1
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
2
|
Consonni G, Castorina G, Varotto S. The Italian Research on the Molecular Characterization of Maize Kernel Development. Int J Mol Sci 2022; 23:11383. [PMID: 36232684 PMCID: PMC9570349 DOI: 10.3390/ijms231911383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The study of the genetic control of maize seed development and seed-related pathways has been one of the most important themes approached by the Italian scientific community. Maize has always attracted the interest of the Italian community of agricultural genetics since its beginning, as some of its founders based their research projects on and developed their "schools" by adopting maize as a reference species. Some of them spent periods in the United States, where maize was already becoming a model system, to receive their training. In this manuscript we illustrate the research work carried out in Italy by different groups that studied maize kernels and underline their contributions in elucidating fundamental aspects of caryopsis development through the characterization of maize mutants. Since the 1980s, most of the research projects aimed at the comprehension of the genetic control of seed development and the regulation of storage products' biosyntheses and accumulation, and have been based on forward genetics approaches. We also document that for some decades, Italian groups, mainly based in Northern Italy, have contributed to improve the knowledge of maize genomics, and were both fundamental for further international studies focused on the correct differentiation and patterning of maize kernel compartments and strongly contributed to recent advances in maize research.
Collapse
Affiliation(s)
- Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giulia Castorina
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
3
|
Lin H, Wang W, Chen X, Sun Z, Han X, Wang S, Li Y, Ye W, Yin Z. Molecular Traits and Functional Analysis of the CLAVATA3/Endosperm Surrounding Region-Related Small Signaling Peptides in Three Species of Gossypium Genus. FRONTIERS IN PLANT SCIENCE 2021; 12:671626. [PMID: 34149772 PMCID: PMC8213210 DOI: 10.3389/fpls.2021.671626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) small peptides are a group of C-terminally encoded and post-translationally modified signal molecules involved in regulating the growth and development of various plants. However, the function and evolution of these peptides have so far remained elusive in cotton. In this study, 55, 56, and 86 CLE genes were identified in the Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum genomes, respectively, and all members were divided into seven groups. These groups were distinctly different in their protein characteristics, gene structures, conserved motifs, and multiple sequence alignment. Whole genome or segmental duplications played a significant role in the expansion of the CLE family in cotton, and experienced purifying selection during the long evolutionary process in cotton. Cis-acting regulatory elements and transcript profiling revealed that the CLE genes of cotton exist in different tissues, developmental stages, and respond to abiotic stresses. Protein properties, structure prediction, protein interaction network prediction of GhCLE2, GhCLE33.2, and GhCLE28.1 peptides were, respectively, analyzed. In addition, the overexpression of GhCLE2, GhCLE33.2, or GhCLE28.1 in Arabidopsis, respectively, resulted in a distinctive shrub-like dwarf plant, slightly purple leaves, large rosettes with large malformed leaves, and lack of reproductive growth. This study provides important insights into the evolution of cotton CLEs and delineates the functional conservatism and divergence of CLE genes in the growth and development of cotton.
Collapse
Affiliation(s)
- Huan Lin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiugui Chen
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenting Sun
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiulan Han
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shuai Wang
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wuwei Ye
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zujun Yin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
4
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
5
|
Molesini B, Dusi V, Pennisi F, Di Sansebastiano GP, Zanzoni S, Manara A, Furini A, Martini F, Rotino GL, Pandolfini T. TCMP-2 affects tomato flowering and interacts with BBX16, a homolog of the arabidopsis B-box MiP1b. PLANT DIRECT 2020; 4:e00283. [PMID: 33204936 PMCID: PMC7648202 DOI: 10.1002/pld3.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 05/06/2023]
Abstract
Flowering and fruiting are processes subject to complex control by environmental and endogenous signals. Endogenous signals comprise, besides classical phytohormones, also signaling peptides and miniproteins. Tomato cystine-knot miniproteins (TCMPs), which belong to a Solanaceous-specific group of Cys-rich protein family, have been recently involved in fruit development. TCMP-1 and TCMP-2 display a highly modulated expression pattern during flower and fruit development. A previous study reported that a change in the ratio of the two TCMPs affects the timing of fruit production. In this work, to investigate TCMP-2 mode of action, we searched for its interacting partners. One of the interactors identified by a yeast two hybrid screen, was the B-box domain-containing protein 16 (SlBBX16), whose closest homolog is the Arabidopsis microProtein 1b implicated in flowering time control. We demonstrated the possibility for the two proteins to interact in vivo in tobacco epidermal cells. Arabidopsis plants ectopically overexpressing the TCMP-2 exhibited an increased level of FLOWERING LOCUS T (FT) mRNA and anticipated flowering. Similarly, in previously generated transgenic tomato plants with increased TCMP-2 expression in flower buds, we observed an augmented expression of SINGLE-FLOWER TRUSS gene, the tomato ortholog of FT, whereas the expression of the antiflorigen SELF-PRUNING was unchanged. Consistently, these transgenic plants showed alterations in the flowering pattern, with an accelerated termination of the sympodial units. Overall, our study reveals a novel function for TCMP-2 as regulatory factor that might integrate, thanks to its capacity to interact with SlBBX16, into the signaling pathways that control flowering, and converge toward florigen regulation.
Collapse
Affiliation(s)
| | - Valentina Dusi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | | | - Serena Zanzoni
- Centro Piattaforme TecnologicheUniversity of VeronaVeronaItaly
| | - Anna Manara
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Flavio Martini
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | | |
Collapse
|
6
|
Khan SU, Khan MHU, Ahmar S, Fan C. Comprehensive study and multipurpose role of the CLV3/ESR-related (CLE) genes family in plant growth and development. J Cell Physiol 2020; 236:2298-2317. [PMID: 32864739 DOI: 10.1002/jcp.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) is one of the most important signaling peptides families in plants. These peptides signaling are common in the cell to cell communication and control various physiological and developmental processes, that is cell differentiation and proliferation, self-incompatibility, and the defense response. The CLE signaling systems are conserved across the plant kingdom but have a diverse mode of action in various developmental processes in different species. In this review, we concise various methods of peptides identification, structure, and molecular identity of the CLE family, the developmental role of CLE genes/peptides in plants, environmental stimuli, and CLE family and some other novel progress in CLE genes/peptides in various crops, and so forth. According to previous literature, about 1,628 CLE genes were identified in land plants, which deeply explained the tale of plant development. Nevertheless, some important queries need to be addressed to get clear insights into the CLE gene family in other organisms and their role in various physiological and developmental processes. Furthermore, we summarized the power of the CLE family around the environment as well as bifunctional activity and the crystal structure recognition mechanism of CLE peptides by their receptors and CLE clusters functions. We strongly believed that the discovery of the CLE family in other organisms would provide a significant breakthrough for future revolutionary and functional studies.
Collapse
Affiliation(s)
- Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Nanda AK, El Habti A, Hocart CH, Masle J. ERECTA receptor-kinases play a key role in the appropriate timing of seed germination under changing salinity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6417-6435. [PMID: 31504732 PMCID: PMC6859730 DOI: 10.1093/jxb/erz385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Appropriate timing of seed germination is crucial for the survival and propagation of plants, and for crop yield, especially in environments prone to salinity or drought. However, the exact mechanisms by which seeds perceive changes in soil conditions and integrate them to trigger germination remain elusive, especially once the seeds are non-dormant. In this study, we determined that the Arabidopsis ERECTA (ER), ERECTA-LIKE1 (ERL1), and ERECTA-LIKE2 (ERL2) leucine-rich-repeat receptor-like kinases regulate seed germination and its sensitivity to changes in salt and osmotic stress levels. Loss of ER alone, or in combination with ERL1 and/or ERL2, slows down the initiation of germination and its progression to completion, or arrests it altogether under saline conditions, until better conditions return. This function is maternally controlled via the tissues surrounding the embryo, with a primary role being played by the properties of the seed coat and its mucilage. These relate to both seed-coat expansion and subsequent differentiation and to salinity-dependent interactions between the mucilage, subtending seed coat layers and seed interior in the germinating seed. Salt-hypersensitive er105, er105 erl1.2, er105 erl2.1 and triple-mutant seeds also exhibit increased sensitivity to exogenous ABA during germination, and under salinity show an enhanced up-regulation of the germination repressors and inducers of dormancy ABA-insensitive-3, ABA-insensitive-5, DELLA-encoding RGL2, and Delay-Of-Germination-1. These findings reveal a novel role of the ERECTA receptor-kinases in the sensing of conditions at the seed surface and the integration of developmental, dormancy and stress signalling pathways in seeds. They also open novel avenues for the genetic improvement of plant adaptation to changing drought and salinity patterns.
Collapse
Affiliation(s)
- Amrit K Nanda
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Abdeljalil El Habti
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Charles H Hocart
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | | |
Collapse
|
8
|
Abstract
This review by Figueiredo and Köhler describes the molecular mechanisms driving seed development. They review the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development. The evolution of seeds defines a remarkable landmark in the history of land plants. A developing seed contains three genetically distinct structures: the embryo, the nourishing tissue, and the seed coat. While fertilization is necessary to initiate seed development in most plant species, apomicts have evolved mechanisms allowing seed formation independently of fertilization. Despite their socio–economical relevance, the molecular mechanisms driving seed development have only recently begun to be understood. Here we review the current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
9
|
In Silico Prediction of Ligand-Binding Sites of Plant Receptor Kinases Using Conservation Mapping. Methods Mol Biol 2018; 1621:93-105. [PMID: 28567646 DOI: 10.1007/978-1-4939-7063-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Plasma membrane-bound plant receptor-like kinases (RLKs) can be categorized based on their ligand-binding extracellular domain. The largest group encompasses RLKs having ectodomains with leucine-rich repeats (LRRs). The LRR-RLKs can further be assigned to classes mainly based on the number of LRRs. Many of the receptors of the classes X and XI with more than 20 LRRs are activated by small secreted peptide ligands. To understand how peptide signaling works, it is of interest to identify the amino acids of the receptor that are directly involved in ligand interaction. Such residues have most likely been conserved over evolutionary time and can therefore be predicted to be conserved in receptor orthologues of different plant species. Here we present an in silico method to identify such residues. This involves a simplified method for identification of orthologues and a web-based program for identifying the most conserved amino acids aside from the leucines that structure the ectodomain. The method has been validated for the LRR-RLKs HAESA (HAE) and PHYTOSULFOKINE RECEPTOR1 (PSKR1) for which conservation-mapping results closely matched recent structure-based identification of ligand and co-receptor-interacting residues.
Collapse
|
10
|
Doll NM, Depège-Fargeix N, Rogowsky PM, Widiez T. Signaling in Early Maize Kernel Development. MOLECULAR PLANT 2017; 10:375-388. [PMID: 28267956 DOI: 10.1016/j.molp.2017.01.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/26/2023]
Abstract
Developing the next plant generation within the seed requires the coordination of complex programs driving pattern formation, growth, and differentiation of the three main seed compartments: the embryo (future plant), the endosperm (storage compartment), representing the two filial tissues, and the surrounding maternal tissues. This review focuses on the signaling pathways and molecular players involved in early maize kernel development. In the 2 weeks following pollination, functional tissues are shaped from single cells, readying the kernel for filling with storage compounds. Although the overall picture of the signaling pathways regulating embryo and endosperm development remains fragmentary, several types of molecular actors, such as hormones, sugars, or peptides, have been shown to be involved in particular aspects of these developmental processes. These molecular actors are likely to be components of signaling pathways that lead to transcriptional programming mediated by transcriptional factors. Through the integrated action of these components, multiple types of information received by cells or tissues lead to the correct differentiation and patterning of kernel compartments. In this review, recent advances regarding the four types of molecular actors (hormones, sugars, peptides/receptors, and transcription factors) involved in early maize development are presented.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France.
| |
Collapse
|
11
|
Molesini B, Zanzoni S, Mennella G, Francese G, Losa A, L Rotino G, Pandolfini T. The Arabidopsis N-Acetylornithine Deacetylase Controls Ornithine Biosynthesis via a Linear Pathway with Downstream Effects on Polyamine Levels. PLANT & CELL PHYSIOLOGY 2017; 58:130-144. [PMID: 28064246 DOI: 10.1093/pcp/pcw167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Arabidopsis thaliana At4g17830 codes for a protein showing sequence similarity with the Escherichia coli N-acetylornithine deacetylase (EcArgE), an enzyme implicated in the linear ornithine (Orn) biosynthetic pathway. In plants, N-acetylornithine deacetylase (NAOD) activity has yet to be demonstrated; however, At4g17830-silenced and mutant (atnaod) plants display an impaired reproductive phenotype and altered foliar levels of Orn and polyamines (PAs). Here, we showed the direct connection between At4g17830 function and Orn biosynthesis, demonstrating biochemically that At4g17830 codes for a NAOD. These results are the first experimental proof that Orn can be produced in Arabidopsis via a linear pathway. In this study, to identify the role of AtNAOD in reproductive organs, we carried out a transcriptomic analysis on atnaod mutant and wild-type flowers. In the atnaod mutant, the most relevant effects were the reduced expression of cysteine-rich peptide-coding genes, known to regulate male-female cross-talk during reproduction, and variation in the expression of genes involved in nitrogen:carbon (N:C) status. The atnaod mutant also exhibited increased levels of sucrose and altered sensitivity to glucose. We hypothesize that AtNAOD participates in Orn and PA homeostasis, contributing to maintain an optimal N:C balance during reproductive development.
Collapse
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giuseppe Mennella
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per l'Orticoltura, Pontecagnano-Faiano (Salerno), Italy
| | - Gianluca Francese
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per l'Orticoltura, Pontecagnano-Faiano (Salerno), Italy
| | - Alessia Losa
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di ricerca per l'Orticoltura (ORL), Montanaso Lombardo (Lodi), Italy
| | - Giuseppe L Rotino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di ricerca per l'Orticoltura (ORL), Montanaso Lombardo (Lodi), Italy
| | | |
Collapse
|
12
|
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife 2016; 5. [PMID: 27848912 PMCID: PMC5135394 DOI: 10.7554/elife.20542] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI:http://dx.doi.org/10.7554/eLife.20542.001 The seeds of rice, wheat and other flowering plants store a variety of nutrients, largely in the form of sugars, proteins and oils. These stored reserves provide the main source of calories for humans and livestock all over the world, so they are of major social and economic importance. Seed development is an intricate process. It begins after male sperm cells fuse with female gametes inside the flower. This leads to the formation of the embryo, which will develop into a new plant, and a structure called the endosperm, which nourishes the growing embryo. A protective seed coat surrounds the embryo and endosperm, which develops from certain parts of the parent flower. In order for the seed to develop successfully, these three components have to communicate so they can coordinate their growth. Auxin is a key plant hormone that is needed for plants to grow and develop properly and is necessary for the endosperm to form. Previous research has shown that the endosperm is also required to trigger the formation of the seed coat, but the signal that triggers this process has not yet been identified. Figueiredo et al. now address this question in a small flowering plant called Arabidopsis thaliana. The experiments show that the endosperm produces auxin, which acts as a molecular signal for the seed coat to start forming. Exposing unfertilized flowers to auxin caused a seed coat to form even though the endosperm was absent. This suggests that this hormone alone is sufficient to trigger the formation of the seed coat without any other signals. Further analysis revealed that a protein called AGL62 regulates the movement of auxin to the parts of the flower that give rise to the seed coat. In the absence of AGL62, the hormone remains trapped in the endosperm and the seed coat fails to develop. The next step following on from this work is to understand how auxin moves from the endosperm to the parts of the flower that form the seed coat. DOI:http://dx.doi.org/10.7554/eLife.20542.002
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Pawel J Roszak
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
13
|
Hands P, Rabiger DS, Koltunow A. Mechanisms of endosperm initiation. PLANT REPRODUCTION 2016; 29:215-25. [PMID: 27450467 PMCID: PMC4978757 DOI: 10.1007/s00497-016-0290-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Overview of developmental events and signalling during central cell maturation and early endosperm development with a focus on mechanisms of sexual and autonomous endosperm initiation. Endosperm is important for seed viability and global food supply. The mechanisms regulating the developmental transition between Female Gametophyte (FG) maturation and early endosperm development in angiosperms are difficult to study as they occur buried deep within the ovule. Knowledge of the molecular events underlying this developmental window of events has significantly increased with the combined use of mutants, cell specific markers, and plant hormone sensing reporters. Here, we review recent discoveries concerning the developmental events and signalling of FG maturation, fertilization, and endosperm development. We focus on the regulation of the initiation of endosperm development with and without fertilization in Arabidopsis and the apomict Hieracium, comparing this to what is known in monocots where distinct differences in developmental patterning may underlie alternative mechanisms of suppression and initiation. The Polycomb Repressive Complex 2 (PRC2), plant hormones, and transcription factors are iteratively involved in early fertilization-induced endosperm formation in Arabidopsis. Auxin increases and PRC2 complex inactivation can also induce fertilization-independent endosperm proliferation in Arabidopsis. Function of the PRC2 complex member FERTILIZATION-INDEPENDENT ENDOSPERM and two loci AutE and LOP are required for autonomous endosperm development in apomictic Hieracium. A comparative understanding of cues required for early endosperm development will facilitate genetic engineering approaches for the development of resilient seed crops, especially if an option for fertilization-independent endosperm formation was possible to combat stress-induced crop failure.
Collapse
Affiliation(s)
- Philip Hands
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - David S Rabiger
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
14
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Jeong S, Eilbert E, Bolbol A, Lukowitz W. Going mainstream: How is the body axis of plants first initiated in the embryo? Dev Biol 2016; 419:78-84. [PMID: 27207388 DOI: 10.1016/j.ydbio.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Vascular plants have an open body plan and continuously generate new axes of growth, such as shoot or root branches. Apical-to-basal transport of the hormone auxin is a hallmark of every axis, and the resulting pattern of auxin distribution affects plant development across scales, from overall architecture to cellular differentiation. How the first axis is initiated in the early embryo is a long-standing question. While our knowledge is still sparse, some of the key players of axialization have emerged, and recent work points to specific models for connecting cellular polarity to the asymmetric division of the zygote and domain specific gene expression to the organization of basipetal auxin flux.
Collapse
Affiliation(s)
- Sangho Jeong
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602-7271, United States.
| | - Emily Eilbert
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602-7271, United States.
| | - Ahmed Bolbol
- Botany Department, Faculty of Science, Zagazig University, 44519 Sharkira, Egypt.
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602-7271, United States.
| |
Collapse
|
16
|
Figueiredo DD, Köhler C. Bridging the generation gap: communication between maternal sporophyte, female gametophyte and fertilization products. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:16-20. [PMID: 26658334 DOI: 10.1016/j.pbi.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/08/2023]
Abstract
In seed plants, as in placental animals, gamete formation and zygotic development take place within the parental tissues. To ensure timely onset and to coordinate the development of the new generation, communication between the parent plant with the filial tissues and its precursors is of utmost importance. During female gametogenesis the maternal tissues tightly regulate megagametophyte formation and the interplay between the sporophyte and the fertilization products, embryo and endosperm, has major implications in the formation of a viable seed. We review the current knowledge on these interactions and highlight the many questions that still remain unanswered, in particular the nature of the pathways involved in these signaling events.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden.
| |
Collapse
|
17
|
Simon R, Dresselhaus T. Peptides take centre stage in plant signaling. Preface. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5135-8. [PMID: 26473197 PMCID: PMC4526926 DOI: 10.1093/jxb/erv376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
18
|
Wang G, Zhang G, Wu M. CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2015; 6:1211. [PMID: 26779239 PMCID: PMC4703810 DOI: 10.3389/fpls.2015.01211] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 05/07/2023]
Abstract
The CLE (CLAVATA3/Endosperm surrounding region-related) peptide family is one of the best-studied secreted peptide families in plants. Accumulated data have revealed that CLE genes play vital roles on stem cell homeostasis in different types of meristems. Additionally, CLE genes have been found to perform various biological roles in plant growth and development, and in response to environmental stimuli. With recent advances on our understanding of CLE peptide function, it is showing that the existence of potential crosstalks of CLE peptides with phytohormones and external stimuli. Complex interactions exist in which CLE petides coordinate with hormones to regulate plant growth and development, and in response to external stimuli. In this article, we present recent advances in cell-cell communication that is mediated by CLE peptides combining with phytohormones and external stimuli, and suggest additional Arabidopsis CLE genes that are likely to be controlled by hormones and environmental cues.
Collapse
|