1
|
Marques DN, Piotto FA, Azevedo RA. Phosphoproteomics: Advances in Research on Cadmium-Exposed Plants. Int J Mol Sci 2024; 25:12431. [PMID: 39596496 PMCID: PMC11594898 DOI: 10.3390/ijms252212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
With the increasing concern on heavy metal contamination in agriculture and other environmental settings, unraveling the mechanisms of cadmium (Cd) tolerance and response in plants has become highly important. Ongoing plant Cd research over the years has focused on strategic and relevant aspects, including molecular, biochemical, and physiological processes. From this perspective, phosphoproteomics appears to be an innovative and powerful approach to investigating plant responses to Cd stress. Here, we summarize progress in plant Cd research across different plant species regarding large-scale phosphoproteomic investigations. Some studies revealed major proteins participating in detoxification, stress signaling, and metabolism, along with their regulation through phosphorylation, which modulates the plant's defense against Cd. However, many pathways remain unexplored. Expanding these studies will help our ability to alleviate Cd stress and provide further information concerning involved mechanisms. Our purpose is to inspire researchers to further explore the use of phosphoproteomics in unraveling such complex mechanisms of Cd tolerance and response across various plant species, with the ultimate aim of enhancing strategies for mitigating Cd stress in agriculture and polluted environments.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Fernando Angelo Piotto
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo (SP), Brazil
| |
Collapse
|
2
|
Chen CW, Lin PY, Lai YM, Lin MH, Lin SY, Hsu CC. TIMAHAC: Streamlined Tandem IMAC-HILIC Workflow for Simultaneous and High-Throughput Plant Phosphoproteomics and N-glycoproteomics. Mol Cell Proteomics 2024; 23:100762. [PMID: 38608839 PMCID: PMC11098956 DOI: 10.1016/j.mcpro.2024.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.
Collapse
Affiliation(s)
- Chin-Wen Chen
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Mi Lai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Yu Lin
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Academia Sinica, Taipei, Taiwan
| | - Chuan-Chih Hsu
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Zhu Y, Zhu G, Xu R, Jiao Z, Yang J, Lin T, Wang Z, Huang S, Chong L, Zhu J. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1033-1043. [PMID: 36704926 PMCID: PMC10106858 DOI: 10.1111/pbi.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 05/04/2023]
Abstract
Cold stress affects crop growth and productivity worldwide. Understanding the genetic basis of cold tolerance in germplasms is critical for crop improvement. Plants can coordinate environmental stimuli of light and temperature to regulate cold tolerance. However, it remains unknown which gene in germplasms could have such function. Here, we utilized genome-wide association study (GWAS) to investigate the cold tolerance of wild and cultivated tomato accessions and discovered that increased cold tolerance is accompanied with tomato domestication. We further identified a 27-bp InDel in the promoter of the CONSTANS-like transcription factor (TF) SlBBX31 is significantly linked with cold tolerance. Coincidentally, a key regulator of light signalling, SlHY5, can directly bind to the SlBBX31 promoter to activate SlBBX31 transcription while the 27-bp InDel can prevent S1HY5 from transactivating SlBBX31. Parallel to these findings, we observed that the loss of function of SlBBX31 results in impaired tomato cold tolerance. SlBBX31 can also modulate the cold-induced expression of several ERF TFs including CBF2 and DREBs. Therefore, our study has uncovered that SlBBX31 is possibly selected during tomato domestication for cold tolerance regulation, providing valuable insights for the development of hardy tomato varieties.
Collapse
Affiliation(s)
- Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS‐YNNU Joint Academy of Potato SciencesYunnan Normal UniversityKunmingChina
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Zhixin Jiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Junwei Yang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Tao Lin
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhuiChina
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Jian‐Kang Zhu
- Institute of Advanced Biotechnology and School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
- Center for Advanced Bioindustry TechnologiesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Chong L, Xu R, Ku L, Zhu Y. Beyond stress response: OST1 opening doors for plants to grow. STRESS BIOLOGY 2022; 2:44. [PMID: 37676544 PMCID: PMC10441877 DOI: 10.1007/s44154-022-00069-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023]
Abstract
The sucrose non-fermenting 1 (SNF1)-related protein kinase 2 (SnRK2) family members have been discovered to regulate abiotic stress response via the abscisic acid (ABA)-independent and dependent signaling pathways. SnRK2.6, also known as Open Stomata 1 (OST1), is a serine/threonine protein kinase that plays critical roles in linking ABA receptor complexes and downstream components such as transcription factors and anion channels to regulate stress response. Asides from its well-known regulatory roles in stomatal movement and cold stress response, OST1 has also been demonstrated recently to modulate major developmental roles of flowering and growth in plants. In this review, we will discuss about the various roles of OST1 as well as the 'doors' that OST1 can 'open' to help plants perform stress adaptation. Therefore, we will address how OST1 can regulate stomata apertures, cold stress tolerance as well as other aspects of its emerging roles such as balancing flowering and root growth in response to drought.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| |
Collapse
|