1
|
Chiab N, Kammoun M, Nouri-Ellouz O, Gargouri-Bouzid R. New potential roles of StDREB1 and VvWRKY2 transcription factors in potato dormancy and sprouting patterns. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154077. [PMID: 37683547 DOI: 10.1016/j.jplph.2023.154077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
In a previous study, transgenic potato plants overexpressing the StDREB1 or the VvWRKY2 transcription factor (TF) proved to have higher productivity and ameliorated tuber quality in comparison to wildtype (WT; the BF15 variety) plants. Interestingly, when stored at 4 °C, we noticed that the tubers of transgenic potato plants exhibited a delay in sprouting, hence a longer dormancy period. Therefore, we decided to study the dormancy and sprouting of these tubers (the two transgenic and the WT lines) through a physiological and biochemical characterization. WT and genetically modified (GM) tubers were stored at 4 °C for different periods (0, 30, 90, 180, and 240 days) followed by placing them in a germination chamber and the sprouting parameters were then monitored. According to our findings, the overexpression of these two TFs led to modifications in the sprouting kinetic of tubers through an extension of the dormancy period and changes in the sprouting process. Indeed, WT tubers emitted apical and lateral sprouts while those from GM plants showed mainly apical sprouts. In addition, higher reactive oxygen species (ROS) rates, indicators of tuber aging, were recorded in WT tubers compared to GM ones. The higher antioxidant enzyme activities in GM tubers seem to be responsible for aging modification in comparison to WT. The above results suggest the first report on new roles of the StDREB1 and VvWRKY2 TF which seemed to be involved in the regulation of potato tuber aging via a reduction of the main biochemical factors concentration and the ROS content leading to a longer dormancy period and a modified sprouting pattern.
Collapse
Affiliation(s)
- Nour Chiab
- Plant amelioration and Agri-resources valorization laboratory, National Engineering School of Sfax (ENIS), Soukra Road Km 4, 3038, Sfax, Tunisia.
| | - Mariem Kammoun
- Plant amelioration and Agri-resources valorization laboratory, National Engineering School of Sfax (ENIS), Soukra Road Km 4, 3038, Sfax, Tunisia
| | - Oumèma Nouri-Ellouz
- Plant amelioration and Agri-resources valorization laboratory, National Engineering School of Sfax (ENIS), Soukra Road Km 4, 3038, Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant amelioration and Agri-resources valorization laboratory, National Engineering School of Sfax (ENIS), Soukra Road Km 4, 3038, Sfax, Tunisia
| |
Collapse
|
2
|
Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity. Antioxidants (Basel) 2023; 12:antiox12020348. [PMID: 36829906 PMCID: PMC9952679 DOI: 10.3390/antiox12020348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Potato sprouts, an underutilized by-product of potato processing, could be exploited for the recovery of caffeoyl-quinic acids (CQAs), a family of polyphenols with well-recognized biological activities. In this work, the predominant compound of this class, 5-CQA, was extracted by Ultrasound-Assisted Extraction (UAE) under conditions optimized by an Experimental Design. The investigated variables solid/solvent ratio (1:10-1:50 g/mL), water content in ethanol (30-100% v/v) and UAE time (5-20 min) highlighted a critical influence of the last two factors on the extraction efficiency: extracts richer in 5-CQA were obtained with lower water content (30%) and time (5 min). The addition of ascorbic acid (1.7 mM) as anti-browning agent to the extraction solvent improved the extraction efficiency of 5-CQA compared to acetic and citric acids (3158.71 μg/mL, 1766.71 μg/mL, 1468.20 μg/mL, respectively). A parallel trend for the three acids and an increase in 5-CQA recovery was obtained with the use of freeze-dried sprouts (4980.05 μg/mL, 4795.62, 4211.25 μg/mL, respectively). Total antioxidant capacity (TAC) in vitro demonstrated UAE being a more valuable technique than conventional maceration. Furthermore, three-times-higher values of TPC (7.89 mg GAE/g) and TAC (FRAP: 24.01 mg TE/g; DPPH: 26.20 mg TE/g; ABTS 26.72 mg TE/g) were measured for the optimized extract compared to the initial one. An HPLC-DAD method was applied to monitor 5-CQA recovery, while an LC-HRMS/MS investigation allowed us to perform analyte identity confirmation along with detection of the glycoalkaloids α-solanine and α-chaconine. This evidence underlines the necessity to develop purification strategies in order to maximize the potential of potato sprout waste as a source of 5-CQA.
Collapse
|
3
|
Sharma S, Deswal R. Dioscorea Alata Tuber Proteome Analysis Uncovers Differentially Regulated Growth-associated Pathways of Tuber Development. PLANT & CELL PHYSIOLOGY 2021; 62:191-204. [PMID: 33313836 DOI: 10.1093/pcp/pcaa151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
During its life cycle, the Dioscorea tuber undergoes multiple morphological and biochemical changes. To gain a better understanding of the metabolic changes associated with tuber growth, a stage-specific gel-free proteome analysis of four distinct morphological stages namely germinating tuber (S1), degrading tuber (S2), new tuber formation (S3) and tuber maturation (S4) was done and validated by principal component analysis. A comprehensive data set identifying 78.2% of the total 3,681 proteins was generated. PANTHER and KEGG MAPPER revealed both expected (carbohydrate metabolism and redox regulation) and novel biological processes (transcription factors and hormonal regulation) characteristic for each developmental stage. Higher abundance of the enzymes of ascorbate-glutathione cycle and carbohydrate metabolism was detected during tuber germination (S1) and tuber formation stages (S3) in comparison with the mature tuber. The presence of ethylene biosynthesis components during tuber formation hints toward its probable role in postharvest shelf life. The data set comprehensively describes the proteome of Dioscorea tuber and provides growth-specific markers for tuber germination (ascorbate peroxidase, monodehydroascorbate reductase, invertase) and tuber formation (sucrose synthase), which were validated by enzyme activity assays and Western blotting. The study provides information that may influence the direction of research for improving the productivity of this under-utilized and largely neglected crop.
Collapse
Affiliation(s)
- Shruti Sharma
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
4
|
Li J, Yuan J, Wang H, Zhang H, Zhang H. Arabidopsis COPPER TRANSPORTER 1 undergoes degradation in a proteasome-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6174-6186. [PMID: 32720982 DOI: 10.1093/jxb/eraa352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The essential nutrient copper is toxic in excess. Therefore, plants must tightly control copper uptake and distribution. Arabidopsis thaliana high-affinity copper transporters (COPTs) mediate copper uptake, partitioning, and redistribution. Here we show that COPT1 localizes to the plasma membrane and endoplasmic reticulum in stably transgenic plants expressing a COPT1-green fluorescent protein (GFP) fusion protein, and the fusion protein is rapidly degraded upon plant exposure to excess copper. MG132 treatment largely abolished copper-induced degradation of COPT1, implying a link between the proteasome and COPT1 activity in modulating copper uptake. Co-immunoprecipitation analyses revealed that COPT1 cannot be ubiquitinated in the presence of excess copper and MG132. Through site-directed mutagenesis, we identified Lys159 in the C-terminal cytoplasmic tail of COPT1 as critical for copper acquisition, but not for copper-mediated down-regulation of COPT1, in plants. Furthermore, pharmacological analysis showed that treatment with a vesicle trafficking inhibitor or a V-ATPase inhibitor does not alter the subcellular dynamics of COPT1-GFP, consistent with the absence of a connection between the endosomal recycling/vacuolar system and COPT1 degradation. Together, our data suggest that proteasomal degradation rather than vacuolar proteolysis is important for the regulation of copper transport to maintain copper homeostasis in plants.
Collapse
Affiliation(s)
- Jinjin Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinhong Yuan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
5
|
Wu S, Guo Y, Joan HI, Tu Y, Adil MF, Sehar S, Zhao D, Shamsi IH. iTRAQ-based comparative proteomic analysis reveals high temperature accelerated leaf senescence of tobacco (Nicotiana tabacum L.) during flue-curing. Genomics 2020; 112:3075-3088. [PMID: 32454168 DOI: 10.1016/j.ygeno.2020.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Tobacco (Nicotiana tabacum) is extensively cultivated all over the world for its economic value. During curing and storage, senescence occurs, which is associated with physiological and biochemical changes in postharvest plant organs. However, the molecular mechanisms involved in accelerated senescence due to high temperatures in tobacco leaves during curing need further elaboration. We studied molecular mechanisms of senescence in tobacco leaves exposed to high temperature during curing (Fresh, 38 °C and 42 °C), revealed by isobaric tags for relative and absolute quantification (iTRAQ) for the proteomic profiles of cultivar Bi'na1. In total, 8903 proteins were identified, and 2034 (1150 up-regulated and 1074 down-regulated) differentially abundant proteins (DAPs) were obtained from tobacco leaf samples. These DAPs were mainly involved in posttranslational modification, protein turnover, energy production and conversion. Sugar- and energy-related metabolic biological processes and pathways might be critical regulators of tobacco leaves exposed to high temperature during senescence. High-temperature stress accelerated tobacco leaf senescence mainly by down-regulating photosynthesis-related pathways and degrading cellular constituents to maintain cell viability and nutrient recycling. Our findings provide a valuable inventory of novel proteins involved in senescence physiology and elucidate the protein regulatory network in postharvest organs exposed to high temperatures during flue-curing.
Collapse
Affiliation(s)
- Shengjiang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, PR China; Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Heren Issaka Joan
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Yonggao Tu
- Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Degang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, PR China; Guizhou Academy of Agricultural Sciences, Guiyang 550006, PR China.
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
6
|
Xue C, Liu S, Chen C, Zhu J, Yang X, Zhou Y, Guo R, Liu X, Gong Z. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. Proteomics 2019; 18. [PMID: 29106068 DOI: 10.1002/pmic.201700036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/11/2017] [Indexed: 01/26/2023]
Abstract
Lysine acetylation (Kac) is an important protein post-translational modification in both eukaryotes and prokaryotes. Herein, we report the results of a global proteome analysis of Kac and its diverse functions in rice (Oryza sativa). We identified 1353 Kac sites in 866 proteins in rice seedlings. A total of 11 Kac motifs are conserved, and 45% of the identified proteins are localized to the chloroplast. Among all acetylated proteins, 38 Kac sites are combined in core histones. Bioinformatics analysis revealed that Kac occurs on a diverse range of proteins involved in a wide variety of biological processes, especially photosynthesis. Protein-protein interaction networks of the identified proteins provided further evidence that Kac contributes to a wide range of regulatory functions. Furthermore, we demonstrated that the acetylation level of histone H3 (lysine 27 and 36) is increased in response to cold stress. In summary, our approach comprehensively profiles the regulatory roles of Kac in the growth and development of rice.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Jun Zhu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Xibin Yang
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Rui Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
7
|
González MM, Aguilar CH, Pacheco FAD, Cabrales LEB, Reyes JB, Nava JJG, Ambrosio PE, Domiguez DS, Sierra González VG, Pupo AEB, Ciria HMC, Alemán EI, García FM, Rivas CB, Reina EC. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces ( Solanum tuberosum L.). Front Oncol 2018; 8:101. [PMID: 29725584 PMCID: PMC5917672 DOI: 10.3389/fonc.2018.00101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.
Collapse
Affiliation(s)
- Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Claudia Hernández Aguilar
- Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME)-Zacatenco, Instituto Politecnico Nacional, Ciudad de México, México
| | - Flavio Arturo Domínguez Pacheco
- Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME)-Zacatenco, Instituto Politecnico Nacional, Ciudad de México, México
| | - Luis Enrique Bergues Cabrales
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Dirección de Ciencia e Innovación Tecnológica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Juan Bory Reyes
- Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME)-Zacatenco, Instituto Politecnico Nacional, Ciudad de México, México
| | - Juan José Godina Nava
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil.,Departamento de Física, Centro de Investigaciones Avanzadas del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
| | - Paulo Eduardo Ambrosio
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Dany Sanchez Domiguez
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Ana Elisa Bergues Pupo
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Héctor Manuel Camué Ciria
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Dirección de Ciencia e Innovación Tecnológica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Elizabeth Issac Alemán
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Dirección de Ciencia e Innovación Tecnológica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Francisco Monier García
- Departamento de Telecomunicaciones, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Clara Berenguer Rivas
- Departamento de Farmacia, Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba, Cuba
| | | |
Collapse
|
8
|
Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R. Proteomics survey of Solanaceae family: Current status and challenges ahead. J Proteomics 2017; 169:41-57. [PMID: 28528990 DOI: 10.1016/j.jprot.2017.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/19/2017] [Accepted: 05/16/2017] [Indexed: 10/25/2022]
Abstract
Solanaceae is one of the major economically important families of higher plants and has played a central role in human nutrition since the dawn of human civilization. Therefore, researchers have always been interested in understanding the complex behavior of Solanaceae members to identify key transcripts, proteins or metabolites, which are potentially associated with major traits. Proteomics studies have contributed significantly to understanding the physiology of Solanaceae members. A compilation of all the published reports showed that both gel-based (75%) and gel-free (25%) proteomic technologies have been utilized to establish the proteomes of different tissues, organs, and organelles under normal and adverse environmental conditions. Among the Solanaceae members, most of the research has been focused on tomato (42%) followed by potato (28%) and tobacco (20%), owing to their economic importance. This review comprehensively covers the progress made so far in the field of Solanaceae proteomics including novel methods developed to isolate the proteins from different tissues. Moreover, key proteins presented in this review can serve as a resource to select potential targets for crop improvement. We envisage that information presented in this review would enable us to design the stress tolerant plants with enhanced yields.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 68583-0915, USA
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea.
| |
Collapse
|
9
|
Liu B, Zhao S, Tan F, Zhao H, Wang D, Si H, Chen Q. Changes in ROS production and antioxidant capacity during tuber sprouting in potato. Food Chem 2017; 237:205-213. [PMID: 28763987 DOI: 10.1016/j.foodchem.2017.05.107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
Abstract
Potato dormancy is a complex process with an extensive release phase. This study investigated involvement of reactive oxygen species during tuber dormancy release. We found that tuber sprouting was delayed by treatment with diphenylene iodonium chloride, an NADPH oxidase inhibitor; NADPH oxidase catalyze the production of ROS. In situ ROS localization and ROS content estimation revealed that dormancy release was associated with an accumulation of superoxide anion and hydrogen peroxide in tuber buds. The antioxidant compounds and enzymes display important changes during the progression of dormancy. The application of Ca2+ induced superoxide anion production and promoted in vitro tuber bud sprouting. Among the seven homologues of NADPH oxidases in potato, the expression of StrbohA and StrbohB were detected in particular when dormancy break. In addition, the expression of key genes that function in the potato dormancy release are discussed in relation to ROS metabolism in other plants.
Collapse
Affiliation(s)
- Bailin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Shuo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Fei Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Hua Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - DongDong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
10
|
Sharma S, Sehrawat A, Deswal R. Asada-Halliwell pathway maintains redox status in Dioscorea alata tuber which helps in germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:20-29. [PMID: 27457980 DOI: 10.1016/j.plantsci.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Reactive Oxygen Species (ROS) are important regulatory molecules governing physiological processes. In the present study a biochemical and proteome level comparison of two contrasting growth stages of Dioscorea alata tuber namely germinating and mature tuber was performed in order to understand the tuber physiology and biochemistry. Existence of all the component enzymes [APx (ascorbate peroxidase), GR (glutathione reductase), DHAR (dehydroascorbate reductase), MDHAR (mono-dehydroascorbate reductase)] and major products [ascorbate (ASC) and glutathione (GSH)] of the cycle showed an operational Asada-Halliwell cycle in the tuber. A 2.65 fold increase in ASC content & a 3.8 fold increase in GR activity fortified the redox milieu during germination. In contrast a 5 fold higher H2O2 content (due to 3.08 fold lower APx activity) and accumulation of reactive nitrogen species (RNS) such as nitric oxide (NO, 2.4-fold) and S-nitrosothiol (SNO, 2.08 fold) contributed to overall oxidative conditions in the mature tuber. The carbonic anhydrase (CA, 7.5 fold), DHAR (5.31 fold) and MDHAR (7 fold) activities were higher in the germinating tuber in comparison with the mature tuber. GSNO negatively regulated the CA (3.6 & 3.95 fold), MDHAR (7.5 & 1.5 fold) and APx (2.3 & 1.81 fold) while another NO donor, CysNO negatively regulated the DHAR (2.24 & 1.32 fold) activity in the mature and germinating stages respectively indicating again that the lesser inhibition by NO (via nitrosylation) may be because of overall reducing environment in the germinating tuber. Increased SNO leading to S-nitrosylation of dioscorin was confirmed by Biotin switch assay. This is the first report showing dioscorin nitrosylation. The present analysis showed differential redox regulation and also suggests the physiological relevance of CA, DHAR, MDHAR, APx & GR in tuber germination for the first time. These enzymes may be used as potential markers of tuber germination in future.
Collapse
Affiliation(s)
- Shruti Sharma
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
11
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
12
|
Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato. J Biotechnol 2015; 198:17-30. [PMID: 25661840 DOI: 10.1016/j.jbiotec.2015.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/15/2022]
Abstract
Potato tuber dormancy release is a critical development process that allows potato to produce new plant. The first Illumina RNA sequencing to generate the expressed mRNAs at dormancy tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) was performed. We identified 26,639 genes including 5,912 (3,450 up-regulated while 2,462 down-regulated) and 3,885 (2,141 up-regulated while 1,744 down-regulated) genes were differentially expressed from DT vs DRT and DRT vs ST. The RNA-Seq results were further verified using qRT-PCR. We found reserve mobilization events were activated before the bud emergence (DT vs DRT) and highlighted after dormancy release (DRT vs ST). Overexpressed genes related to metabolism of auxin, gibberellic acid, cytokinin and barssinosteriod were dominated in DT vs DRT, whereas overexpressed genes involved in metabolism of ethylene, jasmonate and salicylate were prominent in DRT vs ST. Various histone and cyclin isoforms associated genes involved in cell division/cycle were mainly up-regulated in DT vs DRT. Dormancy release process was also companied by stress response and redox regulation, those genes related to biotic stress, cell wall and second metabolism was preferentially overexpressed in DRT vs ST, which might accelerate dormancy breaking and sprout outgrowth. The metabolic processes activated during tuber dormancy release were also supported by plant seed models. These results represented the first comprehensive picture of a large number of genes involved in tuber dormancy release process.
Collapse
|
13
|
Liu B, Zhang N, Zhao S, Chang J, Wang Z, Zhang G, Si H, Wang D. Proteomic changes during tuber dormancy release process revealed by iTRAQ quantitative proteomics in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:181-190. [PMID: 25514565 DOI: 10.1016/j.plaphy.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/03/2014] [Indexed: 05/28/2023]
Abstract
Given that limited information is available with regard to tuber dormancy release related proteome, we conducted proteome analysis of tuber dormancy release process at dormant tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) using the iTRAQ technology. A total of 1,752 proteins were identified. Among them, a subset of 316 proteins was screened as significant up- (137) and down regulated (179) between DT vs DRT. A subset of 120 proteins experienced significant up- (40) or down-regulation (80) between DRT vs ST. The differentially expressed proteins were grouped into 11 functional categories. Proteins enriched in functional categories of major carbohydrate (CHO) metabolism, glycolysis, fermentation, amino acid metabolism, protein and transport were highly up-regulated, while functional categories of photosynthesis and RNA were down-regulated between DT vs DRT. Proteins enriched in functional groups of protein, cell wall, lipid metabolism, miscellaneous, and signaling were strongly up-regulated, while functional categories of photosynthesis, hormone metabolism and protein were down-regulated between DRT vs ST. Consistent with previous documented differentially expressed genes, most of differentially expressed proteins were also identified between DT and DRT, indicating the metabolism shift from growth suspension to growth activation as tubers dormancy breaking. The changes in protein profiles showed lower concordance with corresponding alterations in transcript levels, indicating possible transcriptional and posttranscriptional regulation. Furthermore, the possible mechanism of tuber dormancy release was discussed in relation to what was known in transcripts change and other plant models from carbohydrate metabolism, protein metabolism, stress response, redox regulation, transcription regulation, DNA metabolism, amino acid metabolism, development, signaling as well as hormone metabolism.
Collapse
Affiliation(s)
- Bailin Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Shuo Zhao
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 6C2, Canada
| | - Jing Chang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zemin Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Guodong Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| | - Di Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
14
|
Evlard A, Sergeant K, Ferrandis S, Printz B, Renaut J, Guignard C, Paul R, Hausman JF, Campanella B. Physiological and proteomic responses of different willow clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:1148-1169. [PMID: 24933908 DOI: 10.1080/15226514.2013.821448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High biomass producing species are considered as tools for remediation of contaminated soils. Willows (Salix spp.) are prominent study subjects in this regard. In this study, different willow clones (Salix fragilis x alba) were planted on heavy-metal polluted dredging sludge. A first objective was assessment of the biomass production for these clones. Using a Gupta statistic, four clones were identified as high biomass producers (HBP). For comparison, a group of four clones with lowest biomass production were selected (LBP). A second objective was to compare metal uptake as well as the physiological and proteomic responses of these two groups. All these complementary data's allow us to have a better picture of the health of the clones that would be used in phytoremediation programs. Cd, Zn, and Ni total uptake was higher in the HBPs but Pb total uptake was higher in LBPs. Our proteomic and physiological results showed that the LBPs were able to maintain cellular activity as much as the HBPs although the oxidative stress response was more pronounced in the LBPs. This could be due to the high Pb content found in this group although a combined effect of the other metals cannot be excluded.
Collapse
|
15
|
Zommick DH, Kumar GNM, Knowles LO, Knowles NR. Translucent tissue defect in potato (Solanum tuberosum L.) tubers is associated with oxidative stress accompanying an accelerated aging phenotype. PLANTA 2013; 238:1125-1145. [PMID: 24037414 DOI: 10.1007/s00425-013-1951-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Translucent tissue defect (TTD) is an undesirable postharvest disorder of potato tubers characterized by the development of random pockets of semi-transparent tissue containing high concentrations of reducing sugars. Translucent areas turn dark during frying due to the Maillard reaction. The newly released cultivar, Premier Russet, is highly resistant to low temperature sweetening, but susceptible to TTD. Symptoms appeared as early as 170 days after harvest and worsened with time in storage (4-9 °C, 95 % RH). In addition to higher concentrations of glucose, fructose and sucrose, TTD resulted in lower dry matter, higher specific activities of starch phosphorylase and glc-6-phosphate dehydrogenase, higher protease activity, loss of protein, and increased concentrations of free amino acids (esp. asparagine and glutamine). The mechanism of TTD is unknown; however, the disorder has similarities with the irreversible senescent sweetening that occurs in tubers during long-term storage, where much of the decline in quality is a consequence of progressive increases in oxidative stress with advancing age. The respiration rate of non-TTD 'Premier Russet' tubers was inherently higher (ca. 40 %) than that of 'Russet Burbank' tubers (a non-TTD cultivar). Moreover, translucent tissue from 'Premier Russet' tubers had a 1.9-fold higher respiration rate than the average of non-translucent tissue and tissue from non-TTD tubers. Peroxidation of membrane lipids during TTD development resulted in increased levels of malondialdehyde and likely contributed to a measurable increase in membrane permeability. Superoxide dismutase and catalase activities and the ratio of oxidized to total glutathione were substantially higher in translucent tissue. TTD tubers also contained twofold less ascorbate than non-TTD tubers. TTD appears to be a consequence of oxidative stress associated with accelerated aging of 'Premier Russet' tubers.
Collapse
Affiliation(s)
- Daniel H Zommick
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - G N Mohan Kumar
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - Lisa O Knowles
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA
| | - N Richard Knowles
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture, Washington State University, P.O. Box 646414, Pullman, WA, 99164-6414, USA.
| |
Collapse
|
16
|
Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman JF. Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and Solanum tuberosum L. Int J Mol Sci 2013; 14:4912-33. [PMID: 23455465 PMCID: PMC3634427 DOI: 10.3390/ijms14034912] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 01/05/2023] Open
Abstract
Better knowledge on responses to dehydration stress could help to improve the existing cryopreservation protocols for potato, since plant tissues processed for cryopreservation are often submitted to similar in vitro stress conditions. Cryopreservation (the best method of conservation for vegetatively propagated plants) of potato still needs to be standardized to make it available and to conserve the wide diversity of this crop. In the present work, the response to osmotic stress and chilling temperature was investigated in two potato species, Solanum tuberosum and its relative, frost-tolerant S. commersonii. After 14 days of exposure, different growth parameters, such as shoot length and number of leaves, were measured. Furthermore, differentially abundant proteins were identified after performing 2-fluorescence difference gel electrophoresis (2-DIGE) experiments, and soluble carbohydrates were analyzed by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). The results show different responses in both species depending on the stress treatment. Focusing on the differences in growth parameters during the treatments, Solanum commersonii seems to be more affected than S. tuberosum cv. Désirée. At the molecular level, there are some differences and similarities between the two potato species studied that are dependent on the type of stressor.
Collapse
Affiliation(s)
- Raquel Folgado
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium; E-Mails: (B.P.); (R.S.)
| | - Bart Panis
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium; E-Mails: (B.P.); (R.S.)
| | - Kjell Sergeant
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
| | - Jenny Renaut
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium; E-Mails: (B.P.); (R.S.)
- Bioversity International, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium
| | - Jean-Francois Hausman
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
| |
Collapse
|
17
|
Narváez-Cuenca CE, Vincken JP, Gruppen H. Quantitative fate of chlorogenic acid during enzymatic browning of potato juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1563-1572. [PMID: 23360289 DOI: 10.1021/jf305093u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The quantitative fate of chlorogenic acid (ChA) during enzymatic browning of potato juice was investigated. Potato juice was prepared in water without the use of any antibrowning agent (OX treatment). As a control, a potato juice was prepared in the presence of NaHSO(3) (S control). To study the composition of phenolic compounds in potato in their native states, also a potato extract was made with 50% (v/v) methanol containing 0.5% (v/v) acetic acid (MeOH control). Water-soluble low molecular weight fractions (LMWFs) and high molecular weight fractions (HMWFs) from S and OX extracts were obtained by ultrafiltration and dialysis, respectively. Pellets obtained after the OX treatment and the S and MeOH controls were also analyzed for ChA content. Whereas in the S-LMWF all ChA was converted to sulfonic acid adducts, no free ChA was found in the OX-LMWF, indicating its high reactivity upon enzymatic browning. Analysis of protein in the HMWFs showed a higher content of "reacted" ChA in OX (49.8 ± 7.1 mg ChA/100 g potato DW) than in S (14.4 ± 1.5 mg ChA/100 g potato DW), as evidenced by quinic acid release upon alkaline hydrolysis. The presence of quinic acid in S-HMWF was unexpected, but a mass balance incorporating the ChA content of LMWF, HMWF, and pellet for the three extractions suggested that ChA might have been attached to polymeric material, soluble in the aqueous environment of S but not in that of MeOH. Size exclusion chromatography, combined with proteolysis, revealed that ChA reacted with patatin and protease inhibitors to produce brown soluble complexes.
Collapse
|
18
|
Yu JW, Choi JS, Upadhyaya CP, Kwon SO, Gururani MA, Nookaraju A, Nam JH, Choi CW, Kim SI, Ajappala H, Kim HS, Jeon JH, Park SW. Dynamic proteomic profile of potato tuber during its in vitro development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:1-9. [PMID: 22920994 DOI: 10.1016/j.plantsci.2012.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 05/07/2023]
Abstract
Potato tuberization is a complicated biochemical process, which is dependent on external environmental factors. Tuber development in potato consists of a series of biochemical and morphological processes at the stolon tip. Signal transduction proteins are involved in the source-sink transition during potato tuberization. In the present study, we examined protein profiles under in vitro tuber-inducing conditions using a shotgun proteomic approach involving denaturing gel electrophoresis and liquid chromatography-mass spectrometry. A total of 251 proteins were identified and classified into 9 groups according to distinctive expression patterns during the tuberization stage. Stolon stage-specific proteins were primarily involved in the photosynthetic machinery. Proteins specific to the initial tuber stage included patatin. Proteins specific to the developing tuber stage included 6-fructokinase, phytoalexin-deficient 4-1, metallothionein II-like protein, and malate dehydrogenase. Novel stage-specific proteins identified during in vitro tuberization were ferredoxin-NADP reductase, 34 kDa porin, aquaporin, calmodulin, ripening-regulated protein, and starch synthase. Superoxide dismutase, dehydroascorbate reductase, and catalase I were most abundantly expressed in the stolon; however, the enzyme activities of these proteins were most activated at the initial tuber. The present shotgun proteomic study provides insights into the proteins that show altered expression during in vitro potato tuberization.
Collapse
Affiliation(s)
- Jae Woong Yu
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lasserre JP, Fack F, Serchi T, Revets D, Planchon S, Renaut J, Hoffmann L, Gutleb AC, Muller CP, Bohn T. Atrazine and PCB 153 and their effects on the proteome of subcellular fractions of human MCF-7 cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:833-41. [DOI: 10.1016/j.bbapap.2012.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/02/2012] [Accepted: 03/30/2012] [Indexed: 01/03/2023]
|
20
|
A proteomic analysis of storage stress responses in Ipomoea batatas (L.) Lam. tuberous root. Mol Biol Rep 2012; 39:8015-25. [DOI: 10.1007/s11033-012-1648-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 04/16/2012] [Indexed: 02/06/2023]
|
21
|
Rentzsch S, Podzimska D, Voegele A, Imbeck M, Müller K, Linkies A, Leubner-Metzger G. Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases. PLANTA 2012; 235:137-51. [PMID: 21858448 DOI: 10.1007/s00425-011-1501-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/05/2011] [Indexed: 05/05/2023]
Abstract
Gibberellins (GA) are involved in bud dormancy release in several species. We show here that GA-treatment released bud dormancy, initiated bud sprouting and promoted sprout growth of excised potato tuber bud discs ('eyes'). Monoterpenes from peppermint oil (PMO) and S-(+)-carvone (CAR) interact with the GA-mediated bud dormancy release in a hormesis-type response: low monoterpene concentrations enhance dormancy release and the initiation of bud sprouting, whereas high concentrations inhibit it. PMO and CAR did, however, not affect sprout growth rate after its onset. We further show that GA-induced dormancy release is associated with tissue-specific regulation of α- and β-amylases. Molecular phylogenetic analysis shows that potato α-amylases cluster into two distinct groups: α-AMY1 and α-AMY2. GA-treatment induced transcript accumulation of members of both α-amylase groups, as well as α- and β-amylase enzyme activity in sprout and 'sub-eye' tissues. In sprouts, CAR interacts with the GA-mediated accumulation of α-amylase transcripts in an α-AMY2-specific and dose-dependent manner. Low CAR concentrations enhance the accumulation of α-AMY2-type α-amylase transcripts, but do not affect the α-AMY1-type transcripts. Low CAR concentrations also enhance the accumulation of α- and β-amylase enzyme activity in sprouts, but not in 'sub-eye' tissues. In contrast, high CAR concentrations have no appreciable effect in sprouts on the enzyme activities and the α-amylase transcript abundances of either group. The dose-dependent effects on the enzyme activities and the α-AMY2-type α-amylase transcripts in sprouts are specific for CAR but not for PMO. Different monoterpenes therefore may have specific targets for their interaction with hormone signalling pathways.
Collapse
Affiliation(s)
- Sonja Rentzsch
- Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, Albert-Ludwigs-University, Schänzlestr.1, 79104, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
One dry summer: a leaf proteome study on the response of oak to drought exposure. J Proteomics 2011; 74:1385-95. [PMID: 21439417 DOI: 10.1016/j.jprot.2011.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/24/2011] [Accepted: 03/14/2011] [Indexed: 11/23/2022]
Abstract
One of the most prominent hallmarks of the expected climate change in Europe is the higher prevalence of longer and more intense periods of summer drought. To preserve European oak forests, of considerable importance for European economical and ecological development, under these conditions knowledge on the mechanisms by which broad-leaved trees cope with drought is needed. In this study the effect of one season of drought stress, corresponding in length and soil water content to a dry summer, on young pedunculate oak trees (Quercus robur L.) was investigated by monitoring phenotypical parameters, the analysis of carbohydrate accumulation and a 2D-DIGE-based proteome study of leaves. In our experimental system, mimicking the conditions of a dry summer, the plants displayed reduced growth, moreover the transition through the developmental stages was affected. The data obtained during this study, supported by a separately published gene expression analysis study, indicated that the oak tried to adapt its metabolism in order to maintain its full molecular functionality. Initially the plants seemed to be able to cope with the imposed stress. However prolonged drought exposure overwhelmed the adaptive mechanisms and at the last sampling point of this study the molecular machinery succumbed.
Collapse
|
23
|
Takáč T, Pechan T, Samaj J. Differential proteomics of plant development. J Proteomics 2011; 74:577-88. [PMID: 21315196 DOI: 10.1016/j.jprot.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
24
|
Arruda SCC, Barbosa HDS, Azevedo RA, Arruda MAZ. Two-dimensional difference gel electrophoresis applied for analytical proteomics: fundamentals and applications to the study of plant proteomics. Analyst 2011; 136:4119-26. [DOI: 10.1039/c1an15513j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Lasserre JP, Fack F, Revets D, Planchon S, Renaut J, Hoffmann L, Gutleb AC, Muller CP, Bohn T. Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells. J Proteome Res 2010; 8:5485-96. [PMID: 19778091 DOI: 10.1021/pr900480f] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polychlorinated biphenyls (PCBs) and a number of pesticides can act as endocrine disrupting compounds (EDCs). These molecules exhibit hormonal activity in vivo, and can therefore interact and perturb normal physiological functions. Many of these compounds are persistent in the environment, and their bioaccumulation may constitute a significant threat for human health. Physiological abnormalities following exposure to these xenobiotic compounds go along with alterations at the protein level of individual cells. In this study, MCF-7 cells were exposed to environmentally relevant concentrations of atrazine, PCB153 (100 ppb, respectively), 17-beta estradiol (positive control, 10 nM) and a negative control (solvent) for t = 24 h (n = 3 replicates/exposure group). After trizol extraction and protein solubilization, protein expression levels were studied by 2D-DIGE. Proteins differentially expressed were excised, trypsin-digested, and identified by MALDI-ToF-ToF, followed by NCBInr database search. 2D-DIGE experiments demonstrated that 49 spots corresponding to 29 proteins were significantly differentially expressed in MCF-7 cells (>1.5-fold, P < 0.05, Student's paired t test). These proteins belonged to various cellular compartments (nucleus, cytosol, membrane), and varied in function; 88% of proteins were down-regulated during atrazine exposure, whereas 75% of proteins were up-regulated by PCB153. Affected proteins included those regulating oxidative stress such as superoxide dismutase and structural proteins such as actin or tropomyosin, which may explain morphological changes of cells already observed under the microscope. This study highlights the susceptibility of human cells to compounds with endocrine disrupting properties.
Collapse
Affiliation(s)
- Jean-Paul Lasserre
- Department Environment and Agro-Biotechnologies, Centre de Recherche Public - Gabriel Lippmann, L-4422 Belvaux, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kurepa J, Wang S, Li Y, Smalle J. Proteasome regulation, plant growth and stress tolerance. PLANT SIGNALING & BEHAVIOR 2009; 4:924-7. [PMID: 19826220 PMCID: PMC2801354 DOI: 10.4161/psb.4.10.9469] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 05/19/2023]
Abstract
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
27
|
Chaves I, Pinheiro C, Paiva JAP, Planchon S, Sergeant K, Renaut J, Graça JA, Costa G, Coelho AV, Ricardo CPP. Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum
L.) tuber tissue. Proteomics 2009; 9:4154-75. [DOI: 10.1002/pmic.200700649] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|