1
|
Cho Y, Sukhan ZP, Lee WK, Kho KH. Structural and functional characterization of Hdh-HSBP1 and its involvement in heat stress and early development in Pacific abalone, Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109660. [PMID: 38830519 DOI: 10.1016/j.fsi.2024.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Heat shock factor binding protein 1 (HSBP1) is known to regulate the activity of heat shock factor 1 (HSF1) and the early development of organisms. To understand the involvement of HSBP1 in the heat shock response and embryonic and larval development of Pacific abalone (Haliotis discus hannai), the Hdh-HSBP1 gene was sequenced from the digestive gland (DG) tissue. The full-length sequence of Hdh-HSBP1 encompassed 738 nucleotides, encoding an 8.42 kDa protein consisting of 75 deduced amino acids. The protein contains an HSBP1 domain and a coiled-coil domain, which are conserved features in the HSBP1 protein family. Protein-protein molecular docking revealed that the coiled-coil region of Hdh-HSBP1 binds to the coiled-coil region of Hdh-HSF1. Tissue expression analysis demonstrated that the highest Hdh-HSBP1 expression occurred in the DG, whereas seasonal expression analysis revealed that this gene was most highly expressed in summer. In heat-stressed abalone, the highest expression of Hdh-HSBP1 occurred at 30 °C. Moreover, time-series analysis revealed that the expression of this gene began to increase significantly at 6 h post-heat stress, with higher expression observed at 12 h and 24 h post-heat stress. Furthermore, Hdh-HSBP1 mRNA expression showed a link to ROS production. Additionally, the expression of Hdh-HSBP1 showed significantly higher expression in the early stages of embryonic development in Pacific abalone. These results suggest that Hdh-HSBP1 plays a crucial role in the stress physiology of Pacific abalone by interacting with Hdh-HSF1, as well as its embryonic development.
Collapse
Affiliation(s)
- Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Won-Kyo Lee
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
2
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
3
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
4
|
Li Z, Huang C, Han L. Differential Regulations of Antioxidant Metabolism and Cold-Responsive Genes in Three Bermudagrass Genotypes under Chilling and Freezing Stress. Int J Mol Sci 2023; 24:14070. [PMID: 37762373 PMCID: PMC10530996 DOI: 10.3390/ijms241814070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
As a typical warm-season grass, bermudagrass growth and turf quality begin to decrease when the environmental temperature drops below 20 °C. The current study investigated the differential responses of three bermudagrass genotypes to chilling stress (8/4 °C) for 15 days and then freezing stress (2/-2 °C) for 2 days. The three genotypes exhibited significant variation in chilling and freezing tolerance, and Chuannong-3, common bermudagrass 001, and Tifdwarf were ranked as cold-tolerant, -intermediate, and -sensitive genotypes based on evaluations of chlorophyll content, the photochemical efficiency of photosystem II, oxidative damage, and cell membrane stability, respectively. Chuannong-3 achieved better tolerance through enhancing the antioxidant defense system to stabilize cell membrane and reactive oxygen species homeostasis after being subjected to chilling and freezing stresses. Chuannong-3 also downregulated the ethylene signaling pathway by improving CdCTR1 expression and suppressing the transcript levels of CdEIN3-1 and CdEIN3-2; however, it upregulated the hydrogen sulfide signaling pathway via an increase in CdISCS expression under cold stress. In addition, the molecular basis of cold tolerance could be associated with the mediation of key genes in the heat shock pathway (CdHSFA-2b, CdHSBP-1, CdHSP22, and CdHSP40) and the CdOSMOTIN in Chuannong-3 because the accumulation of stress-defensive proteins, including heat shock proteins and osmotin, plays a positive role in osmoprotection, osmotic adjustment, or the repair of denatured proteins as molecular chaperones under cold stress. The current findings give an insight into the physiological and molecular mechanisms of cold tolerance in the new cultivar Chuannong-3, which provides valuable information for turfgrass breeders and practitioners.
Collapse
Affiliation(s)
- Zhou Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Huang
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Muthusamy M, Son S, Park SR, Lee SI. Heat shock factor binding protein BrHSBP1 regulates seed and pod development in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2023; 14:1232736. [PMID: 37719218 PMCID: PMC10499616 DOI: 10.3389/fpls.2023.1232736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023]
Abstract
Plant heat shock factor binding proteins (HSBPs) are well known for their implication in the negative regulation of heat stress response (HSR) pathways. Herein, we report on the hitherto unknown functions of HSBP1 in Brassica rapa (BrHSBP1). BrHBSP1 was found to be predominant in flower buds and young leaves, while its segmental duplicate, BrHSBP1-like, was abundant in green siliques. Exposure to abiotic stress conditions, such as heat, drought, cold, and H2O2, and to phytohormones was found to differentially regulate BrHSBP1. The activity of BrHSBP1-GFP fusion proteins revealed their cellular localization in nuclei and cytosols. Transgenic overexpression of BrHSBP1 (BrHSBP1OX) improved pod and seed sizes, while CRISPR-Cas BrHSBP1 knock-out mutants (Brhsbp1_KO) were associated with aborted seed and pod development. The transcriptomic signatures of BrHSBP1OX and Brhsbp1_KO lines revealed that 360 and 2381 genes, respectively, were differentially expressed (Log2FC≥2, padj<0.05) expressed relative to control lines. In particular, developmental processes, including plant reproductive structure development (RSD)-related genes, were relatively downregulated in Brhsbp1_KO. Furthermore, yeast two-hybrid assays confirmed that BrHSBP1 can physically bind to RSD and other genes. Taking the findings together, it is clear that BrHSBP1 is involved in seed development via the modulation of RSD genes. Our findings represent the addition of a new regulatory player in seed and pod development in B. rapa.
Collapse
Affiliation(s)
| | | | | | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Hassan MA, Dahu N, Hongning T, Qian Z, Yueming Y, Yiru L, Shimei W. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1215371. [PMID: 37534289 PMCID: PMC10391551 DOI: 10.3389/fpls.2023.1215371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
Rice (Oryza Sativa L.) is an essential constituent of the global food chain. Drought stress significantly diminished its productivity and threatened global food security. This review concisely discussed how drought stress negatively influenced the rice's optimal growth cycle and altered its morpho-physiological, biochemical, and molecular responses. To withstand adverse drought conditions, plants activate their inherent drought resistance mechanism (escape, avoidance, tolerance, and recovery). Drought acclimation response is characterized by many notable responses, including redox homeostasis, osmotic modifications, balanced water relations, and restored metabolic activity. Drought tolerance is a complicated phenomenon, and conventional breeding strategies have only shown limited success. The application of molecular markers is a pragmatic technique to accelerate the ongoing breeding process, known as marker-assisted breeding. This review study compiled information about quantitative trait loci (QTLs) and genes associated with agronomic yield-related traits (grain size, grain yield, harvest index, etc.) under drought stress. It emphasized the significance of modern breeding techniques and marker-assisted selection (MAS) tools for introgressing the known QTLs/genes into elite rice lines to develop drought-tolerant rice varieties. Hence, this study will provide a solid foundation for understanding the complex phenomenon of drought stress and its utilization in future crop development programs. Though modern genetic markers are expensive, future crop development programs combined with conventional and MAS tools will help the breeders produce high-yielding and drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Muhammad A. Hassan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ni Dahu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tong Hongning
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Qian
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yi Yueming
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Li Yiru
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wang Shimei
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
7
|
Samtani H, Sharma A, Khurana P. Ectopic overexpression of TaHsfA5 promotes thermomorphogenesis in Arabidopsis thaliana and thermotolerance in Oryza sativa. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01355-3. [PMID: 37166615 DOI: 10.1007/s11103-023-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/16/2023] [Indexed: 05/12/2023]
Abstract
Heat stress transcription factors (Hsfs) play an important role in regulating the heat stress response in plants. Among the Hsf family members, the group A members act upstream in initiating the response upon sensing heat stress and thus, impart thermotolerance to the plants. In the present study, wheat HsfA5 (TaHsfA5) was found to be one of the Hsfs, which was upregulated both in heat stress and during the recovery period after the stress. TaHsfA5 was found to interact with TaHsfA3 and TaHsfA4, both of which are known to positively regulate the heat stress-responsive genes. Apart from these, TaHsfA5 also interacted with TaHSBP2 protein, whose role has been implicated in attenuating the heat stress response. Further, its heterologous overexpression in Arabidopsis and Oryza sativa promoted thermotolerance in these plants. This indicated that TaHsfA5 positively regulated the heat stress response. Interestingly, the TaHsfA5 overexpression Arabidopsis plants when grown at warm temperatures showed a hyper-thermomorphogenic response in comparison to the wild-type plants. This was found to be consistent with the higher expression of PIF4 and its target auxin-responsive genes in these transgenics in contrast to the wild-type plants. Thus, these results suggest the involvement of TaHsfA5 both in the heat stress response as well as in the thermomorphogenic response in plants.
Collapse
Affiliation(s)
- Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
8
|
Wang Y, Wang Y, Chen W, Dong Y, Zhang G, Deng H, Liu X, Lu X, Wang F, Chen G, Xiao Y, Tang W. Comparative transcriptome analysis of the mechanism difference in heat stress response between indica rice cultivar "IR64" and japonica cultivar "Koshihikari" at the seedling stage. Front Genet 2023; 14:1135577. [PMID: 37153001 PMCID: PMC10160441 DOI: 10.3389/fgene.2023.1135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Heat stress (HS) has become a major abiotic stress in rice, considering the frequency and intensity of extreme hot weather. There is an urgent need to explore the differences in molecular mechanisms of HS tolerance in different cultivars, especially in indica and japonica. In this study, we investigated the transcriptome information of IR64 (indica, IR) and Koshihikari (japonica, Kos) in response to HS at the seedling stage. From the differentially expressed genes (DEGs) consistently expressed at six time points, 599 DEGs were identified that were co-expressed in both cultivars, as well as 945 and 1,180 DEGs that were specifically expressed in IR and Kos, respectively. The results of GO and KEGG analysis showed two different HS response pathways for IR and Kos. IR specifically expressed DEGs were mainly enriched in chloroplast-related pathways, whereas Kos specifically expressed DEGs were mainly enriched in endoplasmic reticulum and mitochondria-related pathways. Meanwhile, we highlighted the importance of NO biosynthesis genes, especially nitrate reductase genes, in the HS response of IR based on protein-protein interaction networks. In addition, we found that heat shock proteins and heat shock factors play very important roles in both cultivars. This study not only provides new insights into the differences in HS responses between different subspecies of rice, but also lays the foundation for future research on molecular mechanisms and breeding of heat-tolerant cultivars.
Collapse
Affiliation(s)
- Yingfeng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yubo Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Wenjuan Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yating Dong
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guilian Zhang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Huabing Deng
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xiong Liu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Feng Wang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Guihua Chen
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yunhua Xiao
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| | - Wenbang Tang
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, College of Agronomy, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Yunhua Xiao, ; Wenbang Tang,
| |
Collapse
|
9
|
Zhou Y, Xu F, Shao Y, He J. Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3410. [PMID: 36559522 PMCID: PMC9788449 DOI: 10.3390/plants11243410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and morphological changes in plants and threaten plant productivity. As sessile organisms, plants are subjected to various hostile environmental factors and forced to change their cellular state and morphological architecture to successfully deal with the damage they suffer. Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature. There are two main mechanisms by which plants respond to elevated environmental temperatures. One is the heat stress response, which is activated under extremely high temperatures; the other is the thermomorphogenesis response, which is activated under moderately elevated temperatures, below the heat-stress range. In this review, we summarize recent progress in the study of these two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat Shock Transcription Factor (HSF)-Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes involved in these pathways to provide comprehensive data for researchers studying the heat response. We also discuss future perspectives in this field.
Collapse
Affiliation(s)
| | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Kim J, Park J, Kim H, Son N, Kim E, Kim J, Byun D, Lee Y, Park YM, Nageswaran DC, Kuo P, Rose T, Dang TVT, Hwang I, Lambing C, Henderson IR, Choi K. Arabidopsis HEAT SHOCK FACTOR BINDING PROTEIN is required to limit meiotic crossovers and HEI10 transcription. EMBO J 2022; 41:e109958. [PMID: 35670129 PMCID: PMC9289711 DOI: 10.15252/embj.2021109958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The number of meiotic crossovers is tightly controlled and most depend on pro-crossover ZMM proteins, such as the E3 ligase HEI10. Despite the importance of HEI10 dosage for crossover formation, how HEI10 transcription is controlled remains unexplored. In a forward genetic screen using a fluorescent crossover reporter in Arabidopsis thaliana, we identify heat shock factor binding protein (HSBP) as a repressor of HEI10 transcription and crossover numbers. Using genome-wide crossover mapping and cytogenetics, we show that hsbp mutations or meiotic HSBP knockdowns increase ZMM-dependent crossovers toward the telomeres, mirroring the effects of HEI10 overexpression. Through RNA sequencing, DNA methylome, and chromatin immunoprecipitation analysis, we reveal that HSBP is required to repress HEI10 transcription by binding with heat shock factors (HSFs) at the HEI10 promoter and maintaining DNA methylation over the HEI10 5' untranslated region. Our findings provide insights into how the temperature response regulator HSBP restricts meiotic HEI10 transcription and crossover number by attenuating HSF activity.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Jihye Park
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Heejin Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Namil Son
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Eun‐Jung Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Jaeil Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Dohwan Byun
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Youngkyung Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Yeong Mi Park
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | | | - Pallas Kuo
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Teresa Rose
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - Tuong Vi T Dang
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Ildoo Hwang
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Christophe Lambing
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - Ian R Henderson
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Kyuha Choi
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| |
Collapse
|
11
|
Aldubai AA, Alsadon AA, Migdadi HH, Alghamdi SS, Al-Faifi SA, Afzal M. Response of Tomato ( Solanum lycopersicum L.) Genotypes to Heat Stress Using Morphological and Expression Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:615. [PMID: 35270087 PMCID: PMC8912326 DOI: 10.3390/plants11050615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Due to unfavorable environmental conditions, heat stress is one of the significant production restrictions for the tomato (Solanum lycopersicum L.) crop. The tomato crop is considered an important vegetable crop globally and represents a model plant for fruit development research. The heat shock factor (HSF) gene family contains plant-specific transcription factors (TFs) that are highly conserved and play a key role in plant high-temperature stress responses. The current study was designed to determine the relative response of heat stress under three different temperatures in the field condition to determine its relative heat tolerance. Furthermore, the study also characterized heat shock genes in eight tomato genotypes under different temperature regimes. The expressions of each gene were quantified using qPCR. The descriptive statistics results suggested a high range of diversity among the studied variables growing under three different temperatures. The qPCR study revealed that the SlyHSF genes play an important role in plant heat tolerance pathways. The expression patterns of HSF genes in tomatoes have been described in various tissues were determined at high temperature stress. The genes, SlyHSFs-1, SlyHSFs-2, SlyHSFs-8, SlyHSFs-9 recorded upregulation expression relative to SlyHSFs-3, SlyHSFs-5, SlyHSFs-10, and SlyHSFs-11. The genotypes, Strain B, Marmande VF, Pearson's early, and Al-Qatif-365 recorded the tolerant tomato genotypes under high-temperature stress conditions relative to other genotypes. The heat map analysis also confirmed the upregulation and downregulation of heat shock factor genes among the tomato genotypes. These genotypes will be introduced in the breeding program to improve tomato responses to heat stress.
Collapse
Affiliation(s)
- Abdulhakim A. Aldubai
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Hussein H. Migdadi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
- National Agricultural Research Center, Baqa, Amman 19381, Jordan
| | - Salem S. Alghamdi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Sulieman A. Al-Faifi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| | - Muhammad Afzal
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.A.A.); (S.S.A.); (S.A.A.-F.); (M.A.)
| |
Collapse
|
12
|
Hou F, Zhou X, Liu P, Yuan G, Zou C, Lübberstedt T, Pan G, Ma L, Shen Y. Genetic dissection of maize seedling traits in an IBM Syn10 DH population under the combined stress of lead and cadmium. Mol Genet Genomics 2021; 296:1057-1070. [PMID: 34117523 DOI: 10.1007/s00438-021-01800-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The heavy metals lead and cadmium have become important pollutants in the environment, which exert negative effects on plant morphology, growth and photosynthesis. It is particularly significant to uncover the genetic loci and the causal genes for lead and cadmium tolerance in plants. This study used an IBM Syn10 DH population to identify the quantitative trait loci (QTL) controlling maize seedling tolerance to lead and cadmium by linkage mapping. The broad-sense heritability of these seedling traits ranged from 65.8-97.3% and 32.0-98.8% under control (CK) and treatment (T) conditions, respectively. A total of 53 and 64 QTL were detected under CK and T conditions, respectively. Moreover, 42 QTL were identified using lead and cadmium tolerance coefficient (LCTC). Among these QTL, five and two major QTL that explained > 10% of phenotypic variation were identified under T condition and using LCTC, respectively. Furthermore, eight QTL were simultaneously identified by T and LCTC, explaining 5.23% to 9.21% of the phenotypic variations. Within these major and common QTL responsible for the combined heavy metal tolerance, four candidate genes (Zm00001d048759, Zm00001d004689, Zm00001d004843, Zm00001d033527) were previously reported to correlate with heavy metal transport and tolerance. These findings will contribute to functional gene identification and molecular marker-assisted breeding for improving heavy metal tolerance in maize.
Collapse
Affiliation(s)
- Fengxia Hou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Zhou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Liu Z, Shi L, Yang S, Qiu S, Ma X, Cai J, Guan D, Wang Z, He S. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. MOLECULAR PLANT PATHOLOGY 2021; 22:3-18. [PMID: 33151622 PMCID: PMC7749755 DOI: 10.1111/mpp.13004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 05/11/2023]
Abstract
CaWRKY40 was previously found to be transcriptionally up-regulated by Ralstonia solanacearum inoculation (RSI) or heat stress (HS), but the underlying mechanism remains unknown. Herein, we report that a double-W box-element (DWE) in the promoter of CaWRKY40 is critical for these responses. The upstream W box unit WI of this composite element is crucial for preferential binding by CaWRKY40 and responsiveness to RSI or HS. DWE-driven CaWRKY40 can be transcriptionally and nonspecifically regulated by itself and by CaWRKY58 and CaWRKY27. The DWE was also found in the promoters of CaWRKY40 orthologs, including AtWRKY40, VvWRKY40, GmWRKY40, CplWRKY40, SaWRKY40, SpWRKY40, NtWRKY40, and NaWRKY40. DWEAtWRKY40 was analogous to DWECaWRKY40 by responding to RSI or HS and AtWRKY40 expression. These data suggest that a conserved response of plants to pathogen infection or HS is probably mediated by binding of the DWE by WRKY40.
Collapse
Affiliation(s)
- Zhi‐Qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lan‐Ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shan‐Shan Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiao‐Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jin‐Sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - De‐Yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zong‐Hua Wang
- Fujian University Key Laboratory for Plant‐Microbe InteractionCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Shui‐Lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
14
|
Genome-wide identification, classification, expression profiling and DNA methylation (5mC) analysis of stress-responsive ZFP transcription factors in rice (Oryza sativa L.). Gene 2019; 718:144018. [DOI: 10.1016/j.gene.2019.144018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
|
15
|
Gu L, Jiang T, Zhang C, Li X, Wang C, Zhang Y, Li T, Dirk LMA, Downie AB, Zhao T. Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:128-142. [PMID: 31180156 DOI: 10.1111/tpj.14434] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 05/13/2023]
Abstract
Raffinose is thought to play an important role in plant tolerance of abiotic stress. We report here that maize HEAT SHOCK FACTOR A2 (ZmHSFA2) and HEAT SHOCK BINDING PROTEIN 2 (ZmHSBP2) physically interact with each other and antagonistically modulate expression of GALACTINOL SYNTHASE2 (ZmGOLS2) and raffinose biosynthesis in transformed maize protoplasts and Arabidopsis plants. Overexpression of ZmHSFA2 in Arabidopsis increased the expression of Arabidopsis AtGOLS1, AtGOLS2 and AtRS5 (RAFFINOSE SYNTHASE), increased the raffinose content in leaves and enhanced plant heat stress tolerance. Contrary to ZmHSFA2, overexpression of ZmHSBP2 in Arabidopsis decreased expression of AtGOLS1, AtGOLS2 and AtRS5, decreased the raffinose content in leaves and reduced plant heat stress tolerance. ZmHSFA2 and ZmHSBP2 also interact with their Arabidopsis counterparts AtHSBP and AtHSFA2 as determined using bimolecular fluorescence complementation assays. Furthermore, endogenous ZmHSBP2 and Rluc, controlled by the ZmHSBP2 promoter, are transcriptionally activated by ZmHSFA2 and inhibited by ZmHSBP2 in maize protoplasts. These findings provide insights into the transcriptional regulation of raffinose biosynthetic genes, and the tolerance their product confers to plant heat stress.
Collapse
Affiliation(s)
- Lei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xudong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Wang
- Biology Experimental Teaching Center, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
16
|
Zhou H, Wang X, Huo C, Wang H, An Z, Sun D, Liu J, Tang W, Zhang B. A Quantitative Proteomics Study of Early Heat-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Identified OsUBP21 as a Negative Regulator of Heat Stress Responses in Rice. Proteomics 2019; 19:e1900153. [PMID: 31491808 DOI: 10.1002/pmic.201900153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/10/2019] [Indexed: 12/11/2022]
Abstract
To understand the early heat shock (HS)-regulated cellular responses that influence the tolerance of rice plant to high environmental temperatures, two-dimensional difference gel electrophoresis (2D-DIGE) is performed to explore the early HS-regulated proteome. Multiple proteins that show abundance changes after 1 and 5 min of HS treatment are identified. Of the early HS-regulated proteins identified, the abundance of a ubiquitin-specific protease, OsUBP21, and its Arabidopsis homolog, AtUBP13, is found to be upregulated by 5 min of HS treatment. Further, knocking the expression of OsUBP21 or AtUBP13 down or out increases the tolerance of rice and Arabidopsis plants to HS stress, suggesting that the function of these ubiquitin-specific proteases in regulating plant HS responses is conserved between monocots and dicots. 2D-DIGE showed a group of proteins are differentially regulated in wild-type and ubp21 mutant after 30 min of HS treatment. Among these proteins, 11 are found to interact directly with OsUBP21; thus, they may be targets of OsUBP21. Future analyses of the roles of these OsUBP21-interacting proteins in plant HS responses will help reveal the protein ubiquitination/deubiquitination-regulated cellular responses induced by HS in rice.
Collapse
Affiliation(s)
- Hangfan Zhou
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xiaolong Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chenmin Huo
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, 050061, China
| | - Hui Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhichao An
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Daye Sun
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jingze Liu
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wenqiang Tang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Baowen Zhang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
17
|
Marko D, El-Shershaby A, Carriero F, Summerer S, Petrozza A, Iannacone R, Schleiff E, Fragkostefanakis S. Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato. Genes (Basel) 2019; 10:genes10070516. [PMID: 31284688 PMCID: PMC6678839 DOI: 10.3390/genes10070516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
The identification of heat stress (HS)-resilient germplasm is important to ensure food security under less favorable environmental conditions. For that, germplasm with an altered activity of factors regulating the HS response is an important genetic tool for crop improvement. Heat shock binding protein (HSBP) is one of the main negative regulators of HS response, acting as a repressor of the activity of HS transcription factors. We identified a TILLING allele of Solanum lycopersicum (tomato) HSBP1. We examined the effects of the mutation on the functionality of the protein in tomato protoplasts, and compared the thermotolerance capacity of lines carrying the wild-type and mutant alleles of HSBP1. The methionine-to-isoleucine mutation in the central heptad repeats of HSBP1 leads to a partial loss of protein function, thereby reducing the inhibitory effect on Hsf activity. Mutant seedlings show enhanced basal thermotolerance, while mature plants exhibit increased resilience in repeated HS treatments, as shown by several physiological parameters. Importantly, plants that are homozygous for the wild-type or mutant HSBP1 alleles showed no significant differences under non-stressed conditions. Altogether, these results indicate that the identified mutant HSBP1 allele can be used as a genetic tool in breeding, aiming to improve the thermotolerance of tomato varieties.
Collapse
Affiliation(s)
- Dominik Marko
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Asmaa El-Shershaby
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
- Department of Molecular Biology, Genetic Engineering and Biotechnology Division, National Research Centre, 12311 Dokki, Giza, Egypt
| | - Filomena Carriero
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Stephan Summerer
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Angelo Petrozza
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Rina Iannacone
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438 Frankfurt am Main, Germany.
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Wu HC, Bulgakov VP, Jinn TL. Pectin Methylesterases: Cell Wall Remodeling Proteins Are Required for Plant Response to Heat Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1612. [PMID: 30459794 PMCID: PMC6232315 DOI: 10.3389/fpls.2018.01612] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
Heat stress (HS) is expected to be of increasing worldwide concern in the near future, especially with regard to crop yield and quality as a consequence of rising or varying temperatures as a result of global climate change. HS response (HSR) is a highly conserved mechanism among different organisms but shows remarkable complexity and unique features in plants. The transcriptional regulation of HSR is controlled by HS transcription factors (HSFs) which allow the activation of HS-responsive genes, among which HS proteins (HSPs) are best characterized. Cell wall remodeling constitutes an important component of plant responses to HS to maintain overall function and growth; however, little is known about the connection between cell wall remodeling and HSR. Pectin controls cell wall porosity and has been shown to exhibit structural variation during plant growth and in response to HS. Pectin methylesterases (PMEs) are present in multigene families and encode isoforms with different action patterns by removal of methyl esters to influencing the properties of cell wall. We aimed to elucidate how plant cell walls respond to certain environmental cues through cell wall-modifying proteins in connection with modifications in cell wall machinery. An overview of recent findings shed light on PMEs contribute to a change in cell-wall composition/structure. The fine-scale modulation of apoplastic calcium ions (Ca2+) content could be mediated by PMEs in response to abiotic stress for both the assembly and disassembly of the pectic network. In particular, this modulation is prevalent in guard cell walls for regulating cell wall plasticity as well as stromal aperture size, which comprise critical determinants of plant adaptation to HS. These insights provide a foundation for further research to reveal details of the cell wall machinery and stress-responsive factors to provide targets and strategies to facilitate plant adaptation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Victor P. Bulgakov
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Tsung-Luo Jinn
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Rana RM, Khan MA, Shah MK, Ali Z, Zhang H. Insights into the Mechanism of Heat Shock Mitigation Through Protein Repair, Recycling and Degradation. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. PLANT, CELL & ENVIRONMENT 2015; 38:1881-95. [PMID: 24995670 DOI: 10.1111/pce.12396] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 05/21/2023]
Abstract
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Center of Membrane Proteomics, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| |
Collapse
|
21
|
Zhou S, Sun H, Zheng B, Li R, Zhang W. Cell cycle transcription factor E2F2 mediates non-stress temperature response of AtHSP70-4 in Arabidopsis. Biochem Biophys Res Commun 2014; 455:139-46. [DOI: 10.1016/j.bbrc.2014.10.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/24/2023]
|
22
|
Sayeed SK, Shah V, Chaubey S, Singh M, Alampalli SV, Tatu US. Identification of heat shock factor binding protein in Plasmodium falciparum. Malar J 2014; 13:118. [PMID: 24674379 PMCID: PMC3994269 DOI: 10.1186/1475-2875-13-118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Heat shock factor binding protein (HSBP) was originally discovered in a yeast two-hybrid screen as an interacting partner of heat shock factor (HSF). It appears to be conserved in all eukaryotes studied so far, with yeast being the only exception. Cell biological analysis of HSBP in mammals suggests its role as a negative regulator of heat shock response as it appears to interact with HSF only during the recovery phase following exposure to heat stress. While the identification of HSF in the malaria parasite is still eluding biologists, this study for the first time, reports the presence of a homologue of HSBP in Plasmodium falciparum. Methods PfHSBP was cloned and purified as his-tag fusion protein. CD (Circular dichroism) spectroscopy was performed to predict the secondary structure. Immunoblots and immunofluorescence approaches were used to study expression and localization of HSBP in P. falciparum. Cellular fractionation was performed to examine subcellular distribution of PfHSBP. Immunoprecipitation was carried out to identify HSBP interacting partner in P. falciparum. Results PfHSBP is a conserved protein with a high helical content and has a propensity to form homo-oligomers. PfHSBP was cloned, expressed and purified. The in vivo protein expression profile shows maximal expression in trophozoites. The protein was found to exist in oligomeric form as trimer and hexamer. PfHSBP is predominantly localized in the parasite cytosol, however, upon heat shock, it translocates to the nucleus. This study also reports the interaction of PfHSBP with PfHSP70-1 in the cytoplasm of the parasite. Conclusions This study emphasizes the structural and biochemical conservation of PfHSBP with its mammalian counterpart and highlights its potential role in regulation of heat shock response in the malaria parasite. Analysis of HSBP may be an important step towards identification of the transcription factor regulating the heat shock response in P. falciparum.
Collapse
Affiliation(s)
| | | | | | | | | | - Utpal S Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
23
|
Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PLoS One 2014; 9:e89125. [PMID: 24594978 PMCID: PMC3942355 DOI: 10.1371/journal.pone.0089125] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 01/21/2014] [Indexed: 12/25/2022] Open
Abstract
The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly conserved.
Collapse
|