1
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
2
|
Calderón A, Ortiz-Espín A, Iglesias-Fernández R, Carbonero P, Pallardó FV, Sevilla F, Jiménez A. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol 2017; 11:688-700. [PMID: 28183062 PMCID: PMC5299145 DOI: 10.1016/j.redox.2017.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA and glutathione.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Ana Ortiz-Espín
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Raquel Iglesias-Fernández
- Centre for Plant Biotechnology and Genomics (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, E-28223 Madrid, Spain.
| | - Pilar Carbonero
- Centre for Plant Biotechnology and Genomics (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, E-28223 Madrid, Spain.
| | - Federico Vicente Pallardó
- Department of Physiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 15, E-46010 Valencia, Spain.
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
3
|
Strzalka WK, Aggarwal C, Krzeszowiec W, Jakubowska A, Sztatelman O, Banas AK. Arabidopsis PCNAs form complexes with selected D-type cyclins. FRONTIERS IN PLANT SCIENCE 2015; 6:516. [PMID: 26379676 PMCID: PMC4550699 DOI: 10.3389/fpls.2015.00516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
Abstract
Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the 10 cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1, and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1, and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1, and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes.
Collapse
Affiliation(s)
- Wojciech K. Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
- The Bioremediation Department, Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Chhavi Aggarwal
- Department of Gene Expression, Faculty of Biology, Adam Mickiewicz UniversityPoznan, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agata Jakubowska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Olga Sztatelman
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agnieszka K. Banas
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
4
|
Gao L, Yang S, Zhu Y, Zhang J, Zhuo M, Miao M, Tang X, Liu Y, Wang S. The tomato DDI2, a PCNA ortholog, associating with DDB1-CUL4 complex is required for UV-damaged DNA repair and plant tolerance to UV stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:101-10. [PMID: 25900570 DOI: 10.1016/j.plantsci.2015.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/05/2023]
Abstract
CULLIN 4 (CUL4)-DAMAGED DNA binding protein 1 (DDB1)-based ubiquitin E3 ligase modulates diverse cellular processes including repair of damaged genomic DNA. In this study, an uncharacterized gene termed as DDB1-Interacting protein 2 (DDI2) was identified in yeast two-hybrid screening with bait gene DDB1. The co-immunoprecipitation (co-IP) assays further demonstrated that DDI2 is associated with tomato DDB1-CUL4 complex in vivo. It appears that DDI2 encodes an ortholog of proliferating cell nuclear antigen (PCNA). Confocal microscope observation indicated that DDI2-GFP fusion protein was localized in nuclei. The expression of DDI2 gene is constitutive but substantially enhanced by UV-C irradiation. The transgenic tomato plants with overexpression or knockdown of DDI2 gene displayed the increased or decreased tolerance, respectively, to UV-C stress and chemical mutagen cisplatin. The quantitative analysis of UV-induced DNA lesions indicated that the dark repair of DNA damage was accelerated in DDI2 overexpression lines but delayed in knockdown lines. Conclusively, tomato DDI2 gene is required for UV-induced DNA damage repair and plant tolerance to UV stress. In addition, fruits of DDI2 transgenic plants are indistinguishable from that of wild type, regarding fresh weight and nutrient quality. Therefore, overexpression of DDI2 offers a suitable strategy for genetic manipulation of enhancing plant tolerance to UV stress.
Collapse
Affiliation(s)
- Lanyang Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junfang Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ming Zhuo
- Institute of Flower, Sichuan Academy of Botanical Engineering, Zizhong 641200, China
| | - Ming Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
5
|
Strzalka W, Aggarwal C. Arabidopsis thaliana: proliferating cell nuclear antigen 1 and 2 possibly form homo- and hetero-trimeric complexes in the plant cell. PLANT SIGNALING & BEHAVIOR 2013; 8:e24837. [PMID: 23656863 PMCID: PMC3909058 DOI: 10.4161/psb.24837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 05/29/2023]
Abstract
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered.
Collapse
|
6
|
Strzalka W, Bartnicki F, Pels K, Jakubowska A, Tsurimoto T, Tanaka K. RAD5a ubiquitin ligase is involved in ubiquitination of Arabidopsis thaliana proliferating cell nuclear antigen. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:859-69. [PMID: 23314815 DOI: 10.1093/jxb/ers368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The proliferating cell nuclear antigen (PCNA) is post-translationally modified by ubiquitin in yeast and mammalian cells. It is widely accepted that in yeast mono- and polyubiquitinated PCNA is involved in distinct pathways of DNA postreplication repair. This study showed an interaction between plant ubiquitin and PCNA in the plant cell. Using different approaches, it was demonstrated that Arabidopsis RAD5a ubiquitin ligase is involved in the post-translational modification of plant PCNA. A detailed analysis of the properties of selected Arabidopsis ubiquitin-conjugating enzymes (AtUBC) has shown that a plant homologue of yeast RAD6 (AtUBC2) is sufficient to monoubiquitinate AtPCNA in the absence of ubiquitin ligase. Using different combinations of selected AtUBC proteins together with AtRAD5a, it was demonstrated that plants have potential to use different pathways to ubiquitinate PCNA. The analysis of Arabidopsis PCNA1 and PCNA2 did not demonstrate substantial differences in the ubiquitination pattern between these two proteins. The major ubiquitination target of Arabidopsis PCNA, conserved in eukaryotes, is lysine 164. Taken together, the presented results clearly demonstrate the involvement of Arabidopsis UBC and RAD5a proteins in the ubiquitination of plant PCNA at lysine 164. The data show the complexity of the plant ubiquitination system and open new questions about its regulation in the plant cell.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Strzalka W, Labecki P, Bartnicki F, Aggarwal C, Rapala-Kozik M, Tani C, Tanaka K, Gabrys H. Arabidopsis thaliana proliferating cell nuclear antigen has several potential sumoylation sites. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2971-83. [PMID: 22330895 DOI: 10.1093/jxb/ers002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is post-translationally modified in yeast and animal cells. Major studies carried out in the last decade have focused on the role of sumoylated and ubiquitinated PCNA. Using different approaches, an interaction between plant PCNA and SUMO both in vivo and in bacteria has been demonstrated for the first time. In addition, identical sumoylation patterns for both AtPCNA1 and 2 were observed in bacteria. The plant PCNA sumoylation pattern has been shown to differ significantly from that of Saccharomyces cerevisiae. This result contrasts with a common opinion based on previous structural analysis of yeast, human, and plant PCNAs, which treats PCNA as a highly conserved protein even between species. Analyses of AtPCNA post-translational modifications using different SUMO proteins (SUMO1, 2, 3, and 5) revealed similar modification patterns for each tested SUMO protein. Potential target lysine residues that might be sumoylated in vivo were identified on the basis of in bacteria AtPCNA mutational analyses. Taken together, these results clearly show that plant PCNA is post-translationally modified in bacteria and may be sumoylated in a plant cell at various sites. These data open up important new perspectives for further detailed studies on the role of PCNA sumoylation in plant cells.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. ANNALS OF BOTANY 2011; 107:1127-40. [PMID: 21169293 PMCID: PMC3091797 DOI: 10.1093/aob/mcq243] [Citation(s) in RCA: 496] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. SCOPE This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. CONCLUSIONS Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Alicja Ziemienowicz
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- For correspondence. E-mail
| |
Collapse
|
10
|
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. ANNALS OF BOTANY 2011. [PMID: 21169293 DOI: 10.1093/aob/mcq43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. SCOPE This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. CONCLUSIONS Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | | |
Collapse
|
11
|
Dahan Y, Rosenfeld R, Zadiranov V, Irihimovitch V. A proposed conserved role for an avocado FW2.2-like gene as a negative regulator of fruit cell division. PLANTA 2010; 232:663-676. [PMID: 20544218 DOI: 10.1007/s00425-010-1200-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 05/28/2023]
Abstract
Previous studies using 'Hass' avocado and its small fruit (SF) phenotype as a model showed that SF is limited by cell number, not by cell size. In an attempt to explore the molecular mechanisms regulating avocado fruit cell division, we isolated four distinct avocado cell proliferation-related genes and investigated their expression characteristics, comparing normal fruit (NF) and SF developmental patterns. Three cDNAs termed PaCYCA1, PaCYCB1 and PaPCNA, encoding two mitotic cyclins and a proliferating cell nuclear antigen (PCNA), were first isolated from young NF tissues. The accumulation of their transcripts was predominant in mitotically active organs, including young fruitlets, leaves and roots. Furthermore, a fourth full-length cDNA, designated Pafw2.2-like, encoding a FW2.2 (fruit-weight)-like protein, was isolated from SF tissues. FW2.2 is postulated to function as a negative regulator of cell division in tomato fruit. Remarkably, northern analysis revealed that the accumulation of the mitotic cyclins and of PCNA transcripts gradually decreased in NF tissues during growth, whereas in SF, their levels had already decreased at earlier stages of fruit development, concomitant with an earlier arrest of fruit cell division activity. In contrast, parallel sq-RT-PCR analysis showed that Pafw2.2-like mRNA accumulation was considerably higher in SF tissues than in the same NF tissues essentially at all examined stages of fruit growth. Together, our data suggest essential roles for the two mitotic cyclins genes and the PCNA gene in regulating avocado fruit development. Furthermore, the possibility that Pafw2.2-like acts as does fw2.2 in tomato, is discussed.
Collapse
Affiliation(s)
- Yardena Dahan
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, 50250 Bet-Dagan, Israel
| | | | | | | |
Collapse
|