1
|
Wróblewska K, Jeong BR. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:110. [PMID: 34603905 PMCID: PMC8475335 DOI: 10.1186/s12302-021-00547-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/22/2021] [Indexed: 05/10/2023]
Abstract
Air pollution is regarded as an increasingly threatening, major environmental risk for human health. Seven million deaths are attributed to air pollution each year, 91% of which is due to particulate matter. Vegetation is a xenobiotic means of removing particulate matter. This review presents the mechanisms of PM capture by plants and factors that influence PM reduction in the atmosphere. Vegetation is ubiquitously approved as a PM removal solution in cities, taking various forms of green infrastructure. This review also refers to the effectiveness of plant exploitation in GI: trees, grasslands, green roofs, living walls, water reservoirs, and urban farming. Finally, methods of increasing the PM removal by plants, such as species selection, biodiversity increase, PAH-degrading phyllospheric endophytes, transgenic plants and microorganisms, are presented.
Collapse
Affiliation(s)
- Katarzyna Wróblewska
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828 South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
2
|
Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nat Biotechnol 2021; 39:1216-1219. [PMID: 33941930 DOI: 10.1038/s41587-021-00909-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/26/2021] [Indexed: 11/08/2022]
Abstract
The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a major component of munitions, is used extensively on military training ranges. As a result, widespread RDX pollution in groundwater and aquifers in the United States is now well documented. RDX is toxic, but its removal from training ranges is logistically challenging, lacking cost-effective and sustainable solutions. Previously, we have shown that thale cress (Arabidopsis thaliana) engineered to express two genes, xplA and xplB, encoding RDX-degrading enzymes from the soil bacterium Rhodococcus rhodochrous 11Y can break down this xenobiotic in laboratory studies. Here, we report the results of a 3-year field trial of XplA/XplB-expressing switchgrass (Panicum virgatum) conducted on three locations in a military site. Our data suggest that XplA/XplB switchgrass has in situ efficacy, with potential utility for detoxifying RDX on live-fire training ranges, munitions dumps and minefields.
Collapse
|
3
|
Jha P, Sen R, Jobby R, Sachar S, Bhatkalkar S, Desai N. Biotransformation of xenobiotics by hairy roots. PHYTOCHEMISTRY 2020; 176:112421. [PMID: 32505862 DOI: 10.1016/j.phytochem.2020.112421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The exponential industrial growth we see today rides on the back of large scale production of chemicals, explosives and pharmaceutical products. However, the effluents getting released from their manufacturing units are greatly compromising the sustainability of our environment. With greater awareness of the imperative for environmental clean-up, a promising approach that is attracting increasing research interests is biodegradation of xenobiotics. In this approach, biotransformation has proven to be one of the most effective tools. While many different model frameworks have been used to study different aspects of biotransformation, hairy roots (HRs) have been found to be exceptionally valuable. HR cultures are preferred over other in-vitro model systems due to their biochemical stability and hormone-autotrophy. In addition, the multi-enzyme biosynthetic potential of HRs which is similar to the parent plant and their relatively low-cost cultural requirements further characterize their suitability for biotransformation. The recent progress observed in scale-up of HR cultures and understanding of functional genomics has opened up new dimensions providing valuable insights for industrial application. This review article summarizes the potential of HR cultures in the biotransformation of xenobiotics, their limitations in the application on a large scale and current strategies to alleviate them. Advancement in bioreactors engineering enabling large scale cultivation and modern gene technologies improving biotransformation efficiency promises to extend laboratory results to industrial applications.
Collapse
Affiliation(s)
- Pamela Jha
- Amity School of Biotechnology, Amity University Mumbai, Pune Expressway, Bhatan Post -Somathne, Panvel, Mumbai, Maharashtra, 410206, India.
| | - Rajdip Sen
- Amity School of Biotechnology, Amity University Mumbai, Pune Expressway, Bhatan Post -Somathne, Panvel, Mumbai, Maharashtra, 410206, India
| | - Renitta Jobby
- Amity School of Biotechnology, Amity University Mumbai, Pune Expressway, Bhatan Post -Somathne, Panvel, Mumbai, Maharashtra, 410206, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, Maharashtra, 400098, India
| | - Shruti Bhatkalkar
- Department of Chemistry, University of Mumbai, Mumbai, Maharashtra, 400098, India
| | - Neetin Desai
- Sunandan Divatia School of Sciences, NMIMS, Mumbai, Maharashtra, 400056, India
| |
Collapse
|
4
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|
5
|
Summerton L, Clark JH, Hurst GA, Ball PD, Rylott EL, Carslaw N, Creasey J, Murray J, Whitford J, Dobson B, Sneddon HF, Ross J, Metcalf P, McElroy CR. Industry-Informed Workshops to Develop Graduate Skill Sets in the Circular Economy Using Systems Thinking. JOURNAL OF CHEMICAL EDUCATION 2019; 96:2959-2967. [PMID: 32051645 PMCID: PMC7007196 DOI: 10.1021/acs.jchemed.9b00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/10/2019] [Indexed: 05/29/2023]
Abstract
Increasing demand for chemicals worldwide, depleting resources, consumer pressure, stricter legislation, and the rising cost of waste disposal are placing increasing pressure on chemical and related industries. For any organization to survive in the current arena of growing climate change laws and regulations, and increasing public influence, the issue of sustainability must be fundamental to the way it operates. A sustainable manufacturing approach will enable economic growth to be combined with environmental and social sustainability and will be realized via collaboration between a multidisciplinary community including chemists, biologists, engineers, environmental scientists, economists, experts in management, and policy makers. Hence, employees with new skills, knowledge, and experience are essential. To realize this approach, the design and development of a series of workshops encompassing systems thinking are presented here. After close consultation with industry, an annual program of interactive workshops has been designed for graduate students to go beyond examining the "greening" of chemical reactions, processes, and products, and instead embed a systems thinking approach to learning. The workshops provide a valuable insight into the issues surrounding sustainable manufacturing covering change management, commercialization, environmental impact, circular economy, legislation, and bioresources incorporating the conversion of waste into valuable products. The multidisciplinary course content incorporates industrial case studies, providing access to real business issues, and is delivered by experts from academic departments across campus and industry.
Collapse
Affiliation(s)
- Louise Summerton
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - James H. Clark
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Glenn A. Hurst
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Peter D. Ball
- The
York Management School, Law and Management Building, University of York, Freboys Lane, York YO10
5GD, United Kingdom
| | - Elizabeth L. Rylott
- Centre
for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Nicola Carslaw
- Department
of Environment & Geography, University
of York, Heslington,
York YO10 5DD, United Kingdom
| | - Julia Creasey
- Croda
International
Plc, Cowick Hall Snaith, Goole, East Yorkshire DN14 9AA, United Kingdom
| | - Jane Murray
- Merck
KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | - Brian Dobson
- Brocklesby
Ltd, Crosslands Lane, North Cave, Brough HU15 2PG, United Kingdom
| | - Helen F. Sneddon
- GSK
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Joe Ross
- Biorenewables
Development Centre, Unit
1 Hassacarr Close, Chessingham Park, Dunnington,
York YO19 5SN, United Kingdom
| | - Pete Metcalf
- Wilson Bio-Chemical Ltd, Unit 22, Hassacarr Close, Dunnington, York YO19 5SN, United Kingdom
| | - C. Robert McElroy
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Rylott EL, Bruce NC. Right on target: using plants and microbes to remediate explosives. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1051-1064. [PMID: 31056922 DOI: 10.1080/15226514.2019.1606783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While the immediate effect of explosives in armed conflicts is frequently in the public eye, until recently, the insidious, longer-term corollaries of these toxic compounds in the environment have gone largely unnoticed. Now, increased public awareness and concern are factors behind calls for more effective remediation solutions to these global pollutants. Scientists have been working on bioremediation projects in this area for several decades, characterizing genes, biochemical detoxification pathways, and field-applicable plant species. This review covers the progress made in understanding the fundamental biochemistry behind the detoxification of explosives, including new shock-insensitive explosive compounds; how field-relevant plant species have been characterized and genetically engineered; and the major roles that endophytic and rhizospheric microorganisms play in the detoxification of organic pollutants such as explosives.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| |
Collapse
|
7
|
Basharat Z, Novo LAB, Yasmin A. Genome Editing Weds CRISPR: What Is in It for Phytoremediation? PLANTS 2018; 7:plants7030051. [PMID: 30720787 PMCID: PMC6161122 DOI: 10.3390/plants7030051] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/16/2023]
Abstract
The arrival of sequence-specific endonucleases that allow genome editing has shaken the pillars of basic and applied plant biology. Clustered regularly interspaced palindromic repeats (CRISPR) is a revolutionary genome-engineering tool that enables the enhancement of targeted traits in plants. Numerous plants, including energy crops, known for their potential to tolerate, immobilize, and stabilize inorganic and organic pollutants, have already been edited using different CRISPR systems. Moreover, a large array of genes responsible for increased metal tolerance, metal uptake and hyperaccumulation have already been identified. Thus, the CRISPR-mediated genome reprogramming of plants, including its use in gene expression regulation through transcriptional repression or activation (CRISPRi and CRISPRa), could be of paramount importance for phytoremediation. The simplicity, inexpensiveness, and capabilities of this gene editing technique could soon be used to enhance plants and bacteria involved in phytotechnologies, such as phystabilization, phytoextraction, phytomining, phytovolatilization, and bio-energy generation. In this brief viewpoint piece, we posit some of the potential benefits of CRISPR for phytoremediation.
Collapse
Affiliation(s)
- Zarrin Basharat
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Luís A B Novo
- GeoBioTec Research Centre, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Centre of Biotechnology and Fine Chemistry-Associated Laboratory, Faculty of Biotechnology, Catholic University of Portugal, 4169-005 Porto, Portugal.
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
| |
Collapse
|
8
|
Core Concept: Phytoremediation advances in the lab but lags in the field. Proc Natl Acad Sci U S A 2018; 114:7475-7477. [PMID: 28720737 DOI: 10.1073/pnas.1707883114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Ahammed GJ, He BB, Qian XJ, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ. 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:922-931. [PMID: 28774551 DOI: 10.1016/j.envpol.2017.07.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/10/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Environmental pollution by organic pollutants (OPs) has become a global concern due to its detrimental effects on the environment and human health. As plants are used to remediate contaminated sites, understanding the responses of plants to various OPs and fortification of plant tolerance are of great significance. In this work, we studied the biochemical and molecular responses of cucumber plants to three well-known OPs, 2,4,6-trichlorophenol, chlorpyrifos and oxytetracycline in the absence or presence of 24-epibrassinolide (EBR), a potent regulator of plant growth and stress tolerance. The results showed that the selected three OPs retarded root elongation; however, the phytotoxic effects of OPs were attenuated by exogenous EBR. OPs induced accumulations of both hydrogen peroxide (H2O2) and nitric oxide (NO) in root tips and resulted in an increased malondialdehyde (MDA) content, an indicator of membrane lipid peroxidation. Exogenous EBR reduced accumulations of H2O2, NO and MDA in the roots by increasing the expression of antioxidant and detoxification genes and the activities of the corresponding enzymes. Intriguingly, EBR not only promoted the activities of glutathione S-transferase and glutathione reductase, but also increased the content of reduced glutathione without altering the content of oxidized glutathione, which resulted in a reduced redox state under OPs stress. Furthermore, EBR increased the free radical scavenging capacity, flavonoid content and the activity and transcription of secondary metabolism related enzymes. Our results suggest that EBR treatment may fortify secondary metabolism to enhance antioxidant capacity in response to OPs treatment, which might have potential implication in phytoremediation of OPs.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Bei-Bei He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xiang-Jie Qian
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. CHEMOSPHERE 2017; 184:438-451. [PMID: 28618276 DOI: 10.1016/j.chemosphere.2017.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Utsab Deb
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Sibnarayan Datta
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Clemens Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany.
| |
Collapse
|
11
|
Zhang L, Routsong R, Nguyen Q, Rylott EL, Bruce NC, Strand SE. Expression in grasses of multiple transgenes for degradation of munitions compounds on live-fire training ranges. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:624-633. [PMID: 27862819 PMCID: PMC5399000 DOI: 10.1111/pbi.12661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 05/13/2023]
Abstract
The deposition of toxic munitions compounds, such as hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), on soils around targets in live-fire training ranges is an important source of groundwater contamination. Plants take up RDX but do not significantly degrade it. Reported here is the transformation of two perennial grass species, switchgrass (Panicum virgatum) and creeping bentgrass (Agrostis stolonifera), with the genes for degradation of RDX. These species possess a number of agronomic traits making them well equipped for the uptake and removal of RDX from root zone leachates. Transformation vectors were constructed with xplA and xplB, which confer the ability to degrade RDX, and nfsI, which encodes a nitroreductase for the detoxification of the co-contaminating explosive 2, 4, 6-trinitrotoluene (TNT). The vectors were transformed into the grass species using Agrobacterium tumefaciens infection. All transformed grass lines showing high transgene expression levels removed significantly more RDX from hydroponic solutions and retained significantly less RDX in their leaf tissues than wild-type plants. Soil columns planted with the best-performing switchgrass line were able to prevent leaching of RDX through a 0.5-m root zone. These plants represent a promising plant biotechnology to sustainably remove RDX from training range soil, thus preventing contamination of groundwater.
Collapse
Affiliation(s)
- Long Zhang
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| | - Ryan Routsong
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| | - Quyen Nguyen
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| | | | | | - Stuart E. Strand
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
12
|
Rzymski P, Królczyk A. Attitudes toward genetically modified organisms in Poland: to GMO or not to GMO? Food Secur 2016. [DOI: 10.1007/s12571-016-0572-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|