1
|
Matamoros MA, Romero LC, Tian T, Román Á, Duanmu D, Becana M. Persulfidation of plant and bacteroid proteins is involved in legume nodule development and senescence. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3009-3025. [PMID: 37952184 PMCID: PMC11103110 DOI: 10.1093/jxb/erad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Legumes establish symbiosis with rhizobia, forming nitrogen-fixing nodules. The central role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in nodule biology has been clearly established. Recently, hydrogen sulfide (H2S) and other reactive sulfur species (RSS) have emerged as novel signaling molecules in animals and plants. A major mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification of proteins. To identify possible functions of H2S in nodule development and senescence, we used the tag-switch method to quantify changes in the persulfidation profile of common bean (Phaseolus vulgaris) nodules at different developmental stages. Proteomic analyses indicate that persulfidation plays a regulatory role in plant and bacteroid metabolism and senescence. The effect of a H2S donor on nodule functioning and on several proteins involved in ROS and RNS homeostasis was also investigated. Our results using recombinant proteins and nodulated plants support a crosstalk among H2S, ROS, and RNS, a protective function of persulfidation on redox-sensitive enzymes, and a beneficial effect of H2S on symbiotic nitrogen fixation. We conclude that the general decrease of persulfidation levels observed in plant proteins of aging nodules is one of the mechanisms that disrupt redox homeostasis leading to senescence.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059 Zaragoza, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Sevilla, Spain
| | - Tao Tian
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ángela Román
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059 Zaragoza, Spain
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059 Zaragoza, Spain
| |
Collapse
|
2
|
Tyagi S, Shumayla, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay SK. TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111881. [PMID: 37806453 DOI: 10.1016/j.plantsci.2023.111881] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Glutathione peroxidases (GPXs) are known to play an essential role in guarding cells against oxidative stress by catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. The current study aims functional characterization of the TaGPX1-D gene of bread wheat (Triticum aestivum) for salinity and osmotic stress tolerance. To achieve this, we initially performed the spot assays of TaGPX1-D expressing yeast cells. The growth of recombinant TaGPX1-D expressing yeast cells was notably higher than the control cells under stress conditions. Later, we generated transgenic Arabidopsis plants expressing the TaGPX1-D gene and investigated their tolerance to various stress conditions. The transgenic plants exhibited improved tolerance to both salinity and osmotic stresses compared to the wild-type plants. The higher germination rates, increased antioxidant enzymes activities, improved chlorophyll, carotenoid, proline and relative water contents, and reduced hydrogen peroxide and MDA levels in the transgenic lines supported the stress tolerance mechanism. Overall, this study demonstrated the role of TaGPX1-D in abiotic stress tolerance, and it can be used for improving the tolerance of crops to environmental stressors, such as salinity and osmotic stress in future research.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
3
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
4
|
Madhu, Sharma A, Kaur A, Tyagi S, Upadhyay SK. Glutathione Peroxidases in Plants: Innumerable Role in Abiotic Stress Tolerance and Plant Development. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:598-613. [DOI: 10.1007/s00344-022-10601-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/02/2022] [Indexed: 10/09/2024]
|
5
|
Wang J, Cao X, Wang C, Chen F, Feng Y, Yue L, Wang Z, Xing B. Fe-Based Nanomaterial-Induced Root Nodulation Is Modulated by Flavonoids to Improve Soybean ( Glycine max) Growth and Quality. ACS NANO 2022; 16:21047-21062. [PMID: 36479882 DOI: 10.1021/acsnano.2c08753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Innovative technology to increase efficient nitrogen (N) use while avoiding environmental damages is needed because of the increasing food demand of the rapidly growing global population. Soybean (Glycine max) has evolved a complex symbiosis with N-fixing bacteria that forms nodules to fix N. Herein, foliar application of 10 mg L-1 Fe7(PO4)6 and Fe3O4 nanomaterials (NMs) (Fe-based NMs) promoted soybean growth and root nodulation, thus improving the yield and quality over that of the unexposed control, EDTA-control, and 1 and 5 mg L-1 NMs. Mechanistically, flavonoids, key signaling molecules at the initial signaling steps in nodulation, were increased by more than 20% upon exposure to 10 mg L-1 Fe-based NMs, due to enhanced key enzyme (phenylalanine ammonia-lyase, PAL) activity and up-regulation of flavonoid biosynthetic genes (GmPAL, GmC4H, Gm4CL, and GmCHS). Accumulated flavonoids were secreted to the rhizosphere, recruiting rhizobia for colonization. Fe7(PO4)6 NMs increased Allorhizobium by 87.3%, and Fe3O4 NMs increased Allorhizobium and Mesorhizobium by 142.2% and 34.9%, leading to increased root nodules by 50.0% and 35.4% over the unexposed control, respectively. Leghemoglobin content was also noticeably improved by 8.2-46.5% upon Fe-based NMs. The higher levels of nodule number and leghemoglobin content resulted in enhanced N content by 15.5-181.2% during the whole growth period. Finally, the yield (pod number and grain biomass) and quality (flavonoids, soluble protein, and elemental nutrients) were significantly increased more than 14% by Fe-based NMs. Our study provides an effective nanoenabled strategy for inducing root nodules to increase N use efficiency, and then both yield and quality of soybean.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Yan Feng
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Minguillón S, Matamoros MA, Duanmu D, Becana M. Signaling by reactive molecules and antioxidants in legume nodules. THE NEW PHYTOLOGIST 2022; 236:815-832. [PMID: 35975700 PMCID: PMC9826421 DOI: 10.1111/nph.18434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Legume nodules are symbiotic structures formed as a result of the interaction with rhizobia. Nodules fix atmospheric nitrogen into ammonia that is assimilated by the plant and this process requires strict metabolic regulation and signaling. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved as signal molecules at all stages of symbiosis, from rhizobial infection to nodule senescence. Also, reactive sulfur species (RSS) are emerging as important signals for an efficient symbiosis. Homeostasis of reactive molecules is mainly accomplished by antioxidant enzymes and metabolites and is essential to allow redox signaling while preventing oxidative damage. Here, we examine the metabolic pathways of reactive molecules and antioxidants with an emphasis on their functions in signaling and protection of symbiosis. In addition to providing an update of recent findings while paying tribute to original studies, we identify several key questions. These include the need of new methodologies to detect and quantify ROS, RNS, and RSS, avoiding potential artifacts due to their short lifetimes and tissue manipulation; the regulation of redox-active proteins by post-translational modification; the production and exchange of reactive molecules in plastids, peroxisomes, nuclei, and bacteroids; and the unknown but expected crosstalk between ROS, RNS, and RSS in nodules.
Collapse
Affiliation(s)
- Samuel Minguillón
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Manuel A. Matamoros
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Manuel Becana
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| |
Collapse
|
7
|
Influence of arsenate imposition on modulation of antioxidative defense network and its implication on thiol metabolism in some contrasting rice (Oryza sativa L.) cultivars. Biometals 2022; 35:451-478. [PMID: 35344114 DOI: 10.1007/s10534-022-00381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Globally, many people have been suffering from arsenic poisoning. Arsenate (AsV) exposure to twelve rice cultivars caused growth retardation, triggered production of As-chelatin biopeptides and altered activities of antioxidants along with increase in ascorbate (AsA)-glutathione (GSH) contents as a protective measure. The effects were more conspicuous in cvs. Swarnadhan, Tulaipanji, Pusa basmati, Badshabhog, Tulsibhog and IR-20 to attenuate oxidative-overload mediated adversities. Contrastingly, in cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64, effects were less conspicuous in terms of alterations in the said variables due to reduced generation of oxidative stress. Under As(V) imposition, the protective role of phytochelatins (PCs) were recorded where peaks height and levels of PCs (PC2, PC3 and PC4) were elevated significantly in the test seedlings with an endeavour to detoxify cells by sequestering arsenic-phytochelatin (As-PC) complex into vacuole that resulted in reprogramming of antioxidants network. Additionally, scatter plot correlation matrices, color-coded heat map analysis and regression slopes demonstrated varied adaptive responses of test cultivars, where cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64 found tolerant against As(V) toxicity. Results were further justified by hierarchical clustering. These findings could help to grow identified tolerant rice cultivars in As-prone soil with sustainable growth and productivity after proper agricultural execution.
Collapse
|
8
|
Yang Z, Du H, Sun J, Xing X, Kong Y, Li W, Li X, Zhang C. A Nodule-Localized Small Heat Shock Protein GmHSP17.1 Confers Nodule Development and Nitrogen Fixation in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:838718. [PMID: 35356122 PMCID: PMC8959767 DOI: 10.3389/fpls.2022.838718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Small heat shock proteins (sHSPs) are ubiquitous proteins present in all organisms. The sHSPs are not only upregulated under heat shock as well as other stresses but also are expressed in unstressed cells, indicating quite diverse functions of sHSPs. However, there is little known about the role of sHSPs in nodulation and nitrogen fixation in soybean. In this study, we cloned a candidate protein of sHSP, GmHSP17.1, from proteome of nodule and analyzed its function in soybean nodulation. We found that GmHSP17.1 was a cytosolic protein and preferentially expressed during nodule development. An overexpression of GmHSP17.1 in composite transgenic plants showed increases in nodule number, fresh weight, nodule size, area of infection cells, and nitrogenase activity, and subsequently promoted the content of nitrogen and growth of soybean plants. While GmHSP17.1 RNA interference (RNAi) lines showed significantly impaired nodule development and nitrogen fixation efficiency. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS), GmRIP1 was identified as the first potential target of GmHSP17.1, and was shown to be specifically expressed in soybean nodules. The interaction between GmHSP17.1 and GmRIP1 was further confirmed by yeast-two hybrid (Y2H), bimolecular fluorescence complementation (BiFC) in vivo and pull-down assay in vitro. Furthermore, peroxidase activity was markedly increased in GmHSP17.1 overexpressed nodules and decreased in RNAi lines. As a result, the reactive oxygen species (ROS) content greatly decreased in GmHSP17.1 overexpression lines and increased in suppression lines. Taken together, we conclude that GmHSP17.1 plays an important role in soybean nodulation through interacting with GmRIP1. Our results provide foundation for studying the mechanism of nitrogen fixation and for the genetics improvement of legume plants.
Collapse
Affiliation(s)
- Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jingyi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Aleem M, Aleem S, Sharif I, Wu Z, Aleem M, Tahir A, Atif RM, Cheema HMN, Shakeel A, Lei S, Yu D, Wang H, Kaushik P, Alyemeni MN, Bhat JA, Ahmad P. Characterization of SOD and GPX Gene Families in the Soybeans in Response to Drought and Salinity Stresses. Antioxidants (Basel) 2022; 11:antiox11030460. [PMID: 35326109 PMCID: PMC8944523 DOI: 10.3390/antiox11030460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/31/2022] Open
Abstract
Plant stresses causing accumulation of reactive oxidative species (ROS) are scavenged by effective antioxidant defense systems. Therefore, the present study performed genome-wide identification of superoxide dismutase (SOD) and glutathione peroxidase (GPX) gene families in cultivated and wild soybeans, and 11 other legume species. We identified a total of 101 and 95 genes of SOD and GPX, respectively, across thirteen legume species. The highest numbers of SODs and GPXs were identified in cultivated (Glycine max) and wild (Glycine soja). A comparative phylogenetic study revealed highest homology among the SODs and GPXs of cultivated and wild soybeans relative to other legumes. The exon/intron structure, motif and synteny blocks were conserved in both soybean species. According to Ka/Ks, purifying the selection played the major evolutionary role in these gene families, and segmental duplication are major driving force for SODs and GPXs expansion. In addition, the qRT-PCR analysis of the G. max and G. soja SOD and GPX genes revealed significant differential expression of these genes in response to oxidative, drought and salinity stresses in root tissue. In conclusion, our study provides new insights for the evolution of SOD and GPX gene families in legumes, and provides resources for further functional characterization of these genes for multiple stresses.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Saba Aleem
- Barani Agricultural Research Station, Fatehjang 43350, Pakistan;
| | - Iram Sharif
- Cotton Research Station, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan;
| | - Zhiyi Wu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Maida Aleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ammara Tahir
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Rana Muhammad Atif
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Hafiza Masooma Naseer Cheema
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; (H.M.N.C.); (A.S.)
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; (H.M.N.C.); (A.S.)
| | - Sun Lei
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Hui Wang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| |
Collapse
|
10
|
Wang D, Sun Z, Hu X, Xiong J, Hu L, Xu Y, Tang Y, Wu Y. The key regulator LcERF056 enhances salt tolerance by modulating reactive oxygen species-related genes in Lotus corniculatus. BMC PLANT BIOLOGY 2021; 21:605. [PMID: 34965872 PMCID: PMC8715585 DOI: 10.1186/s12870-021-03336-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/10/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND The APETALA2/ethylene response factor (AP2/ERF) family are important regulatory factors involved in plants' response to environmental stimuli. However, their roles in salt tolerance in Lotus corniculatus remain unclear. RESULTS Here, the key salt-responsive transcription factor LcERF056 was cloned and characterised. LcERF056 belonging to the B3-1 (IX) subfamily of ERFs was considerably upregulated by salt treatment. LcERF056-fused GFP was exclusively localised to nuclei. Furthermore, LcERF056- overexpression (OE) transgenic Arabidopsis and L. corniculatus lines exhibited significantly high tolerance to salt treatment compared with wild-type (WT) or RNA interference expression (RNAi) transgenic lines at the phenotypic and physiological levels. Transcriptome analysis of OE, RNAi, and WT lines showed that LcERF056 regulated the downstream genes involved in several metabolic pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and yeast one-hybrid (Y1H) assay demonstrated that LcERF056 could bind to cis-element GCC box or DRE of reactive oxygen species (ROS)-related genes such as lipid-transfer protein, peroxidase and ribosomal protein. CONCLUSION Our results suggested that the key regulator LcERF056 plays important roles in salt tolerance in L. corniculatus by modulating ROS-related genes. Therefore, it may be a useful target for engineering salt-tolerant L. corniculatus or other crops.
Collapse
Affiliation(s)
- Dan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zhanmin Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinxu Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Huanshan group, Qingdao, China
| | - Junbo Xiong
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Science, Wuhan, China
| | - Lizhen Hu
- Institute of Animal and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuandong Xu
- ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yixiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Matamoros MA, Becana M. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5876-5892. [PMID: 33453107 PMCID: PMC8355754 DOI: 10.1093/jxb/erab008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Legumes include several major crops that can fix atmospheric nitrogen in symbiotic root nodules, thus reducing the demand for nitrogen fertilizers and contributing to sustainable agriculture. Global change models predict increases in temperature and extreme weather conditions. This scenario might increase plant exposure to abiotic stresses and negatively affect crop production. Regulation of whole plant physiology and nitrogen fixation in legumes during abiotic stress is complex, and only a few mechanisms have been elucidated. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are key players in the acclimation and stress tolerance mechanisms of plants. However, the specific redox-dependent signaling pathways are far from understood. One mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification (PTM) of proteins. Redox-based PTMs occur in the cysteine thiol group (oxidation, S-nitrosylation, S-glutathionylation, persulfidation), and also in methionine (oxidation), tyrosine (nitration), and lysine and arginine (carbonylation/glycation) residues. Unraveling PTM patterns under different types of stress and establishing the functional implications may give insight into the underlying mechanisms by which the plant and nodule respond to adverse conditions. Here, we review current knowledge on redox-based PTMs and their possible consequences in legume and nodule biology.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
12
|
Twala PP, Mitema A, Baburam C, Feto NA. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin. AIMS Microbiol 2020; 6:330-349. [PMID: 33134747 PMCID: PMC7595840 DOI: 10.3934/microbiol.2020020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/20/2020] [Indexed: 11/26/2022] Open
Abstract
Peroxidases are classified as oxidoreductases and are the second largest class of enzymes applied in biotechnological processes. These enzymes are used to catalyze various oxidative reactions using hydrogen peroxide and other substrates as electron donors. They are isolated from various sources such as plants, animals and microbes. Peroxidase enzymes have versatile applications in bioenergy, bioremediation, dye decolorization, humic acid degradation, paper and pulp, and textile industries. Besides, peroxidases from different sources have unique abilities to degrade a broad range of environmental pollutants such as petroleum hydrocarbons, dioxins, industrial dye effluents, herbicides and pesticides. Ironically, unlike most biological catalysts, the function of peroxidases varies according to their source. For instance, manganese peroxidase (MnP) of fungal origin is widely used for depolymerization and demethylation of lignin and bleaching of pulp. While, horseradish peroxidase of plant origin is used for removal of phenols and aromatic amines from waste waters. Microbial enzymes are believed to be more stable than enzymes of plant or animal origin. Thus, making microbially-derived peroxidases a well-sought-after biocatalysts for versatile industrial and environmental applications. Therefore, the current review article highlights on the recent breakthroughs in the discovery and use of peroxidase isoforms of microbial origin at a possible depth.
Collapse
Affiliation(s)
- Pontsho Patricia Twala
- OMICS Research Group, Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Alfred Mitema
- OMICS Research Group, Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Cindy Baburam
- OMICS Research Group, Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Naser Aliye Feto
- OMICS Research Group, Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
13
|
Li S, Wang S, Wang P, Gao L, Yang R, Li Y. Label-free comparative proteomic and physiological analysis provides insight into leaf color variation of the golden-yellow leaf mutant of Lagerstroemia indica. J Proteomics 2020; 228:103942. [PMID: 32805451 DOI: 10.1016/j.jprot.2020.103942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
GL1 is a golden-yellow leaf mutant that cultivated from natural bud-mutation of Lagerstroemia indica and has a very low level of photosynthetic pigment under sunlight. GL1 can gradually increase its pigment content and turn into pale-green leaf when shading under sunshade net (referred as Re-GL1). The mechanisms that cause leaf color variation are complicated and are not still unclear. Here, we have used a label-free comparative proteomics to investigate differences in proteins abundance and analyze the specific biological process associated with mechanisms of leaf color variation in GL1. A total of 245 and 160 proteins with different abundance were identified in GL1 vs WT and GL1 vs Re-GL1, respectively. Functional classification analysis revealed that the proteins with different abundance mainly related to photosynthesis, heat shock proteins, ribosome proteins, and oxidation-reduction. The proteins that the most significantly contributed to leaf color variation were photosynthetic proteins of PSII and PSI, which directly related to photooxidation and determined the photosynthetic performance of photosystem. Further analysis demonstrated that low jasmonic acid content was needed to golden-yellow leaf GL1. These findings lay a solid foundation for future studies into the molecular mechanisms that underlie leaf color formation of GL1. BIOLOGICAL SIGNIFICANCE: The natural bud mutant GL1 of L. indica is an example through changing leaf color to cope with complex environment. However, the molecular mechanism of leaf color variation are largely elusive. The proteins with different abundance identified from a label-free comparative proteomics revealed a range of biological processes associated with leaf color variation, including photosynthesis, oxidation-reduction and jasmonic acid signaling. The photooxidation and low level of jasmonic acid played a primary role in GL1 adaptation in golden-yellow leaf. These findings provide possible pathway or signal for the molecular mechanism associated with leaf color formation and as a valuable resource for signal transaction of chloroplast.
Collapse
Affiliation(s)
- Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Shuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Peng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Lulu Gao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China.
| |
Collapse
|
14
|
Zhang J, Liu Y, Guo Y, Zhao Q. GPX8 promotes migration and invasion by regulating epithelial characteristics in non-small cell lung cancer. Thorac Cancer 2020; 11:3299-3308. [PMID: 32975378 PMCID: PMC7606007 DOI: 10.1111/1759-7714.13671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is the most common cause of cancer‐related death worldwide. The family of glutathione peroxidase (GPX), an important antioxidant enzyme in human tissues, has been discovered to play a key role in the development of cancers. GPX8 is the most promising molecule of the family in a therapeutic strategy against a variety of cancers. The main purpose of this study was to examine and analyze the function and clinical value of GPX8 in NSCLC. Methods Immunohistochemistry (IHC), western blot analysis and quantitative real‐time polymerase chain reaction (qPCR) were used to assess GPX8 expression and its clinical significance in NSCLC. A series of cell biology experiments and bioinformatic analysis tools were further used to study the function of GPX8. Results GPX8 expression in tumor tissues was much higher than that in normal lung tissues. High expression of GPX8 in NSCLC was correlated with a worse clinical outcome and prognosis. Furthermore, GPX8 could inhibit the apoptosis of tumor cells and promote its migration and invasion. Conclusions Our results conclusively demonstrated that GPX8 could affect the oncogenesis and prognosis of NSCLC via regulating epithelial characteristics. The study also illustrated that GPX8 could serve as a prognostic predictor and potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jun Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yun Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
15
|
Su P, Yan J, Li W, Wang L, Zhao J, Ma X, Li A, Wang H, Kong L. A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC PLANT BIOLOGY 2020; 20:392. [PMID: 32847515 PMCID: PMC7449071 DOI: 10.1186/s12870-020-02602-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/16/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response. RESULTS In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress. CONCLUSIONS The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jun Yan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| |
Collapse
|
16
|
Schneider S, Schintlmeister A, Becana M, Wagner M, Woebken D, Wienkoop S. Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:1180-1189. [PMID: 30443991 PMCID: PMC6446814 DOI: 10.1111/pce.13481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
Legume-rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced ("fixed") to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20-fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant-microbe interaction that is most relevant for agriculture and soil fertility.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Arno Schintlmeister
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | | | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
17
|
Meyer AJ, Riemer J, Rouhier N. Oxidative protein folding: state-of-the-art and current avenues of research in plants. THE NEW PHYTOLOGIST 2019; 221:1230-1246. [PMID: 30230547 DOI: 10.1111/nph.15436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1230 I. Introduction 1230 II. Formation and isomerization of disulfides in the ER and the Golgi apparatus 1231 III. The disulfide relay in the mitochondrial intermembrane space: why are plants different? 1236 IV. Disulfide bond formation on luminal proteins in thylakoids 1240 V. Conclusion 1242 Acknowledgements 1242 References 1242 SUMMARY: Disulfide bonds are post-translational modifications crucial for the structure and function of thousands of proteins. Their formation and isomerization, referred to as oxidative folding, require specific protein machineries found in oxidizing subcellular compartments, namely the endoplasmic reticulum and the associated endomembrane system, the intermembrane space of mitochondria and the thylakoid lumen of chloroplasts. At least one protein component is required for transferring electrons from substrate proteins to an acceptor that is usually molecular oxygen. For oxidation reactions, incoming reduced substrates are oxidized by thiol-oxidoreductase proteins (or domains in case of chimeric proteins), which are usually themselves oxidized by a single thiol oxidase, the enzyme generating disulfide bonds de novo. By contrast, the description of the molecular actors and pathways involved in proofreading and isomerization of misfolded proteins, which require a tightly controlled redox balance, lags behind. Herein we provide a general overview of the knowledge acquired on the systems responsible for oxidative protein folding in photosynthetic organisms, highlighting their particularities compared to other eukaryotes. Current research challenges are discussed including the importance and specificity of these oxidation systems in the context of the existence of reducing systems in the same compartments.
Collapse
Affiliation(s)
- Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, 53113, Bonn, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany
| | | |
Collapse
|
18
|
Stambulska UY, Bayliak MM. Legume-Rhizobium Symbiosis: Secondary Metabolites, Free Radical Processes, and Effects of Heavy Metals. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_43-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Alloing G, Mandon K, Boncompagni E, Montrichard F, Frendo P. Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia. Antioxidants (Basel) 2018; 7:E182. [PMID: 30563061 PMCID: PMC6315971 DOI: 10.3390/antiox7120182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/08/2023] Open
Abstract
Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system Medicago truncatula⁻Sinorhizobium meliloti.
Collapse
Affiliation(s)
| | | | | | - Françoise Montrichard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France.
| | | |
Collapse
|
20
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018; 9:1434. [PMID: 30364181 PMCID: PMC6192434 DOI: 10.3389/fpls.2018.01434] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 05/10/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
21
|
Matamoros MA, Kim A, Peñuelas M, Ihling C, Griesser E, Hoffmann R, Fedorova M, Frolov A, Becana M. Protein Carbonylation and Glycation in Legume Nodules. PLANT PHYSIOLOGY 2018; 177:1510-1528. [PMID: 29970413 PMCID: PMC6084676 DOI: 10.1104/pp.18.00533] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 05/08/2023]
Abstract
Nitrogen fixation is an agronomically and environmentally important process catalyzed by bacterial nitrogenase within legume root nodules. These unique symbiotic organs have high metabolic rates and produce large amounts of reactive oxygen species that may modify proteins irreversibly. Here, we examined two types of oxidative posttranslational modifications of nodule proteins: carbonylation, which occurs by direct oxidation of certain amino acids or by interaction with reactive aldehydes arising from cell membrane lipid peroxides; and glycation, which results from the reaction of lysine and arginine residues with reducing sugars or their autooxidation products. We used a strategy based on the enrichment of carbonylated peptides by affinity chromatography followed by liquid chromatography-tandem mass spectrometry to identify 369 oxidized proteins in bean (Phaseolus vulgaris) nodules. Of these, 238 corresponded to plant proteins and 131 to bacterial proteins. Lipid peroxidation products induced most carbonylation sites. This study also revealed that carbonylation has major effects on two key nodule proteins. Metal-catalyzed oxidation caused the inactivation of malate dehydrogenase and the aggregation of leghemoglobin. In addition, numerous glycated proteins were identified in vivo, including three key nodule proteins: sucrose synthase, glutamine synthetase, and glutamate synthase. Label-free quantification identified 10 plant proteins and 18 bacterial proteins as age-specifically glycated. Overall, our results suggest that the selective carbonylation or glycation of crucial proteins involved in nitrogen metabolism, transcriptional regulation, and signaling may constitute a mechanism to control cell metabolism and nodule senescence.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - María Peñuelas
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Eva Griesser
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, 04103 Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, 04103 Leipzig, Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain
| |
Collapse
|
22
|
Matamoros MA, Kim A, Peñuelas M, Ihling C, Griesser E, Hoffmann R, Fedorova M, Frolov A, Becana M. Protein Carbonylation and Glycation in Legume Nodules. PLANT PHYSIOLOGY 2018; 177:1510-1528. [PMID: 29970413 DOI: 10.1104/pp.18/00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 05/26/2023]
Abstract
Nitrogen fixation is an agronomically and environmentally important process catalyzed by bacterial nitrogenase within legume root nodules. These unique symbiotic organs have high metabolic rates and produce large amounts of reactive oxygen species that may modify proteins irreversibly. Here, we examined two types of oxidative posttranslational modifications of nodule proteins: carbonylation, which occurs by direct oxidation of certain amino acids or by interaction with reactive aldehydes arising from cell membrane lipid peroxides; and glycation, which results from the reaction of lysine and arginine residues with reducing sugars or their autooxidation products. We used a strategy based on the enrichment of carbonylated peptides by affinity chromatography followed by liquid chromatography-tandem mass spectrometry to identify 369 oxidized proteins in bean (Phaseolus vulgaris) nodules. Of these, 238 corresponded to plant proteins and 131 to bacterial proteins. Lipid peroxidation products induced most carbonylation sites. This study also revealed that carbonylation has major effects on two key nodule proteins. Metal-catalyzed oxidation caused the inactivation of malate dehydrogenase and the aggregation of leghemoglobin. In addition, numerous glycated proteins were identified in vivo, including three key nodule proteins: sucrose synthase, glutamine synthetase, and glutamate synthase. Label-free quantification identified 10 plant proteins and 18 bacterial proteins as age-specifically glycated. Overall, our results suggest that the selective carbonylation or glycation of crucial proteins involved in nitrogen metabolism, transcriptional regulation, and signaling may constitute a mechanism to control cell metabolism and nodule senescence.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain
| | - Ahyoung Kim
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - María Peñuelas
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Eva Griesser
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, 04103 Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, 04103 Leipzig, Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain
| |
Collapse
|
23
|
Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. 3 Biotech 2018. [PMID: 29515965 DOI: 10.1007/s13205-018-1185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant glutathione peroxidases (GPXs) are non-heme thiol peroxidases that play vital roles in maintaining H2O2 homeostasis and regulating plant response to abiotic stress. Here, we performed a comparative genomic analysis of the GPX gene family in cucumber (Cucumis sativus). As a result, a total of 6 CsGPX genes were identified, which were unevenly located in four out of the seven chromosomes in cucumber genome. Based on the phylogenetic analysis, the GPX genes of cucumber, Arabidopsis and rice could be classified into five groups. Analysis of the distribution of conserved domains of GPX proteins showed that all these proteins contain three highly conserved motifs, as well as other conserved sequences and residues. Gene structure analysis revealed a conserved exon-intron organization pattern of these genes. Through analyzing the promoter regions of CsGPX genes, many hormone-, stress-, and development-responsive cis-elements were identified. Moreover, we also investigated their expression patterns in different tissues and developmental stages as well as in response to abiotic stress and x acid (ABA) treatments. The qRT-PCR results showed that the transcripts of CsGPX genes varied largely under abiotic stress and ABA treatments at different time points. These results demonstrate that cucumber GPX gene family may function in tissue development and plant stress responses.
Collapse
|
24
|
Chromium(VI) Toxicity in Legume Plants: Modulation Effects of Rhizobial Symbiosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8031213. [PMID: 29662899 PMCID: PMC5832134 DOI: 10.1155/2018/8031213] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/31/2017] [Indexed: 11/18/2022]
Abstract
Most legume species have the ability to establish a symbiotic relationship with soil nitrogen-fixing rhizobacteria that promote plant growth and productivity. There is an increasing evidence of reactive oxygen species (ROS) important role in formation of legume-rhizobium symbiosis and nodule functioning. Environmental pollutants such as chromium compounds can cause damage to rhizobia, legumes, and their symbiosis. In plants, toxic effects of chromium(VI) compounds are associated with the increased production of ROS and oxidative stress development as well as with inhibition of pigment synthesis and modification of virtually all cellular components. These metabolic changes result in inhibition of seed germination and seedling development as well as reduction of plant biomass and crop yield. However, if plants establish symbiosis with rhizobia, heavy metals are accumulated preferentially in nodules decreasing the toxicity of metals to the host plant. This review summarizes data on toxic effects of chromium on legume plants and legume-rhizobium symbiosis. In addition, we discussed the role of oxidative stress in both chromium toxicity and formation of rhizobial symbiosis and use of nodule bacteria for minimizing toxic effects of chromium on plants.
Collapse
|
25
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30364181 DOI: 10.3389/fpls.2018:01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
26
|
Wang BY, Wen RR, Ma L. Molecular characterization and functional analysis of a glutathione peroxidase gene from Aphelenchoides besseyi (Nematoda: Aphelenchoididae). Acta Parasitol 2017; 62:565-574. [PMID: 28682766 DOI: 10.1515/ap-2017-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Aphelenchoides besseyi, the nematode agent of rice tip white disease, causes huge economic losses in almost all the rice-growing regions of the world. Glutathione peroxidase (GPx), an esophageal glands secretion protein, plays important roles in the parasitism, immune evasion, reproduction and pathogenesis of many plant-parasitic nematodes (PPNs). Therefore, GPx is a promising target for control A. besseyi. Here, the full-length sequence of the GPx gene from A. besseyi (AbGPx1) was cloned using the rapid amplification of cDNA ends method. The full-length 944 bp AbGPx1 sequence, which contains a 678 bp open reading frame, encodes a 225 amino acid protein. The deduced amino acid sequence of the AbGPxl shares highly homologous with other nematode GPxs, and showed the closest evolutionary relationship with DrGPx. In situ hybridization showed that AbGPx1 was constitutively expressed in the esophageal glands of A. besseyi, suggesting its potential roles in parasitism and reproduction. RNA interference (RNAi) was used to assess the functions of the AbGPx1 gene, and quantitative real-time PCR was used to monitor the RNAi effects. After treatment with dsRNA for 12 h, AbGPx1 expression levels and reproduction in the nematodes decreased compared with the same parameters in the control group; thus, the AbGPx1 gene is likely to be associated with the development, reproduction, and infection ability of A. besseyi. These findings may open new avenues towards nematode control.
Collapse
|
27
|
Attacha S, Solbach D, Bela K, Moseler A, Wagner S, Schwarzländer M, Aller I, Müller SJ, Meyer AJ. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:1281-1295. [PMID: 28102911 DOI: 10.1111/pce.12919] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 05/27/2023]
Abstract
Glutathione peroxidase-like enzymes (GPXLs) constitute a family of eight peroxidases in Arabidopsis thaliana. In contrast to the eponymous selenocysteine glutathione peroxidases in mammalian cells that use glutathione as electron donor, GPXLs rely on cysteine instead of selenocysteine for activity and depend on the thioredoxin system for reduction. Although plant GPXLs have been implicated in important agronomic traits such as drought tolerance, photooxidative tolerance and immune responses, there remain major ambiguities regarding their subcellular localization. Because their site of action is a prerequisite for an understanding of their function, we investigated the localization of all eight GPXLs in stable Arabidopsis lines expressing N-terminal and C-terminal fusions with redox-sensitive green fluorescent protein 2 (roGFP2) using confocal microscopy. GPXL1 and GPXL7 were found in plastids, while GPXL2 and GPXL8 are cytosolic nuclear. The N-terminal target peptide of GPXL6 is sufficient to direct roGFP2 into mitochondria. Interestingly, GPXL3, GPXL4 and GPXL5 all appear to be membrane bound. GPXL3 was found exclusively in the secretory pathway where it is anchored by a single N-terminal transmembrane domain. GPXL4 and GPXL5 are anchored to the plasma membrane. Presence of an N-terminal myristoylation motif and genetic disruption of membrane association through targeted mutagenesis point to myristoylation as essential for membrane localization.
Collapse
Affiliation(s)
- Safira Attacha
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - David Solbach
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Krisztina Bela
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stefanie J Müller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| |
Collapse
|
28
|
Cheng G, Karunakaran R, East AK, Munoz-Azcarate O, Poole PS. Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. FEMS Microbiol Lett 2017; 364:3045905. [PMID: 28333211 PMCID: PMC5407991 DOI: 10.1093/femsle/fnx045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 01/02/2023] Open
Abstract
As glutathione (GSH) plays an essential role in growth and symbiotic capacity of rhizobia, a glutathione synthetase (gshB) mutant of Rhizobium leguminosarum biovar viciae 3841 (Rlv3841) was characterised. It fails to efficiently utilise various compounds as a sole carbon source, including glucose, succinate, glutamine and histidine, and shows 60%-69% reduction in uptake rates of glucose, succinate and the non-metabolisable substrate α-amino isobutyric acid. The defect in glucose uptake can be overcome by addition of exogenous GSH, indicating GSH, but not its bacterial synthesis, is required for efficient transport. GSH is not involved in the regulation of the activity of Rlv3841's transporters via the global regulator of transport, PtsNTR. Although lack of GSH reduces transcription of the branched amino acid transporter, this was not the case for all uptake transport systems, for example, the amino acid permease. This suggests GSH alters activity and/or assembly of transport systems by an unknown mechanism. In interaction with plants, the gshB mutant is not only severely impaired in rhizosphere colonisation, but also shows a 50% reduction in dry weight of plants and nitrogen-fixation ability. This reveals that changes in GSH metabolism affect the bacterial-plant interactions required for symbiosis.
Collapse
Affiliation(s)
- Guojun Cheng
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ramakrishnan Karunakaran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alison K. East
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Plant Sciences, University of Oxford, South Parks Road Oxford, OX1 3RB, UK
| | - Olaya Munoz-Azcarate
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Philip S. Poole
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Plant Sciences, University of Oxford, South Parks Road Oxford, OX1 3RB, UK
| |
Collapse
|
29
|
Castella C, Mirtziou I, Seassau A, Boscari A, Montrichard F, Papadopoulou K, Rouhier N, Puppo A, Brouquisse R. Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide. Nitric Oxide 2017; 68:125-136. [PMID: 28193486 DOI: 10.1016/j.niox.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
Plant glutathione peroxidases (Gpx) catalyse the reduction of various peroxides, such as hydrogen peroxide (H2O2), phospholipid hydroperoxides and peroxynitrite, but at the expense of thioredoxins rather than glutathione. A main function of plant Gpxs is the protection of biological membranes by scavenging phospholipid hydroperoxides, but some Gpxs have also been associated with H2O2 sensing and redox signal transduction. Nitric oxide (NO) is not only known to induce the expression of Gpx family members, but also to inhibit Gpx activity, presumably through the S-nitrosylation of conserved cysteine residues. In the present study, the effects of NO-donors on both the activity and S-nitrosylation state of purified Medicago truncatula Gpx1 were analyzed using biochemical assay measurements and a biotin-switch/mass spectrometry approach. MtGpx1 activity was only moderately inhibited by the NO-donors diethylamine-NONOate and S-nitrosoglutathione, and the inhibition may be reversed by DTT. The three conserved Cys of MtGpx1 were found to be modified through S-nitrosylation and S-glutathionylation, although to different extents, by diethylamine-NONOate and S-nitrosoglutathione, or by a combination of diethylamine-NONOate and reduced glutathione. The regulation of MtGpx1 and its possible involvement in the signaling process is discussed in the light of these results.
Collapse
Affiliation(s)
- Claude Castella
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Ioanna Mirtziou
- Department of Biochemistry & Biotechnology, Laboratory of Plant & Environmental Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Aurélie Seassau
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Alexandre Boscari
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Françoise Montrichard
- IRHS, Université d'Angers, INRA, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Kalliopi Papadopoulou
- Department of Biochemistry & Biotechnology, Laboratory of Plant & Environmental Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Nicolas Rouhier
- UMR 1136 Interactions Arbres-Microorganismes, Université de Lorraine/INRA, F-54500 Vandoeuvre-lès-Nancy, France
| | - Alain Puppo
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Renaud Brouquisse
- UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
30
|
Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B. Identification of Salt Tolerance-related microRNAs and Their Targets in Maize ( Zea mays L.) Using High-throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:864. [PMID: 28603532 PMCID: PMC5445174 DOI: 10.3389/fpls.2017.00864] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/09/2017] [Indexed: 05/23/2023]
Abstract
To identify the known and novel microRNAs (miRNAs) and their targets that are involved in the response and adaptation of maize (Zea mays) to salt stress, miRNAs and their targets were identified by a combined analysis of the deep sequencing of small RNAs (sRNA) and degradome libraries. The identities were confirmed by a quantitative expression analysis with over 100 million raw reads of sRNA and degradome sequences. A total of 1040 previously known miRNAs were identified from four maize libraries, with 762 and 726 miRNAs derived from leaves and roots, respectively, and 448 miRNAs that were common between the leaves and roots. A total of 37 potential new miRNAs were selected based on the same criteria in response to salt stress. In addition to known miR167 and miR164 species, novel putative miR167 and miR164 species were also identified. Deep sequencing of miRNAs and the degradome [with quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses of their targets] showed that more than one species of novel miRNA may play key roles in the response to salinity in maize. Furthermore, the interaction between miRNAs and their targets may play various roles in different parts of maize in response to salinity.
Collapse
Affiliation(s)
- Rong Fu
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Mi Zhang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yinchuan Zhao
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xuechuan He
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Chenyun Ding
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Shuangkuai Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yan Feng
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Ping Li
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Baohua Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| |
Collapse
|
31
|
Abstract
Chemical, physical, and biotic factors continuously vary in the natural environment. Such parameters are considered as stressors if the magnitude of their change exceeds the current acclimation norm of the plant. Activation of genetic programs allows for conditional expansion of the acclimation norm and depends on specific sensing mechanisms, intracellular communication, and regulation. The redox and reactive oxygen species (ROS) network plays a fundamental role in directing the acclimation response. These highly reactive compounds like H2O2 are generated and scavenged under normal conditions and participate in realizing a basal acclimation level. Spatial and temporal changes in ROS levels and redox state provide valuable information for regulating epigenetic processes, transcription factors (TF), translation, protein turnover, metabolic pathways, and cross-feed, e.g., into hormone-, NO-, or Ca2+-dependent signaling pathways. At elevated ROS levels uncontrolled oxidation reactions compromise cell functions, impair fitness and yield, and in extreme cases may cause plant death.
Collapse
Affiliation(s)
- Michael Liebthal
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, University Str. 25, 33501, Bielefeld, Germany
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, University Str. 25, 33501, Bielefeld, Germany.
| |
Collapse
|
32
|
Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX, Anjum NA. Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches. FRONTIERS IN PLANT SCIENCE 2016; 7:301. [PMID: 27047498 PMCID: PMC4802093 DOI: 10.3389/fpls.2016.00301] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/25/2016] [Indexed: 05/08/2023]
Abstract
Among major reactive oxygen species (ROS), hydrogen peroxide (H2O2) exhibits dual roles in plant metabolism. Low levels of H2O2 modulate many biological/physiological processes in plants; whereas, its high level can cause damage to cell structures, having severe consequences. Thus, steady-state level of cellular H2O2 must be tightly regulated. Glutathione peroxidases (GPX) and ascorbate peroxidase (APX) are two major ROS-scavenging enzymes which catalyze the reduction of H2O2 in order to prevent potential H2O2-derived cellular damage. Employing bioinformatics approaches, this study presents a comparative evaluation of both GPX and APX in 18 different plant species, and provides valuable insights into the nature and complex regulation of these enzymes. Herein, (a) potential GPX and APX genes/proteins from 18 different plant species were identified, (b) their exon/intron organization were analyzed, (c) detailed information about their physicochemical properties were provided, (d) conserved motif signatures of GPX and APX were identified, (e) their phylogenetic trees and 3D models were constructed, (f) protein-protein interaction networks were generated, and finally (g) GPX and APX gene expression profiles were analyzed. Study outcomes enlightened GPX and APX as major H2O2-scavenging enzymes at their structural and functional levels, which could be used in future studies in the current direction.
Collapse
Affiliation(s)
- Ibrahim I. Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara UniversityIstanbul, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Düzce UniversityDüzce, Turkey
| | - Recep Vatansever
- Department of Biology, Faculty of Science and Arts, Marmara UniversityIstanbul, Turkey
| | - Kuaybe Y. Kurtoglu
- Department of Biology, Faculty of Science and Arts, Marmara UniversityIstanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul Medeniyet UniversityIstanbul, Turkey
| | - Ibrahim Koc
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical UniversityKocaeli, Turkey
| | - Münir X. Öztürk
- Botany Department/Center for Environmental Studies, Ege UniversityIzmir, Turkey
- Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Naser A. Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| |
Collapse
|
33
|
Hichri I, Boscari A, Meilhoc E, Catalá M, Barreno E, Bruand C, Lanfranco L, Brouquisse R. Nitric Oxide: A Multitask Player in Plant–Microorganism Symbioses. GASOTRANSMITTERS IN PLANTS 2016. [DOI: 10.1007/978-3-319-40713-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:454. [PMID: 27092165 PMCID: PMC4824774 DOI: 10.3389/fpls.2016.00454] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 05/07/2023]
Abstract
The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process.
Collapse
|
35
|
Dietz KJ. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Mol Cells 2016; 39:20-5. [PMID: 26810073 PMCID: PMC4749869 DOI: 10.14348/molcells.2016.2324] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 11/27/2022] Open
Abstract
Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, 33501 Bielefeld,
Germany
| |
Collapse
|