1
|
Joffe R, Tosens T, Berthe A, Jolivet Y, Niinemets Ü, Gandin A. Reduced mesophyll conductance under chronic O 3 exposure in poplar reflects thicker cell walls and increased subcellular diffusion pathway lengths according to the anatomical model. PLANT, CELL & ENVIRONMENT 2024; 47:4815-4832. [PMID: 39101376 DOI: 10.1111/pce.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Ozone (O3) is one of the most harmful and widespread air pollutants, affecting crop yield and plant health worldwide. There is evidence that O3 reduces the major limiting factor of photosynthesis, namely CO2 mesophyll conductance (gm), but there is little quantitative information of O3-caused changes in key leaf anatomical traits and their impact on gm. We exposed two O3-responsive clones of the economically important tree species Populus × canadensis Moench to 120 ppb O3 for 21 days. An anatomical diffusion model within the leaf was used to analyse the entire CO2 diffusion pathway from substomatal cavities to carboxylation sites and determine the importance of each structural and subcellular component as a limiting factor. gm decreased substantially under O3 and was found to be the most important limitation of photosynthesis. This decrease was mostly driven by an increased cell wall thickness and length of subcellular diffusion pathway caused by altered interchloroplast spacing and chloroplast positioning. By contrast, the prominent leaf integrative trait leaf dry mass per area was neither affected nor related to gm under O3. The observed relationship between gm and anatomy, however, was clone-dependent, suggesting that mechanisms regulating gm may differ considerably between closely related plant lines. Our results confirm the need for further studies on factors constraining gm under stress conditions.
Collapse
Affiliation(s)
- Ricardo Joffe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Tiina Tosens
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Audrey Berthe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Anthony Gandin
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
2
|
Singh P, Ansari N, Mishra AK, Agrawal M, Agrawal SB. Growth, ultrastructural and physiological characteristics of Abelmoschus cytotypes under elevated ozone stress: a study on ploidy-specific responses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23229. [PMID: 38310884 DOI: 10.1071/fp23229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Tropospheric ozone (O3 ) is a significant abiotic stressor whose rising concentration negatively influences plant growth. Studies related to the differential response of Abelmoschus cytotypes to elevated O3 treatment are scarce and need further exploration to recognise the role of polyploidisation in stress tolerance. In this study, we analysed the changes in growth pattern, ultrastructure, physiology and foliar protein profile occurring under O3 stress in Abelmoschus moschatus (monoploid), Abelmoschus esculentus (diploid) and Abelmoschus caillei (triploid). Our findings showed that higher stomatal conductance in A. moschatus triggered higher O3 intake, causing damage to stomatal cells and photosynthetic pigments. Additionally, it caused a reduction in photosynthetic rates, leading to reduced plant growth, total biomass and economic yield. This O3 -induced toxicity was less in diploid and triploid cytotypes of Abelmoschus . Protein profiling by sodium dodecyl sulpate-polyacrylamide gel electrophoresis showed a significant decrease in the commonly found RuBisCO larger and smaller subunits. The decrease was more prominent in monoploid compared to diploid and triploid. This study provides crucial data for research that aim to enhance plant ability to withstand O3 induced oxidative stress. Our findings may help in developing a tolerant variety through plant breeding techniques, which will be economically more advantageous in reaching the objective of sustainable production at the high O3 levels projected under a climate change scenario.
Collapse
Affiliation(s)
- Priyanka Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Kumar Mishra
- Department of Botany, School of Life Sciences, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Hoshika Y, Cotrozzi L, Gavrichkova O, Nali C, Pellegrini E, Scartazza A, Paoletti E. Functional responses of two Mediterranean pine species in an ozone Free-Air Controlled Exposure (FACE) experiment. TREE PHYSIOLOGY 2023; 43:1548-1561. [PMID: 37209141 DOI: 10.1093/treephys/tpad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Effects of the phytotoxic and widespread ozone (O3) pollution may be species specific, but knowledge on Mediterranean conifer responses to long-term realistic exposure is still limited. We examined responses regarding to photosynthesis, needle biochemical stress markers and carbon and nitrogen (N) isotopes of two Mediterranean pine species (Pinus halepensis Mill. and Pinus pinea L.). Seedlings were grown in a Free-Air Controlled Exposure experiment with three levels of O3 (ambient air, AA [38.7 p.p.b. as daily average]; 1.5 × AA and 2.0 × AA) during the growing season (May-October 2019). In P. halepensis, O3 caused a significant decrease in the photosynthetic rate, which was mainly due to a reduction of both stomatal and mesophyll diffusion conductance to CO2. Isotopic analyses indicated a cumulative or memory effect of O3 exposure on this species, as the negative effects were highlighted only in the late growing season in association with a reduced biochemical defense capacity. On the other hand, there was no clear effect of O3 on photosynthesis in P. pinea. However, this species showed enhanced N allocation to leaves to compensate for reduced photosynthetic N- use efficiency. We conclude that functional responses to O3 are different between the two species determining that P. halepensis with thin needles was relatively sensitive to O3, while P. pinea with thicker needles was more resistant due to a potentially low O3 load per unit mass of mesophyll cells, which may affect species-specific resilience in O3-polluted Mediterranean pine forests.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Olga Gavrichkova
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Headquarters Porano, Via G. Marconi 2, Porano 05010, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Andrea Scartazza
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Pisa Unit, Via Moruzzi 1, Pisa 56124, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
4
|
Xu Y, Feng Z, Peng J, Uddling J. Variations in leaf anatomical characteristics drive the decrease of mesophyll conductance in poplar under elevated ozone. GLOBAL CHANGE BIOLOGY 2023; 29:2804-2823. [PMID: 36718962 DOI: 10.1111/gcb.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Decline in mesophyll conductance (gm ) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3 ). Leaf anatomical traits are known to influence gm , but the potential effects of O3 -induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3 . The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm . We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3 -induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3 .
Collapse
Affiliation(s)
- Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|