1
|
Singh K, Gupta R, Shokat S, Iqbal N, Kocsy G, Pérez-Pérez JM, Riyazuddin R. Ascorbate, plant hormones and their interactions during plant responses to biotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14388. [PMID: 38946634 DOI: 10.1111/ppl.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
Plants can experience a variety of environmental stresses that significantly impact their fitness and survival. Additionally, biotic stress can harm agriculture, leading to reduced crop yields and economic losses worldwide. As a result, plants have developed defense strategies to combat potential invaders. These strategies involve regulating redox homeostasis. Several studies have documented the positive role of plant antioxidants, including Ascorbate (Asc), under biotic stress conditions. Asc is a multifaceted antioxidant that scavenges ROS, acts as a co-factor for different enzymes, regulates gene expression, and facilitates iron transport. However, little attention has been given to Asc and its transport, regulatory effects, interplay with phytohormones, and involvement in defense processes under biotic stress. Asc interacts with other components of the redox system and phytohormones to activate various defense responses that reduce the growth of plant pathogens and promote plant growth and development under biotic stress conditions. Scientific reports indicate that Asc can significantly contribute to plant resistance against biotic stress through mutual interactions with components of the redox and hormonal systems. This review focuses on the role of Asc in enhancing plant resistance against pathogens. Further research is necessary to gain a more comprehensive understanding of the molecular and cellular regulatory processes involved.
Collapse
Affiliation(s)
- Kalpita Singh
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network (HUN-REN), Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of South Korea
| | - Sajid Shokat
- Section for Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
- Plant Breeding and Genetics Laboratory, IAEA Laboratories, Seibersdorf, Austria
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Gábor Kocsy
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network (HUN-REN), Martonvásár, Hungary
| | | | | |
Collapse
|
2
|
Sahu AK, Kumari P, Mittra B. Immunocompromisation of wheat host by L-BSO and 2,4-DPA induces susceptibility to the fungal pathogen Fusarium oxysporum. STRESS BIOLOGY 2024; 4:21. [PMID: 38592414 PMCID: PMC11004106 DOI: 10.1007/s44154-023-00137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/14/2023] [Indexed: 04/10/2024]
Abstract
Susceptibility is defined as the disruption of host defence systems that promotes infection or limits pathogenicity. Glutathione (GSH) is a major component of defence signalling pathways that maintain redox status and is synthesised by γ-glutamyl cysteine synthetase (γ-ECS). On the other hand, lignin acts as a barrier in the primary cell wall of vascular bundles (VBs) synthesised by phenylalanine ammonia-lyase (PAL) in the intracellular system of plants. In this study, we used two inhibitors, such as L-Buthionine-sulfoximine (BSO), which irreversibly inhibits γ-ECS, and 2,4-dichlorophenoxyacetic acid (DPA), which reduces PAL activity and leads to the induction of oxidative stress in wheat (Triticum aestivum) seedlings after exposure to Fusarium oxysporum. Seedlings treated with 1 mM L-BSO and 2,4-DPA showed high levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), carbonyl (CO) content, and low activity of antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)] as compared to wild-type (WT) seedlings under F. oxysporum infection. Further, the content of reduced glutathione (RGSH), ascorbate (ASC), and lignin was decreased in BSO and DPA treated seedlings as compared to WT seedlings during Fusarium infection. Moreover, treatment with BSO and DPA significantly inhibited the relative activity of γ-ECS and PAL (P ≤ 0.001) in WT seedlings during Fusarium infection, which led to disintegrated VBs and, finally, cell death. Our results demonstrate that inhibition of γ-ECS and PAL by BSO and DPA, respectively, disrupts the defence mechanisms of wheat seedlings and induces susceptibility to F. oxysporum.
Collapse
Affiliation(s)
- Abhaya Kumar Sahu
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, VyasaVihar, Balasore, Odisha, 756089, India
| | - Punam Kumari
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, VyasaVihar, Balasore, Odisha, 756089, India.
| | - Bhabatosh Mittra
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, VyasaVihar, Balasore, Odisha, 756089, India
- MITS School of Biotechnology, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
3
|
Manna M, Rengasamy B, Sinha AK. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37157977 DOI: 10.1111/pce.14606] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important signalling event associated with every aspect of plant growth, development, yield, abiotic and biotic stress adaptation. Being a central metabolic pathway, it is a vital target for manipulation for crop improvement. In this review, we have summarised recent advancements in understanding involvement of MAPK signalling in modulating abiotic and biotic stress tolerance, architecture and yield of plants. MAPK signalling cross talks with reactive oxygen species (ROS) and abscisic acid (ABA) signalling events in bringing about abiotic stress adaptation in plants. The intricate involvement of MAPK pathway with plant's pathogen defence ability has also been identified. Further, recent research findings point towards participation of MAPK signalling in shaping plant architecture and yield. These make MAPK pathway an important target for crop improvement and we discuss here various strategies to tweak MAPK signalling components for designing future crops with improved physiology and phenotypes.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
4
|
Arnaud D, Deeks MJ, Smirnoff N. Organelle-targeted biosensors reveal distinct oxidative events during pattern-triggered immune responses. PLANT PHYSIOLOGY 2023; 191:2551-2569. [PMID: 36582183 PMCID: PMC10069903 DOI: 10.1093/plphys/kiac603] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 05/19/2023]
Abstract
Reactive oxygen species are produced in response to pathogens and pathogen-associated molecular patterns, as exemplified by the rapid extracellular oxidative burst dependent on the NADPH oxidase isoform RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). We used the H2O2 biosensor roGFP2-Orp1 and the glutathione redox state biosensor GRX1-roGFP2 targeted to various organelles to reveal unsuspected oxidative events during the pattern-triggered immune response to flagellin (flg22) and after inoculation with Pseudomonas syringae. roGFP2-Orp1 was oxidized in a biphasic manner 1 and 6 h after treatment, with a more intense and faster response in the cytosol compared to chloroplasts, mitochondria, and peroxisomes. Peroxisomal and cytosolic GRX1-roGFP2 were also oxidized in a biphasic manner. Interestingly, our results suggested that bacterial effectors partially suppress the second phase of roGFP2-Orp1 oxidation in the cytosol. Pharmacological and genetic analyses indicated that the pathogen-associated molecular pattern-induced cytosolic oxidation required the BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) and BOTRYTIS-INDUCED KINASE 1 (BIK1) signaling components involved in the immune response but was largely independent of NADPH oxidases RBOHD and RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF) and apoplastic peroxidases peroxidase 33 (PRX33) and peroxidase 34 (PRX34). The initial apoplastic oxidative burst measured with luminol was followed by a second oxidation burst, both of which preceded the two waves of cytosolic oxidation. In contrast to the cytosolic oxidation, these bursts were RBOHD-dependent. Our results reveal complex oxidative sources and dynamics during the pattern-triggered immune response, including that cytosolic oxidation is largely independent of the preceding extracellular oxidation events.
Collapse
Affiliation(s)
- Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | | |
Collapse
|
5
|
Knocking Out the Transcription Factor OsNAC092 Promoted Rice Drought Tolerance. BIOLOGY 2022; 11:biology11121830. [PMID: 36552339 PMCID: PMC9776343 DOI: 10.3390/biology11121830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Environmental drought stress threatens rice production. Previous studies have reported that related NAC (NAM, ATAF1/2, and CUC) transcription factors play an important role in drought stress. Herein, we identified and characterized OsNAC092, encoding an NAC transcription factor that is highly expressed and induced during drought tolerance. OsNAC092 knockout lines created using the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system exhibited increased drought resistance in rice. RNA sequencing showed that the knockout of OsNAC092 caused a global expression change, and differential gene expression is chiefly associated with "response to light stimulus," "MAPK signaling pathway," "plant hormone signal transduction," "response to oxidative stress," "photosynthesis," and "water deprivation." In addition, the antioxidants and enzyme activities of the redox response were significantly increased. OsNAC092 mutant rice exhibited a higher ability to scavenge more ROS and maintained a high GSH/GSSG ratio and redox level under drought stress, which could protect cells from oxidant stress, revealing the importance of OsNAC092 in the rice's response to abiotic stress. Functional analysis of OsNAC092 will be useful to explore many rice resistance genes in molecular breeding to aid in the development of modern agriculture.
Collapse
|
6
|
Boro P, Chattopadhyay S. Crosstalk between MAPKs and GSH under stress: A critical review. J Biosci 2022. [DOI: 10.1007/s12038-022-00315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus. Int J Mol Sci 2022; 23:ijms231911531. [PMID: 36232831 PMCID: PMC9570173 DOI: 10.3390/ijms231911531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants not only through highly specific glutathione-binding abilities but also by participating in the signaling function. The tau class of GSTs has been reported to be induced as a response under stress conditions. Although several studies have focused on the role of the tau class of GSTs in plant–pathogen interactions, knowledge about their contribution to the response to virus inoculation is still inadequate. Therefore, in this study, the response of Atgstu19 and Atgstu24 knockout mutants to mechanical inoculation of Turnip mosaic virus (TuMV) was examined. The systemic infection of TuMV was more dynamically promoted in Atgstu19 mutants than in wild-type (Col-0) plants, suggesting the role of GSTU19 in TuMV resistance. However, Atgstu24 mutants displayed virus limitation and downregulation of the relative expression of TuMV capsid protein, accompanied rarely by TuMV particles only in vacuoles, and ultrastructural analyses of inoculated leaves revealed the lack of virus cytoplasmic inclusions. These findings indicated that Atgstu24 mutants displayed a resistance-like reaction to TuMV, suggesting that GSTU24 may suppress the plant resistance. In addition, these findings confirmed that GSTU1 and GSTU24 are induced and contribute to the susceptible reaction to TuMV in the Atgstu19–TuMV interaction. However, the upregulation of GSTU19 and GSTU13 highly correlated with virus limitation in the resistance-like reaction in the Atgstu24–TuMV interaction. Furthermore, the highly dynamic upregulation of GST and glutathione reductase (GR) activities resulted in significant induction (between 1 and 14 days post inoculation [dpi]) of the total glutathione pool (GSH + GSSG) in response to TuMV, which was accompanied by the distribution of active glutathione in plant cells. On the contrary, in Atgstu19, which is susceptible to TuMV interaction, upregulation of GST and GR activity only up to 7 dpi symptom development was reported, which resulted in the induction of the total glutathione pool between 1 and 3 dpi. These observations indicated that GSTU19 and GSTU24 are important factors in modulating the response to TuMV in Arabidopsis thaliana. Moreover, it was clear that glutathione is an important component of the regulatory network in resistance and susceptible response of A. thaliana to TuMV. These results help achieve a better understanding of the mechanisms regulating the Arabidopsis–TuMV pathosystem.
Collapse
|
8
|
Lukan T, Coll A. Intertwined Roles of Reactive Oxygen Species and Salicylic Acid Signaling Are Crucial for the Plant Response to Biotic Stress. Int J Mol Sci 2022; 23:5568. [PMID: 35628379 PMCID: PMC9147500 DOI: 10.3390/ijms23105568] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
One of the earliest hallmarks of plant immune response is production of reactive oxygen species (ROS) in different subcellular compartments, which regulate plant immunity. A suitable equilibrium, which is crucial to prevent ROS overaccumulation leading to oxidative stress, is maintained by salicylic acid (SA), a chief regulator of ROS. However, ROS not only act downstream of SA signaling, but are also proposed to be a central component of a self-amplifying loop that regulates SA signaling as well as the interaction balance between different phytohormones. The exact role of this crosstalk, the position where SA interferes with ROS signaling and ROS interferes with SA signaling and the outcome of this regulation, depend on the origin of ROS but also on the pathosystem. The precise spatiotemporal regulation of organelle-specific ROS and SA levels determine the effectiveness of pathogen arrest and is therefore crucial for a successful immune response. However, the regulatory interplay behind still remains poorly understood, as up until now, the role of organelle-specific ROS and SA in hypersensitive response (HR)-conferred resistance has mostly been studied by altering the level of a single component. In order to address these aspects, a sophisticated combination of research methods for monitoring the spatiotemporal dynamics of key players and transcriptional activity in plants is needed and will most probably consist of biosensors and precision transcriptomics.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
9
|
Li S, Han X, Lu Z, Qiu W, Yu M, Li H, He Z, Zhuo R. MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants. Int J Mol Sci 2022; 23:4463. [PMID: 35457281 PMCID: PMC9032930 DOI: 10.3390/ijms23084463] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/20/2022] Open
Abstract
In nature, heavy metal (HM) stress is one of the most destructive abiotic stresses for plants. Heavy metals produce toxicity by targeting key molecules and important processes in plant cells. The mitogen-activated protein kinase (MAPK) cascade transfers the signals perceived by cell membrane surface receptors to cells through phosphorylation and dephosphorylation and targets various effector proteins or transcriptional factors so as to result in the stress response. Signal molecules such as plant hormones, reactive oxygen species (ROS), and nitric oxide (NO) can activate the MAPK cascade through differentially expressed genes, the activation of the antioxidant system and synergistic crosstalk between different signal molecules in order to regulate plant responses to HMs. Transcriptional factors, located downstream of MAPK, are key factors in regulating plant responses to heavy metals and improving plant heavy metal tolerance and accumulation. Thus, understanding how HMs activate the expression of the genes related to the MAPK cascade pathway and then phosphorylate those transcriptional factors may allow us to develop a regulation network to increase our knowledge of HMs tolerance and accumulation. This review highlighted MAPK pathway activation and responses under HMs and mainly focused on the specificity of MAPK activation mediated by ROS, NO and plant hormones. Here, we also described the signaling pathways and their interactions under heavy metal stresses. Moreover, the process of MAPK phosphorylation and the response of downstream transcriptional factors exhibited the importance of regulating targets. It was conducive to analyzing the molecular mechanisms underlying heavy metal accumulation and tolerance.
Collapse
Affiliation(s)
- Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Forestry Faculty, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Haiying Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
10
|
Song X, Wang T, Zhang Y, Yu JQ, Xia XJ. S-Nitrosoglutathione Reductase Contributes to Thermotolerance by Modulating High Temperature-Induced Apoplastic H 2O 2 in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:862649. [PMID: 35498691 PMCID: PMC9042256 DOI: 10.3389/fpls.2022.862649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
S-nitrosoglutathione reductase (GSNOR) is considered as a critical regulator of plant stress tolerance for its impacts on protein S-nitrosylation through regulation of the S-nitrosothiol (SNO) level. However, the mechanism of GSNOR-mediated stress tolerance is still obscure. Here, we found that GSNOR activity was induced by high temperature in tomato (Solanum lycopersicum) plants, whereas mRNA level of SlGSNOR1 exhibited little response. Suppressing SlGSNOR1 expression by virus-induced gene silencing (VIGS) increased accumulation of SNO and nitrites under high temperature and reduced thermotolerance. The compromised thermotolerance was associated with less accumulation of abscisic acid (ABA) and salicylic acid (SA), attenuated activation of mitogen-activated protein kinase (MAPK) and reduced expression of heat shock protein. Intriguingly, SlGSNOR1 silencing impaired upregulation of RESPIRATORY BURST OXIDASE HOMOLOG1 (SlRBOH1) and apoplastic H2O2 accumulation in response to high temperature, whereas SlRBOH1 silencing abolished activation of GSNOR and led to a similar decline in thermotolerance as in SlGSNOR1-silenced plants. Importantly, H2O2 treatment recovered the thermotolerance and improved antioxidant capacity in SlGSNOR1-silenced plants. Our results suggest that GSNOR plays a role in regulating the SlRBOH1-dependent apoplastic H2O2 production in response to high temperature, while a balanced interaction between SNO and H2O2 is critical for maintaining the cellular redox homeostasis and thermotolerance.
Collapse
Affiliation(s)
- Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Ting Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Boro P, Sultana A, Mandal K, Chattopadhyay S. Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153664. [PMID: 35279560 DOI: 10.1016/j.jplph.2022.153664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Glutathione (GSH) plays a fundamental role in plant defense. Recent reports showed that enhanced GSH content activates mitogen-activated protein kinases (MPKs). However, the molecular mechanism behind this GSH-mediated MPKs expression during environmental challenges is unexplored. Here, we found that under control and combined abiotic stress-treated conditions, GSH feeding activates MPK3 expression in Arabidopsis thaliana by inducing its promoter, as established through the promoter activation assay. Additionally, transgenic A. thaliana overexpressing the LeMPK3 gene (AtMPK3 line) showed increased γ-ECS expression, which was decreased in mpk3, the MPK3-depleted mutant. An in-gel kinase assay exhibited hyperphosphorylation of Myelin Basic Protein (MBP) in the GSH-fed AtMPK3 transgenic line. Under control and combined abiotic stress treated conditions, expression of transcription factor WRKY40 binding to MPK3 promoter was up-regulated under enhanced GSH condition. Interestingly, GSH feeding was rendered ineffective in altering MPK3 expression in the Atwrky40 mutant, emphasizing the involvement of WRKY40 in GSH-MPK3 interplay. This was further confirmed by a wrky40 co-transformation assay. The immunoprecipitation assay followed by ChIP-qPCR showed a significant increase in the binding of WRKY40 to MPK3 promoter, which further established MPK3-WRKY40 association upon GSH feeding. In conclusion, this study demonstrated that GSH modulates MPK3 expression via WRKY40 in response to stress.
Collapse
Affiliation(s)
- Priyanka Boro
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, West Bengal, India
| | - Asma Sultana
- Department of Botany, JK College, Purulia, West bengal 723 101, India
| | - Kajal Mandal
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, West Bengal, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, West Bengal, India.
| |
Collapse
|
12
|
Zhu F, Zhang Q, Che Y, Zhu P, Zhang Q, Ji Z. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2021; 22:1668-1687. [PMID: 34553471 PMCID: PMC8578835 DOI: 10.1111/mpp.13138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l-2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of N. benthamiana to TMV through a differential modulation of SA and ROS.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qi‐Ping Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qin‐Qin Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
13
|
Fouad A, Hegazy AE, Azab E, Khojah E, Kapiel T. Boosting of Antioxidants and Alkaloids in Catharanthus roseus Suspension Cultures Using Silver Nanoparticles with Expression of CrMPK3 and STR Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:2202. [PMID: 34686014 PMCID: PMC8538313 DOI: 10.3390/plants10102202] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Global agricultural systems are under unprecedented pressures due to climate change. Advanced nano-engineering can help increase crop yields while ensuring sustainability. Nanotechnology improves agricultural productivity by boosting input efficiency and reducing waste. Alkaloids as one of the numerous secondary metabolites that serve variety of cellular functions essential for physiological processes. This study tests the competence of silver nanoparticles (AgNPs) in boosting alkaloids accumulation in Catharanthus roseus suspension cultures in relation to the expression of C. roseus Mitogen Activated Protein Kinase 3 (CrMPK3) and Strictosidine Synthase (STR) genes. Five concentrations (5, 10, 15, 20 and 25 mg·L-1) of AgNPs were utilized in addition to deionized water as control. Results reflected binary positive correlations among AgNPs concentration, oxidative stress indicated with increase in hydrogen peroxide and malondialdehyde contents, activities of ascorbate peroxidase and superoxide dismutase, expression of the regulatory gene CrMPK3 and the alkaloid biosynthetic gene STR as well as alkaloids accumulation. These correlations add to the growing evidence that AgNPs can trigger the accumulation of alkaloids in plant cells through a signaling pathway that involves hydrogen peroxide and MAPKs, leading to up-regulation of the biosynthetic genes, including STR gene.
Collapse
Affiliation(s)
- Ahmed Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | - Adel E. Hegazy
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Ehab Azab
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.A.); (E.K.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.A.); (E.K.)
| | - Tarek Kapiel
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| |
Collapse
|
14
|
Zhang ZD, Huang MZ, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin Eugenol Ester Attenuates Paraquat-Induced Hepatotoxicity by Inhibiting Oxidative Stress. Front Physiol 2020; 11:582801. [PMID: 33192594 PMCID: PMC7642976 DOI: 10.3389/fphys.2020.582801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a new potential drug with anti-inflammatory and antioxidant stress pharmacological activity. Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, paraquat is highly toxic and can cause various complications and acute organ damage, such as liver, kidney and lung damage. The purpose of this study was to investigate whether AEE has a protective effect on hepatotoxicity induced by PQ in vivo and in vitro. Cell viability, apoptosis rate, mitochondrial function and intracellular oxidative stress were detected to evaluate the protective effect of AEE on PQ-induced BRL-3A (normal rat hepatocytes) cytotoxicity in vitro. In vivo, AEE pretreatment could attenuate oxidative stress and histopathological changes in rat liver induced by PQ. The results showed that AEE could reduce the hepatotoxicity induced by PQ in vivo and in vitro. AEE reduced PQ-induced hepatotoxicity by inhibitingoxidative stress and maintaining mitochondrial function. This study proved that AEE is an effective antioxidant and can reduce the hepatotoxicity of PQ.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
15
|
Mencia R, Céccoli G, Fabro G, Torti P, Colombatti F, Ludwig-Müller J, Alvarez ME, Welchen E. OXR2 Increases Plant Defense against a Hemibiotrophic Pathogen via the Salicylic Acid Pathway. PLANT PHYSIOLOGY 2020; 184:1112-1127. [PMID: 32727912 PMCID: PMC7536703 DOI: 10.1104/pp.19.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/03/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen Pseudomonas syringae oxr2 mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing AtOXR2 (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway. Accordingly, defense phenotypes are dependent on SA synthesis and SA perception pathways, since they are lost in isochorismate synthase1/salicylic acid induction deficient2 and nonexpressor of pathogenesis-related genes1 (npr1) mutant backgrounds. Overexpression of AtOXR2 leads to faster and stronger oxidative burst in response to the bacterial flagellin peptide flg22 Moreover, AtOXR2 affects the nuclear localization of the transcriptional coactivator NPR1, a master regulator of SA signaling. oeOXR2 plants have increased levels of total glutathione and a more oxidized cytosolic redox cellular environment under normal growth conditions. Therefore, AtOXR2 contributes to establishing plant protection against infection by P. syringae acting on the activity of the SA pathway.
Collapse
Affiliation(s)
- Regina Mencia
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Gabriel Céccoli
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Pablo Torti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | | | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
16
|
Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 2019; 94:95-107. [PMID: 31707015 DOI: 10.1016/j.niox.2019.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022]
Abstract
Despite numerous reports on the role of nitric oxide (NO) in regulating plants growth and mitigating different environmental stresses, its participation in sulfur (S) -metabolism remains largely unknown. Therefore, we studied the role of NO in S acquisition and S-assimilation in tomato seedlings under low S-stress conditions by supplying NO to the leaves of S-sufficient and S-deficient seedlings. S-starved plants exhibited a substantial decreased in plant growth attributes, photosynthetic pigment chlorophyll (Chl) and other photosynthetic parameters, and activity of enzymes involved in Chl biosynthesis (δ-aminolevulinic acid dehydratase), and photosynthetic processes (carbonic anhydrase and RuBisco). Also, S-deficiency enhanced reactive oxygen species (ROS) (superoxide and hydrogen peroxide) and lipid peroxidation (malondialdehyde) levels in tomato seedlings. Contrarily, foliar supplementation of NO to S-deficient seedlings resulted in considerably reduced ROS formation in leaves and roots, which alleviated low S-stress-induced lipid peroxidation. However, exogenous NO enhanced proline accumulation by increasing proline metabolizing enzyme (Δ1-pyrroline-5-carboxylate synthetase) activity and also increased NO, hydrogen sulfide (a gasotransmitter small signaling molecule) and S uptake, and content of S-containing compounds (cysteine and reduced glutathione). Under S-limited conditions, NO improved S utilization efficiency of plants by upregulating the activity of S-assimilating enzymes (ATP sulfurylase, adenosine 5-phosphosulfate reductase, sulfide reductase and O-acetylserine (thiol) lyase). Under S-deprived conditions, improved S-assimilation of seedlings receiving NO resulted in improved redox homeostasis and ascorbate content through increased NO and S uptake. Application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (an NO scavenger) invalidated the effect of NO and again caused low S-stress-induced oxidative damage, confirming the beneficial role of NO in seedlings under S-deprived conditions. Thus, exogenous NO enhanced the tolerance of tomato seedlings to limit S-triggered oxidative stress and improved photosynthetic performance and S assimilation.
Collapse
|
17
|
Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. 3 Biotech 2019; 9:395. [PMID: 31656733 DOI: 10.1007/s13205-019-1924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Plants encounter a variety of adverse environmental conditions, such as high salinity, drought, extreme heat/cold and heavy metals contamination (abiotic stress) or attack of various pathogens (biotic stress). These detrimental environmental factors enhanced the ROS production such as singlet oxygen (1O2), superoxide (O2 •-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH•). ROS are highly reactive and directly target several cellular molecules and metabolites, which lead to severe cellular dysfunction. Plants respond to oxidative damages by activating antioxidant machinery to trigger signalling cascades for stress tolerance. H2O2 signalling balances the plant metabolism through cross-talk with other signals and plant hormones during growth, development and stress responses. H2O2 facilitates the regulation of different stress-responsive transcription factors (TFs) including NAC, Zinc finger, WRKY, ERF, MYB, DREB and bZIP as both upstream and downstream events during stress signalling. The present review focuses on the biological synthesis of the H2O2 and its effect on the upregulation of kinase genes and stress related TFs for imparting stress tolerance.
Collapse
|
18
|
Künstler A, Király L, Kátay G, Enyedi AJ, Gullner G. Glutathione Can Compensate for Salicylic Acid Deficiency in Tobacco to Maintain Resistance to Tobacco Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2019; 10:1115. [PMID: 31608082 PMCID: PMC6769422 DOI: 10.3389/fpls.2019.01115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/14/2019] [Indexed: 05/12/2023]
Abstract
Earlier studies showed that the artificial elevation of endogenous glutathione (GSH) contents can markedly increase the resistance of plants against different viruses. On the other hand, salicylic acid (SA)-deficient NahG plants display enhanced susceptibility to viral infections. In the present study, the biochemical mechanisms underlying GSH-induced resistance were investigated in various tobacco biotypes displaying markedly different GSH and SA levels. The endogenous GSH levels of Nicotiana tabacum cv. Xanthi NN and N. tabacum cv. Xanthi NN NahG tobacco leaves were increased by infiltration of exogenous GSH or its synthetic precursor R-2-oxo-4-thiazolidine-carboxylic acid (OTC). Alternatively, we also used tobacco lines containing high GSH levels due to transgenes encoding critical enzymes for cysteine and GSH biosynthesis. We crossed Xanthi NN and NahG tobaccos with the GSH overproducer transgenic tobacco lines in order to obtain F1 progenies with increased levels of GSH and decreased levels of SA. We demonstrated that in SA-deficient NahG tobacco the elevation of in planta GSH and GSSG levels either by exogenous GSH or by crossing with glutathione overproducing plants confers enhanced resistance to Tobacco mosaic virus (TMV) manifested as both reduced symptoms (i.e. suppression of hypersensitive-type localized necrosis) and lower virus titers. The beneficial effects of elevated GSH on TMV resistance was markedly stronger in NahG than in Xanthi NN leaves. Infiltration of exogenous GSH and OTC or crossing with GSH overproducer tobacco lines resulted in a substantial rise of bound SA and to a lesser extent of free SA levels in tobacco, especially following TMV infection. Significant increases in expression of pathogenesis related (NtPR-1a, and NtPRB-1b), and glutathione S-transferase (NtGSTtau, and NtGSTphi) genes were evident in TMV-inoculated leaves in later stages of pathogenesis. However, the highest levels of defense gene expression were associated with SA-deficiency, rather than enhanced TMV resistance. In summary, elevated levels of glutathione in TMV-infected tobacco can compensate for SA deficiency to maintain virus resistance. Our results suggest that glutathione-induced redox changes are important components of antiviral signaling in tobacco.
Collapse
Affiliation(s)
- András Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexander J Enyedi
- Office of Academic Affairs, Humboldt State University, Arcata, CA, United States
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
19
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Khan MN, AlZuaibr FM, Al-Huqail AA, Siddiqui MH, M Ali H, Al-Muwayhi MA, Al-Haque HN. Hydrogen Sulfide-Mediated Activation of O-Acetylserine (Thiol) Lyase and l/d-Cysteine Desulfhydrase Enhance Dehydration Tolerance in Eruca sativa Mill. Int J Mol Sci 2018; 19:E3981. [PMID: 30544896 PMCID: PMC6321631 DOI: 10.3390/ijms19123981] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Hydrogen sulfide (H₂S) has emerged as an important signaling molecule and plays a significant role during different environmental stresses in plants. The present work was carried out to explore the potential role of H₂S in reversal of dehydration stress-inhibited O-acetylserine (thiol) lyase (OAS-TL), l-cysteine desulfhydrase (LCD), and d-cysteine desulfhydrase (DCD) response in arugula (Eruca sativa Mill.) plants. Dehydration-stressed plants exhibited reduced water status and increased levels of hydrogen peroxide (H₂O₂) and superoxide (O₂•-) content that increased membrane permeability and lipid peroxidation, and caused a reduction in chlorophyll content. However, H₂S donor sodium hydrosulfide (NaHS), at the rate of 2 mM, substantially reduced oxidative stress (lower H₂O₂ and O₂•-) by upregulating activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and increasing accumulation of osmolytes viz. proline and glycine betaine (GB). All these, together, resulted in reduced membrane permeability, lipid peroxidation, water loss, and improved hydration level of plants. The beneficial role of H₂S in the tolerance of plants to dehydration stress was traced with H₂S-mediated activation of carbonic anhydrase activity and enzyme involved in the biosynthesis of cysteine (Cys), such as OAS-TL. H₂S-treated plants showed maximum Cys content. The exogenous application of H₂S also induced the activity of LCD and DCD enzymes that assisted the plants to synthesize more H₂S from accumulated Cys. Therefore, an adequate concentration of H₂S was maintained, that improved the efficiency of plants to mitigate dehydration stress-induced alterations. The central role of H₂S in the reversal of dehydration stress-induced damage was evident with the use of the H₂S scavenger, hypotaurine.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Fahad M AlZuaibr
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Manzer H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hayssam M Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammed A Al-Muwayhi
- Department of Physics and Chemistry, Faculty of Science, Shaqra Univeristy, Shaqra 15572, Saudi Arabia.
| | - Hafiz N Al-Haque
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
21
|
Boro P, Sultana A, Mandal K, Chattopadhyay S. Transcriptomic changes under stress conditions with special reference to glutathione contents. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0256-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Mhamdi A. Managing Competing Interests: Partitioning S between Glutathione and Protein Synthesis. PLANT PHYSIOLOGY 2018; 177:867-868. [PMID: 30006454 PMCID: PMC6052996 DOI: 10.1104/pp.18.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
23
|
Khan MN, Mobin M, Abbas ZK, Siddiqui MH. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 2017; 68:91-102. [PMID: 28062279 DOI: 10.1016/j.niox.2017.01.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) have been shown to act as signaling molecules in various physiological processes, play significant roles in plant cellular processes, and also mediate responses to both biotic and abiotic stresses in plants. The present investigation was carried out to test the effect of exogenous NO on endogenous synthesis of H2S in osmotic-stressed wheat (Triticum aestivum L.) seedlings. The results show that application of NO to wheat seedlings, suffered from PEG8000-induced osmotic stress, considerably enhanced the activities of H2S-synthesizing enzymes l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) leading to enhanced level of endogenous H2S content. At the same time exogenous NO also enhanced the activity of cysteine (Cys)-synthesizing enzyme O-acetylserine(thiol)lyase (OAS-TL) and maintained Cys homeostasis under osmotic stress. NO and H2S together markedly improved the activities of antioxidant enzymes viz. ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT). Furthermore, NO and H2S caused additional accumulation of osmolytes proline (Pro) and glycine betaine (GB), all these collectively resulted in the protection of plants against osmotic stress-induced oxidative stress. On the other hand, NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] and H2S scavenger HT (hypotaurine) invalidated the effect of NO on endogenous H2S levels and Cys homeostasis which resulted in weak protection against osmotic stress. Application of N-ethylmaleimide (NEM) suppressed GR activity and caused an increase in oxidative stress. We concluded that NO in association with endogenous H2S activates the defense system to the level required to counter osmotic stress and maintains normal functioning of cellular machinery.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia.
| | - M Mobin
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| |
Collapse
|
24
|
Lu Y, Chen Q, Bu Y, Luo R, Hao S, Zhang J, Tian J, Yao Y. Flavonoid Accumulation Plays an Important Role in the Rust Resistance of Malus Plant Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:1286. [PMID: 28769974 PMCID: PMC5514348 DOI: 10.3389/fpls.2017.01286] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/07/2017] [Indexed: 05/20/2023]
Abstract
Cedar-apple rust (Gymnosporangium yamadai Miyabe) is a fungal disease that causes substantial injury to apple trees and results in fruit with reduced size and quality and a lower commercial value. The molecular mechanisms underlying the primary and secondary metabolic effects of rust spots on the leaves of Malus apple cultivars are poorly understood. Using HPLC, we found that the contents of flavonoid compounds, especially anthocyanin and catechin, were significantly increased in rust-infected symptomatic tissue (RIT). The expression levels of structural genes and MYB transcription factors related to flavonoid biosynthesis were one- to seven-fold higher in the RIT. Among these genes, CHS, DFR, ANS, FLS and MYB10 showed more than a 10-fold increase, suggesting that these genes were expressed at significantly higher levels in the RIT. Hormone concentration assays showed that the levels of abscisic acid (ABA), ethylene (ETH), jasmonate (JA) and salicylic acid (SA) were higher in the RIT and were consistent with the expression levels of McNCED, McACS, McLOX and McNPR1, respectively. Our study explored the complicated crosstalk of the signal transduction pathways of ABA, ETH, JA and SA; the primary metabolism of glucose, sucrose, fructose and sorbitol; and the secondary metabolism of flavonoids involved in the rust resistance of Malus crabapple leaves.
Collapse
Affiliation(s)
- Yanfen Lu
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Qi Chen
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Yufen Bu
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Rui Luo
- College of Food Science and Engineering, Beijing University of AgricultureBeijing, China
| | - Suxiao Hao
- College of Horticulture and Landscape Architecture, Southwest UniversityChongqing, China
| | - Jie Zhang
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Yuncong Yao
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
- *Correspondence: Yuncong Yao,
| |
Collapse
|
25
|
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 2016; 11:192-204. [PMID: 27984790 PMCID: PMC5157795 DOI: 10.1016/j.redox.2016.12.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only can ROS induce MAPK activation, but also that disturbing MAPK cascades can modulate ROS production and responses. This review will discuss the potential mechanisms by which ROS may activate and/or regulate MAPK cascades in plants. The role of MAPK cascades and ROS signaling in regulating gene expression, stomatal function, and programmed cell death (PCD) is also discussed. In addition, the relationship between Rboh-dependent ROS production and MAPK activation in PAMP-triggered immunity will be reviewed.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China
| |
Collapse
|
26
|
Mahadevan C, Krishnan A, Saraswathy GG, Surendran A, Jaleel A, Sakuntala M. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem. FRONTIERS IN PLANT SCIENCE 2016; 7:785. [PMID: 27379110 PMCID: PMC4913111 DOI: 10.3389/fpls.2016.00785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/22/2016] [Indexed: 05/22/2023]
Abstract
Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887.
Collapse
Affiliation(s)
| | - Anu Krishnan
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Gayathri G. Saraswathy
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Arun Surendran
- Proteomics Core Facility, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Abdul Jaleel
- Proteomics Core Facility, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Manjula Sakuntala
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| |
Collapse
|
27
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
28
|
Sytykiewicz H. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Int J Mol Sci 2016; 17:268. [PMID: 26907270 PMCID: PMC4813132 DOI: 10.3390/ijms17030268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland.
| |
Collapse
|
29
|
Fang W, Xie D, Zhu H, Li W, Xu Z, Yang L, Li Z, Sun L, Wang J, Nie L, Tang Z, Lv S, Zhao F, Sun Y, Zhao Y, Hou J, Yang X. Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation. Int J Mol Sci 2015; 16:25121-40. [PMID: 26506344 PMCID: PMC4632794 DOI: 10.3390/ijms161025121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 12/25/2022] Open
Abstract
Verticillium wilt is threatening cotton productivity globally. This disease is caused by soil-borne Verticillium dahliae which directly infects cotton roots, and exclusively colonizes and occludes xylem vessels, finally resulting in necrosis, defoliation, and most severely, plant death. For the first time, iTRAQ (isobaric tags for relative and absolute quantification) was applied to screen the differentially expressed proteins of Gossypium thurberi inoculated with V. dahliae. A total of 6533 proteins were identified from the roots of G. thurberi after inoculation with V. dahliae, and 396 showed up- and 279 down-regulated in comparison to a mock-inoculated roots. Of these identified proteins, the main functional groups were those involved in cell wall organization and reinforcement, disease-resistant chemicals of secondary metabolism, phytohormone signaling, pathogenesis-related proteins, and disease-resistant proteins. Physiological and biochemical analysis showed that peroxidase activity, which promotes the biosynthesis and accumulation of lignin, was induced early in the hypocotyl after inoculation with V. dahliae. Similarly, salicylic acid also accumulated significantly in hypocotyl of the seedlings after inoculation. These findings provide an important knowledge of the molecular events and regulatory networks occurring during G. thurberi-V. dahliae interaction, which may provide a foundation for breeding disease-resistance in cotton.
Collapse
Affiliation(s)
- Weiping Fang
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Deyi Xie
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wu Li
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Lirong Yang
- Plant Protection Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Zhifang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Jinxia Wang
- Department of Crop Biotechnology, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Lihong Nie
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Zhongjie Tang
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Shuping Lv
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Fu'an Zhao
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Yao Sun
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Yuanming Zhao
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Jianan Hou
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
30
|
Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J Pineal Res 2015; 59:109-19. [PMID: 25958775 DOI: 10.1111/jpi.12245] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response to elevated activities by cell wall invertase (CWI) and vacuolar invertase (VI). Analyses of sugar metabolism-related genes revealed differential expression during plant development that was modulated by melatonin. In particular, C/VIF1 and C/VIF2 were strongly down-regulated by exogenous feeding. We also found the elevated CWI activity in melatonin-treated Arabidopsis improved the factors (cellulose, xylose, and galactose) for cell wall reinforcement and callose deposition during Pseudomonas syringae pv. tomato DC3000 infection, therefore, partially induced the pathogen resistance. However, CWI did not involve in salicylic acid (SA)-regulated defense pathway. Taken together, this study reveals that melatonin plays an important role in invertase-related carbohydrate metabolism, plant growth, and pathogen defense.
Collapse
Affiliation(s)
- Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Su
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yang Jiang
- Centre for Organismal Studies Heidelberg, Heidelberg university, Heidelberg, Germany
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|