowei Yao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jiayu Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Rui Sun
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Gaosheng Wang
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Xueliang Xi
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Ai P, Xue J, Shi Z, Liu Y, Li Z, Li T, Zhao W, Khan MA, Kang D, Wang K, Wang Z. Genome-wide characterization and expression analysis of MYB transcription factors in Chrysanthemum nankingense. BMC PLANT BIOLOGY 2023; 23:140. [PMID: 36915063 PMCID: PMC10012607 DOI: 10.1186/s12870-023-04137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.
Collapse
Affiliation(s)
- Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Jundong Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhongya Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Yuru Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Tong Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Dongru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Kangxiang Wang
- Technology&Media University of Henan Kaifeng, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.
| |
Collapse
|
10
|
Tang Y, Lu L, Sheng Z, Zhao D, Tao J. An R2R3-MYB network modulates stem strength by regulating lignin biosynthesis and secondary cell wall thickening in herbaceous peony. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1237-1258. [PMID: 36633057 DOI: 10.1111/tpj.16107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Stem strength is an important agronomic trait affecting plant lodging, and plays an essential role in the quality and yield of plants. Thickened secondary cell walls in stems provide mechanical strength that allows plants to stand upright, but the regulatory mechanism of secondary cell wall thickening and stem strength in cut flowers remains unclear. In this study, first, a total of 11 non-redundant Paeonia lactiflora R2R3-MYBs related to stem strength were identified and isolated from cut-flower herbaceous peony, among which PlMYB43, PlMYB83 and PlMYB103 were the most upregulated differentially expressed genes. Then, the expression characteristics revealed that these three R2R3-MYBs were specifically expressed in stems and acted as transcriptional activators. Next, biological function verification showed that these P. lactiflora R2R3-MYBs positively regulated stem strength, secondary cell wall thickness and lignin deposition. Furthermore, yeast-one-hybrid and dual luciferase reporter assays demonstrated that they could bind to the promoter of caffeic acid O-methyltransferase gene (PlCOMT2) and/or laccase gene (PlLAC4), two key genes involved in lignin biosynthesis. In addition, the function of PlLAC4 in increasing lignin deposition was confirmed by virus-induced gene silencing and overexpression. Moreover, PlMYB83 could also act as a transcriptional activator of PlMYB43. The findings of the study propose a regulatory network of R2R3-MYBs modulating lignin biosynthesis and secondary cell wall thickening for improving stem lodging resistance, and provide a resource for molecular genetic engineering breeding of cut flowers.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhipeng Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Zhang X, Ding L, Song A, Li S, Liu J, Zhao W, Jia D, Guan Y, Zhao K, Chen S, Jiang J, Chen F. DWARF AND ROBUST PLANT regulates plant height via modulating gibberellin biosynthesis in chrysanthemum. PLANT PHYSIOLOGY 2022; 190:2484-2500. [PMID: 36214637 PMCID: PMC9706434 DOI: 10.1093/plphys/kiac437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 05/09/2023]
Abstract
YABBY (YAB) genes are specifically expressed in abaxial cells of lateral organs and determine abaxial cell fate. However, most studies have focused on few model plants, and the molecular mechanisms of YAB genes are not well understood. Here, we identified a YAB transcription factor in chrysanthemum (Chrysanthemum morifolium), Dwarf and Robust Plant (CmDRP), that belongs to a distinct FILAMENTOUS FLOWER (FlL)/YAB3 sub-clade lost in Brassicaceae. CmDRP was expressed in various tissues but did not show any polar distribution in chrysanthemum. Overexpression of CmDRP resulted in a semi-dwarf phenotype with a significantly decreased active GA3 content, while reduced expression generated the opposite phenotype. Furthermore, plant height of transgenic plants was partially rescued through the exogenous application of GA3 and Paclobutrazol, and expression of the GA biosynthesis gene CmGA3ox1 was significantly altered in transgenic plants. Yeast one-hybrid, luciferase, and chromatin immunoprecipitation-qPCR analyses showed that CmDRP could directly bind to the CmGA3ox1 promoter and suppress its expression. Our research reveals a nonpolar expression pattern of a YAB family gene in dicots and demonstrates it regulates plant height through the GA pathway, which will deepen the understanding of the genetic and molecular mechanisms of YAB genes.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayou Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Yuan G, Sun D, An G, Li W, Si W, Liu J, Zhu Y. Transcriptomic and Metabolomic Analysis of the Effects of Exogenous Trehalose on Salt Tolerance in Watermelon (Citrullus lanatus). Cells 2022; 11:cells11152338. [PMID: 35954182 PMCID: PMC9367363 DOI: 10.3390/cells11152338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Trehalose can effectively protect the biomolecular structure, maintain the balance of cell metabolism, and improve the tolerance to various abiotic stresses in plants. However, the molecular mechanism underlying the improvement in salt tolerance by exogenous trehalose in watermelon (Citrullus lanatus) seedlings is still unclear. To understand these molecular mechanisms, in this study, watermelon seedlings under salt stress were treated with various concentrations of exogenous trehalose. An amount of 20 mM exogenous trehalose significantly improved the physiological status; increased the activities of enzymes such as POD, SOD, and CAT; and increased the K+/Na+ ratio in watermelon seedlings under salt stress. RNA-seq and metabolomic analysis were performed to identify the specifically expressed genes and metabolites after trehalose treatment. Watermelon seedlings were divided into salt stress (CK2), control (CK1) and trehalose treatment (T) groups as per the treatment. Overall, 421 shared differentially expressed genes (DEGs) were identified in the two comparison groups, namely CK2–CK1 and T–CK2. Functional annotation and enrichment analysis revealed that the DEGs were mainly involved in MAPK signaling pathway for plant hormone signal transduction and phenylpropanoid biosynthesis. Furthermore, 129 shared differential expressed metabolites (DEMs) were identified in the two comparison groups using liquid chromatography–mass spectrometry, which were mainly involved in the metabolic pathway and phenylpropanoid biosynthesis. The combined transcriptomic and metabolomic analyses revealed that genes involved in phenylpropanoid biosynthesis, plant hormone signal transduction, and carbohydrate biosynthesis pathways, especially bHLH family transcription factors, played an important role in improving salt tolerance of watermelon seedlings after exogenous trehalose treatment.
Collapse
|