1
|
Zang Y, Pei Y, Cong X, Ran F, Liu L, Wang C, Wang D, Min Y. Single-cell RNA-sequencing profiles reveal the developmental landscape of the Manihot esculenta Crantz leaves. PLANT PHYSIOLOGY 2023; 194:456-474. [PMID: 37706525 PMCID: PMC10756766 DOI: 10.1093/plphys/kiad500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 09/15/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important crop with a high photosynthetic rate and high yield. It is classified as a C3-C4 plant based on its photosynthetic and structural characteristics. To investigate the structural and photosynthetic characteristics of cassava leaves at the cellular level, we created a single-cell transcriptome atlas of cassava leaves. A total of 11,177 high-quality leaf cells were divided into 15 cell clusters. Based on leaf cell marker genes, we identified 3 major tissues of cassava leaves, which were mesophyll, epidermis, and vascular tissue, and analyzed their distinctive properties and metabolic activity. To supplement the genes for identifying the types of leaf cells, we screened 120 candidate marker genes. We constructed a leaf cell development trajectory map and discovered 6 genes related to cell differentiation fate. The structural and photosynthetic properties of cassava leaves analyzed at the single cellular level provide a theoretical foundation for further enhancing cassava yield and nutrition.
Collapse
Affiliation(s)
- Yuwei Zang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yechun Pei
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xinli Cong
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fangfang Ran
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Liangwang Liu
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Changyi Wang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yi Min
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
2
|
Wei J, Shao W, Liu X, He L, Zhao C, Yu G, Xu J. Genome-wide identification and expression analysis of phospholipase D gene in leaves of sorghum in response to abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1261-1276. [PMID: 35910446 PMCID: PMC9334518 DOI: 10.1007/s12298-022-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 06/03/2023]
Abstract
Abiotic stress caused by unsuitable environmental changes brings serious impacts on the growth and development of sorghum, resulting in significant loss in yield and quality every year. Phospholipase D is one of the key enzymes that catalyze the hydrolysis of phospholipids, and participates in plants response to abiotic stresses and phytohormones, whereas as the main producers of Phosphatidic acid (PA) signal, the detailed information about Phospholipase D associated (SbPLD) family in sorghum has been rarely reported. This study was performed to identify the PLD family gene in sorghum based on the latest genome annotation and to determine the expression of PLDs under abiotic stresses by qRT-PCR analysis. In this study, 13 PLD genes were identified in sorghum genome and further divided into 7 groups according to the phylogenetic analysis. All sorghum PLD family members harbored two conserved domains (HDK1&2) with catalytic activity, and most members contained a C2 domain. In ζ subfamily, C2 domain was replaced by PX and PH domain. The exon-intron structure of SbPLD genes within the same subfamily was highly conservative. The tissue specific expression analysis revealed different expression of SbPLD genes in various developmental stages. High level expression of SbPLDα3 was observed in almost all tissues, whereas SbPLDα4 was mainly expressed in roots. Under abiotic stress conditions, SbPLD genes responded actively to NaCl, ABA, drought (PEG) and cold (4 °C) treatment at the transcriptional level. The expression of SbPLDβ1 was significantly up-regulated, while the transcription of SbPLDζ was suppressed under various stress conditions. In addition, SbPLDβ1 and SbPLDδ2 were predicted to be the target genes of sbi-miR159 and sbi-miR167, respectively. This study will help to decipher the roles of PLDs in sorghum growth and abiotic stress responses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01200-9.
Collapse
Affiliation(s)
- Jinpeng Wei
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
- Ministry of Agriculture and Rural Affairs Agro-Products and Processed Products Quality Supervision, Inspection and Testing Center, Daqing, 163319 China
- National Coarse Cereal Engineering Research Center, Daqing, 163319 China
| | - Wenjing Shao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xinyu Liu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Lin He
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Changjiang Zhao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Gaobo Yu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Jingyu Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
- National Coarse Cereal Engineering Research Center, Daqing, 163319 China
| |
Collapse
|
3
|
Caburatan L, Park J. Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase. PLANTS (BASEL, SWITZERLAND) 2021; 10:1887. [PMID: 34579420 PMCID: PMC8468890 DOI: 10.3390/plants10091887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme, which is crucial for plant carbon metabolism. PEPC participates in photosynthesis by catalyzing the initial fixation of atmospheric CO2 and is abundant in both C4 and crassulacean acid metabolism leaves. PEPC is differentially expressed at different stages of plant development, mostly in leaves, but also in developing seeds. PEPC is known to show tissue-specific distribution in leaves and in other plant organs, such as roots, stems, and flowers. Plant PEPC undergoes reversible phosphorylation and monoubiquitination, which are posttranslational modifications playing important roles in regulatory processes and in protein localization. Phosphorylation activates the PEPC enzyme, making it more sensitive to glucose-6-phosphate and less sensitive to malate or aspartate. PEPC phosphorylation is known to be diurnally regulated and delicately changed in response to various environmental stimuli, in addition to light. PEPCs belong to a small gene family encoding several plant-type and distantly related bacterial-type PEPCs. This paper provides a minireview of the general information on PEPCs in both C4 and C3 plants.
Collapse
Affiliation(s)
- Lorrenne Caburatan
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
4
|
Rodas-Junco BA, Racagni-Di-Palma GE, Canul-Chan M, Usorach J, Hernández-Sotomayor SMT. Link between Lipid Second Messengers and Osmotic Stress in Plants. Int J Mol Sci 2021; 22:2658. [PMID: 33800808 PMCID: PMC7961891 DOI: 10.3390/ijms22052658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants are subject to different types of stress, which consequently affect their growth and development. They have developed mechanisms for recognizing and processing an extracellular signal. Second messengers are transient molecules that modulate the physiological responses in plant cells under stress conditions. In this sense, it has been shown in various plant models that membrane lipids are substrates for the generation of second lipid messengers such as phosphoinositide, phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second messengers has been moving toward using genetic and molecular approaches to reveal the molecular setting in which these molecules act in response to osmotic stress. In this sense, these studies have established that second messengers can transiently recruit target proteins to the membrane and, therefore, affect protein conformation, activity, and gene expression. This review summarizes recent advances in responses related to the link between lipid second messengers and osmotic stress in plant cells.
Collapse
Affiliation(s)
- Beatriz A. Rodas-Junco
- CONACYT—Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, C.P. 97203 Mérida, Mexico
| | | | - Michel Canul-Chan
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Avenida Oriente 6 Num. 1009, Rafael Alvarado, C.P. 94340 Orizaba, Mexico;
| | - Javier Usorach
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| | - S. M. Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| |
Collapse
|
5
|
Bourtsala A, Dafnis I, Chroni A, Farmaki T, Galanopoulou D. Study of the Involvement of Phosphatidic Acid Formation in the Expression of Wound-Responsive Genes in Cotton. Lipids 2018; 53:589-599. [PMID: 30198579 DOI: 10.1002/lipd.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/12/2022]
Abstract
Plants use phospholipase D (PLD, EC 3.1.4.4)/phosphatidic acid (PtdOH) for the transduction of environmental signals including those coming from wounding. Based on our previous findings suggesting that wound-induced PLDα-derived PtdOH can act as a local signaling molecule in cotton (Gossypium hirsutum), we show that wounding immediately increases local NADPH oxidase (NADPHox) and cellulose synthase A (CeSA) gene expression. After developing a novel fluorimetric assay for the investigation of n-butanol inhibitory effect on PLD activity, we show that only NADPHox gene upregulation is reduced when n-butanol is applied prior to wounding. This suggests that NADPHox is a possible downstream target of PLD function, while a different CeSA-involving response system may exist in cotton. Overall, this study provides new knowledge on signal-transduction mechanisms following wounding of cotton leaves.
Collapse
Affiliation(s)
- Angeliki Bourtsala
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Patr. Gregoriou E & 27 Neapoleos Str, 15341 Agia Paraskevi, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Patr. Gregoriou E & 27 Neapoleos Str, 15341 Agia Paraskevi, Greece
| | - Theodora Farmaki
- Institute of Applied Biosciences, Centre for Research and Technology, 6th km Charilaou-Thermi Rd, 57001 Thermi, Thessaloniki, Greece
| | - Dia Galanopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
6
|
Liu X, Li X, Zhang C, Dai C, Zhou J, Ren C, Zhang J. Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress. PHYSIOLOGIA PLANTARUM 2017; 159:178-200. [PMID: 27592839 DOI: 10.1111/ppl.12506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/14/2016] [Accepted: 08/05/2016] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) has important functions in C4 photosynthesis and biosynthesis of intermediate metabolites. In this study, the drought resistance of C4-PEPC-expressing transgenic rice (Oryza sativa, line PC) plants was assessed using simulated drought conditions [i.e. polyethylene glycol (PEG)-6000 treatment]. The dry weight of PC plants was higher than that of wild-type (WT) plants following treatment with 15% PEG-6000 for 16 days. Furthermore, the water use efficiency, relative water content and proline content in PC plants were higher than those of WT plants, as were C4-PEPC activity and transcript levels following treatment with 5% PEG-6000 for 2 h. The protein kinase activities and transcript levels of sucrose non-fermenting-1-related protein kinases (SnRKs) genes, such as SnRK1a, OsK24 and OsK35 were also higher in PC plants than in WT plants following treatment with 5% PEG-6000 for 2 h. Additionally, phosphoenolpyruvate carboxylase kinase (PPCK, EC 4.1.1.32) activities and transcript levels (e.g. PPCK1 and PPCK2) increased following drought treatment. These changes were regulated by signaling molecules, such as calcium, nitric oxide and hydrogen peroxide. Furthermore, the -1095 to -416 region of the C4-PEPC promoter in PC plants was demethylated following exposure to drought conditions for 1 h. The demethylation coincided with an increase in C4-PEPC expression. Our data suggest that the demethylation of the C4-PEPC promoter and the phosphorylation catalyzed by PPCK have key roles in conferring drought tolerance to the transgenic rice plants.
Collapse
Affiliation(s)
- Xiaolong Liu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xia Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chen Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiayu Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chenggang Ren
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| | - Jinfei Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch, China National Center for Rice Improvement, Nanjing, 210014, China
| |
Collapse
|
7
|
Feria AB, Bosch N, Sánchez A, Nieto-Ingelmo AI, de la Osa C, Echevarría C, García-Mauriño S, Monreal JA. Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions. PLANTA 2016; 244:901-13. [PMID: 27306451 DOI: 10.1007/s00425-016-2556-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 05/11/2023]
Abstract
Arabidopsis ppc3 mutant has a growth-arrest phenotype and is affected in phosphate- and salt-stress responses, showing that this protein is crucial under control or stress conditions. Phosphoenolpyruvate carboxylase (PEPC) and its dedicated kinase (PEPC-k) are ubiquitous plant proteins implicated in many physiological processes. This work investigates specific roles for the three plant-type PEPC (PTPC) and the two PEPC-k isoenzymes in Arabidopsis thaliana. The lack of any of the PEPC isoenzymes reduced growth parameters under optimal growth conditions. PEPC activity was decreased in shoots and roots of ppc2 and ppc3 mutants, respectively. Phosphate starvation increased the expression of all PTPC and PPCK genes in shoots, but only PPC3 and PPCK2 in roots. The absence of any of these two proteins was not compensated by other isoforms in roots. The effect of salt stress on PTPC and PPCK expression was modest in shoots, but PPC3 was markedly increased in roots. Interestingly, both stresses decreased root growth in each of the mutants except for ppc3. This mutant had a stressed phenotype in control conditions (reduced root growth and high level of stress molecular markers), but was unaffected in their response to high salinity. Salt stress increased PEPC activity, its phosphorylation state, and L-malate content in roots, all these responses were abolished in the ppc3 mutant. Our results highlight the importance of the PPC3 isoenzyme for the normal development of plants and for root responses to stress.
Collapse
Affiliation(s)
- Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Nadja Bosch
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Alfonso Sánchez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Ana I Nieto-Ingelmo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Clara de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain
| | - Jose Antonio Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012, Seville, Spain.
| |
Collapse
|
8
|
Qian B, Li X, Liu X, Chen P, Ren C, Dai C. Enhanced drought tolerance in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene via NO and Ca(2+). JOURNAL OF PLANT PHYSIOLOGY 2015; 175:9-20. [PMID: 25460871 DOI: 10.1016/j.jplph.2014.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/20/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
We determined the effects of endogenous nitric oxide and Ca(2+) on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C4pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC) under drought. In this study, seedlings were subjected to PEG 6000 treatments using PC and wild type (WT; Kitaake). The results showed that, compared with WT, PC had higher relative water content (RWC) and net photosynthetic rate (Pn) under drought. During a 2-day re-watering treatment, Pn recovered faster in PC than in WT. Further analyses showed that, under the drought treatment, the amount of endogenous hydrogen peroxide (H2O2) increased in WT mainly via NADPH oxidase. While in PC, the endogenous nitric oxide (NO) content increased via nitrate reductase and nitric oxide synthase on day 2 of the drought treatment and day 1 of the re-watering treatment. After 2 days of drought treatment, PC also showed higher PEPC activity, calcium content, phospholipase D (PLD) activity, C4-pepc and NAC6 transcript levels, and protein kinase activity as compared with PC without treatment. These changes did not occur in WT. Correlation analysis also proved NO associated with these indicators in PC. Based on these results, there was a particular molecular mechanism of drought tolerance in PC. The mechanism is related to the signaling processes via NO and Ca(2+) involving the protein kinase and the transcription factor, resulted in up-regulation of PEPC activity and its gene expression, such as C4pepc. Some genes encode antioxidant system, cu/zn-sod as well, which promote antioxidant system to clear MDA and superoxide anion radical, thereby conferring drought tolerance.
Collapse
Affiliation(s)
- Baoyun Qian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China.
| | - Xiaolong Liu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pingbo Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China
| | - Chengang Ren
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
9
|
Monreal JA, Arias-Baldrich C, Tossi V, Feria AB, Rubio-Casal A, García-Mata C, Lamattina L, García-Mauriño S. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity. PLANTA 2013; 238:859-69. [PMID: 23913013 DOI: 10.1007/s00425-013-1933-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/17/2013] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C₄ phosphoenolpyruvate carboxylase (C₄ PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.
Collapse
Affiliation(s)
- José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Monreal JA, Arias-Baldrich C, Pérez-Montaño F, Gandullo J, Echevarría C, García-Mauriño S. Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves. PLANTA 2013; 237:1401-13. [PMID: 23408154 DOI: 10.1007/s00425-013-1855-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/01/2013] [Indexed: 05/25/2023]
Abstract
Salinity increases phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity in sorghum leaves. This work has been focused on the mechanisms responsible for this phenomenon. The light-triggered expression of SbPPCK1 gene, accountable for the photosynthetic C4-PEPCase-k, is controlled by a complex signal transduction chain involving phospholipases C and D (PLC and PLD). These two phospholipase-derived signalling pathways were functional in salinized plants. Pharmacological agents that act on PLC (U-73122, neomycin) or PLD (n-butanol) derived signals, blocked the expression of SbPPCK1, but had little effect on PEPCase-k activity. This discrepancy was further noticed when SbPPCK1-3 gene expression and PEPCase-k activity were studied in parallel. At 172 mM, the main effect of NaCl was to decrease the rate of PEPCase-k protein turnover. Meanwhile, 258 mM NaCl significantly increased both SbPPCK1 and SbPPCK2 gene expression and/or mRNA stability. The combination of these factors contributed to maintain a high PEPCase-k activity in salinity. LiCl increased calcium-dependent protein kinase (CDPK) activity in illuminated sorghum leaves while it decreased the rate of PEPCase-k degradation. The latter effect was restrained by W7, an inhibitor of CDPK activity. Recombinant PEPCase-k protein was phosphorylated in vitro by PKA. A conserved phosphorylation motif, which can be recognized by PKA and by plant CDPKs, is present in the three PEPCase-ks proteins. Thus, it is possible that a phosphorylation event could be controlling (increasing) the stability of PEPCase-k in salinity. These results propose a new mechanism of regulation of PEPCase-k levels, and highlight the relevance of the preservation of key metabolic elements during the bulk degradation of proteins, which is commonly associated to stress.
Collapse
Affiliation(s)
- José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no 6, 41012, Seville, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Lipidomic analyses through LC-, GC-, and ESI-MS/MS can detect numerous lipid species based on headgroup and fatty acid compositions but usually miss the minor phospholipids involved in cell signaling because of their low chemical abundancy. Due to their high turnover, these signaling lipids are, however, readily picked up by labeling plant material with (32)P-orthophosphate and subsequent analysis of the lipid extracts by thin layer chromatography. Here, protocols are described for suspension-cultured tobacco BY-2 cells, young Arabidopsis seedlings, Vicia faba roots, and Arabidopsis leaf disks, which can easily be modified for other plant species and tissues.
Collapse
Affiliation(s)
- Teun Munnik
- Swammerdam Institute for Life Sciences, Section Plant Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 2011; 436:15-34. [DOI: 10.1042/bj20110078] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C4–C6 carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO2-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.
Collapse
|
13
|
Testerink C, Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2349-61. [PMID: 21430291 DOI: 10.1093/jxb/err079] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.
Collapse
Affiliation(s)
- Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
14
|
Giammaria V, Grandellis C, Bachmann S, Gargantini PR, Feingold SE, Bryan G, Ulloa RM. StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling. PLANTA 2011; 233:593-609. [PMID: 21132327 DOI: 10.1007/s00425-010-1319-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/12/2010] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are essential calcium sensors. In this work, we have studied StCDPK2 isoform from potato both at gene and protein level. StCdpk2 genomic sequence contains eight exons and seven introns, as was observed for StCdpk1. There is one copy of the gene per genome located in chromosome 7. StCDPK2 encodes an active CDPK of 515 aminoacids, with an apparent MW of 57 kDa, which presents myristoylation and palmitoylation consensus in its N-terminus. StCDPK2 is highly expressed in leaves and green sprouts; enhanced expression was detected under light treatment, which corresponds well with light responsive cis-acting elements found in its promoter sequence. Antibodies against the recombinant StCDPK2::6xHis protein detected this isoform in soluble and particulate fractions from leaves. StCDPK2 autophosphorylation and kinase activity are both calcium dependent reaching half maximal activation at 0.6 μM calcium. The active kinase is autophosphorylated on serine and tyrosine residues and its activity is negatively modulated by phosphatidic acid (PA). Our results reveal StCDPK2 as a signalling element involved in plant growth and development and show that its activity is tightly regulated.
Collapse
Affiliation(s)
- Verónica Giammaria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, 1428, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|