1
|
Symonds K, Smith MA, Esme O, Plaxton WC, Snedden WA. Characterization of Arabidopsis aldolases AtFBA4, AtFBA5, and their inhibition by morin and interaction with calmodulin. FEBS Lett 2024; 598:1864-1876. [PMID: 38997224 DOI: 10.1002/1873-3468.14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Fructose bisphosphate aldolases (FBAs) catalyze the reversible cleavage of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. We analyzed two previously uncharacterized cytosolic Arabidopsis FBAs, AtFBA4 and AtFBA5. Based on a recent report, we examined the interaction of AtFBA4 with calmodulin (CaM)-like protein 11 (AtCML11). AtFBA4 did not bind AtCML11; however, we found that CaM bound AtFBA5 in a Ca2+-dependent manner with high specificity and affinity (KD ~ 190 nm) and enhanced its stability. AtFBA4 and AtFBA5 exhibited Michaelis-Menten kinetics with Km and Vmax values of 180 μm and 4.9 U·mg-1 for AtFBA4, and 6.0 μm and 0.30 U·mg-1 for AtFBA5, respectively. The flavonoid morin inhibited both isozymes. Our study suggests that Ca2+ signaling and flavanols may influence plant glycolysis/gluconeogenesis.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen's University, Kingston, Canada
| | - Milena A Smith
- Department of Biology, Queen's University, Kingston, Canada
| | - Oona Esme
- Department of Biology, Queen's University, Kingston, Canada
| | | | | |
Collapse
|
2
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
3
|
Investigating Plant Protein-Protein Interactions Using FRET-FLIM with a Focus on the Actin Cytoskeleton. Methods Mol Biol 2023; 2604:353-366. [PMID: 36773249 DOI: 10.1007/978-1-0716-2867-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The study of protein-protein interactions is fundamental to understanding how actin-dependent processes are controlled through the regulation of actin-binding proteins by their interactors. FRET-FLIM (Förster resonance energy transfer-fluorescence lifetime imaging microscopy) is a sensitive bioimaging method to detect protein-protein interactions in living cells through measurement of FRET, facilitated by the interactions of fluorophore-tagged fusion protein. As a sensitive and noninvasive method for the spatiotemporal visualization of dynamic protein-protein interactions, FRET-FLIM holds several advantages over other methods of protein interaction assays. FRET-FLIM has been widely employed to characterize many plant protein interactions, including interactions between actin-regulatory proteins and their binding partners. As we increasingly understand the plant actin cytoskeleton to coordinate a diverse number of complex functions, the study of actin-regulatory proteins and their interactors becomes increasingly technically challenging. Sophisticated and sensitive in vivo methods such as FRET-FLIM are likely to be crucial to the study of protein-protein interactions as more complex and challenging hypotheses are addressed.
Collapse
|
4
|
Carrera DÁ, George GM, Fischer-Stettler M, Galbier F, Eicke S, Truernit E, Streb S, Zeeman SC. Distinct plastid fructose bisphosphate aldolases function in photosynthetic and non-photosynthetic metabolism in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3739-3755. [PMID: 33684221 PMCID: PMC8628874 DOI: 10.1093/jxb/erab099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/01/2021] [Indexed: 05/31/2023]
Abstract
Plastid metabolism is critical in both photoautotrophic and heterotrophic plant cells. In chloroplasts, fructose-1,6-bisphosphate aldolase (FBA) catalyses the formation of both fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate within the Calvin-Benson cycle. Three Arabidopsis genes, AtFBA1-AtFBA3, encode plastidial isoforms of FBA, but the contribution of each isoform is unknown. Phylogenetic analysis indicates that FBA1 and FBA2 derive from a recently duplicated gene, while FBA3 is a more ancient paralog. fba1 mutants are phenotypically indistinguishable from the wild type, while both fba2 and fba3 have reduced growth. We show that FBA2 is the major isoform in leaves, contributing most of the measurable activity. Partial redundancy with FBA1 allows both single mutants to survive, but combining both mutations is lethal, indicating a block of photoautotrophy. In contrast, FBA3 is expressed predominantly in heterotrophic tissues, especially the leaf and root vasculature, but not in the leaf mesophyll. We show that the loss of FBA3 affects plastidial glycolytic metabolism of the root, potentially limiting the biosynthesis of essential compounds such as amino acids. However, grafting experiments suggest that fba3 is dysfunctional in leaf phloem transport, and we suggest that a block in photoassimilate export from leaves causes the buildup of high carbohydrate concentrations and retarded growth.
Collapse
Affiliation(s)
| | - Gavin M George
- Department of Biology, ETH Zurich, 8092
Zurich, Switzerland
| | | | | | - Simona Eicke
- Department of Biology, ETH Zurich, 8092
Zurich, Switzerland
| | | | | | | |
Collapse
|
5
|
Hui MH, Rhine K, Tolan DR. Actin filament- and Wiskott-Aldrich syndrome protein-binding sites on fructose-1,6-bisphosphate aldolase are functionally distinct from the active site. Cytoskeleton (Hoboken) 2020; 78:129-141. [PMID: 33210455 DOI: 10.1002/cm.21646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 11/05/2022]
Abstract
The glycolytic enzyme fructose 1,6-(bis)phosphate aldolase (aldolase) is not only required for efficient utilization of glucose and fructose, but also for cytoskeletal functions like cytokinesis and cell motility. These differing roles are mediated by distinct and discrete binding interactions with aldolase's many binding partners, including actin filaments, Wiskott-Aldrich Syndrome protein (WASP), and Sorting Nexin 9 (SNX9). How these interactions are coordinated on the aldolase homotetramer of 160 kDa is unclear. In this study, the catalytic activity of wild-type aldolase is measured in the presence of actin filaments, and a WASP-derived peptide that binds to aldolase, or both. No appreciable changes in kcat or Km values are seen. Then, aldolase variants with substitutions targeting the tryptophan-binding pocket for WASP and SNX9 are created and perturbation of actin filament-, WASP peptide-, and SNX9 peptide-binding are assessed. Those that negatively impacted binding did not show an impact on aldolase catalysis. These results suggest that aldolase can engage in catalysis while simultaneously interacting with cytoskeletal machinery.
Collapse
Affiliation(s)
- Maggie H Hui
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Kevin Rhine
- Program in Cell, Molecular, and Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Zhang Y, Sampathkumar A, Kerber SML, Swart C, Hille C, Seerangan K, Graf A, Sweetlove L, Fernie AR. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nat Commun 2020; 11:4509. [PMID: 32908151 PMCID: PMC7481185 DOI: 10.1038/s41467-020-18234-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Glycolysis is one of the primordial pathways of metabolism, playing a pivotal role in energy metabolism and biosynthesis. Glycolytic enzymes are known to form transient multi-enzyme assemblies. Here we examine the wider protein-protein interactions of plant glycolytic enzymes and reveal a moonlighting role for specific glycolytic enzymes in mediating the co-localization of mitochondria and chloroplasts. Knockout mutation of phosphoglycerate mutase or enolase resulted in a significantly reduced association of the two organelles. We provide evidence that phosphoglycerate mutase and enolase form a substrate-channelling metabolon which is part of a larger complex of proteins including pyruvate kinase. These results alongside a range of genetic complementation experiments are discussed in the context of our current understanding of chloroplast-mitochondrial interactions within photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Arun Sampathkumar
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sandra Mae-Lin Kerber
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Corné Swart
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Carsten Hille
- Department of Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany
- Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Kumar Seerangan
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Lee Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
7
|
Zhu K, Zhang W, Sarwa R, Xu S, Li K, Yang Y, Li Y, Wang Z, Cao J, Li Y, Tan X. Proteomic analysis of a clavata-like phenotype mutant in Brassica napus. Genet Mol Biol 2020; 43:e20190305. [PMID: 32154828 PMCID: PMC7198001 DOI: 10.1590/1678-4685-gmb-2019-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Rapeseed is one of important oil crops in China. Better understanding of the
regulation network of main agronomic traits of rapeseed could improve the
yielding of rapeseed. In this study, we obtained an influrescence mutant that
showed a fusion phenotype, similar with the Arabidopsis
clavata-like phenotype, so we named the mutant as
Bnclavata-like (Bnclv-like). Phenotype
analysis illustrated that abnormal development of the inflorescence meristem
(IM) led to the fused-inflorescence phenotype. At the stage of protein
abundance, major regulators in metabolic processes, ROS metabolism, and
cytoskeleton formation were seen to be altered in this mutant. These results not
only revealed the relationship between biological processes and inflorescence
meristem development, but also suggest bioengineering strategies for the
improved breeding and production of Brassica napus.
Collapse
Affiliation(s)
- Keming Zhu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China.,Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, China
| | - Weiwei Zhang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Rehman Sarwa
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Shuo Xu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Kaixia Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yulong Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Zheng Wang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Jun Cao
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yaoming Li
- Jiangsu University, Institute of Agricultural Engineering, Zhenjiang, China
| | - Xiaoli Tan
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Née G, Tilak P, Finkemeier I. A Versatile Workflow for the Identification of Protein-Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification. Methods Mol Biol 2020; 2139:257-271. [PMID: 32462592 DOI: 10.1007/978-1-0716-0528-8_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein functions often rely on protein-protein interactions. Hence, knowledge about the protein interaction network is essential for an understanding of protein functions and plant physiology. A major challenge of the postgenomic era is the mapping of protein-protein interaction networks. This chapter describes a mass spectrometry-based label-free quantification approach to identify in vivo protein interaction networks. The procedure starts with the extraction of intact protein complexes from transgenic plants expressing the protein of interest fused to a GFP-Tag (bait-GFP), as well as plants expressing a free GFP as background control. Enrichment of the GFP-tagged protein together with its interaction partners, as well as the free GFP, is performed by immunoaffinity purification. The pull-down quality can be evaluated by simple gel-based techniques. In parallel, the captured proteins are trypsin-digested and relatively quantified by label-free mass spectrometry-based quantification. The relative quantification approach largely relies on the normalization of protein abundances of background-binding proteins, which occur in both bait-GFP and free GFP pull-downs. Therefore, relative quantification of the protein pull-down is superior over methods that solely rely on protein identifications and removal of often copurified high-abundance proteins from the bait-GFP pull-downs, which might remove real interaction partners. A further strength of this method is that it can be applied to any soluble GFP-tagged protein.
Collapse
Affiliation(s)
- Guillaume Née
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Priyadarshini Tilak
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Dumont S, Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:166. [PMID: 30833954 PMCID: PMC6387960 DOI: 10.3389/fpls.2019.00166] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.
Collapse
|
10
|
Geilfus CM, Lan J, Carpentier S. Dawn regulates guard cell proteins in Arabidopsis thaliana that function in ATP production from fatty acid beta-oxidation. PLANT MOLECULAR BIOLOGY 2018; 98:525-543. [PMID: 30392160 DOI: 10.1007/s11103-018-0794-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Based on the nature of the proteins that are altered in abundance, we conclude that guard cells switch their energy source from fatty acid metabolism to chloroplast activity, at the onset of dawn. During stomatal opening at dawn, evidence was recently presented for a breakdown and liquidation of stored triacylglycerols in guard cells to supply ATP for use in stomatal opening. However, proteome changes that happen in the guard cells during dawn were until now poorly understood. Bad accessibility to pure and intact guard cell samples can be considered as the primary reason behind this lack of knowledge. To overcome these technical constraints, epidermal guard cell samples with ruptured pavement cells were isolated at 1 h pre-dawn, 15 min post-dawn and 1 h post-dawn from Arabidopsis thaliana. Proteomic changes were analysed by ultra-performance-liquid-chromatography-mass-spectrometry. With 994 confidently identified proteins, we present the first analysis of the A. thaliana guard cell proteome that is not influenced by side effects of guard cell protoplasting. Data are available via ProteomeXchange with identifier PXD009918. By elucidating the identities of enzymes that change in abundance by the transition from dark to light, we corroborate the hypothesis that respiratory ATP production for stomatal opening results from fatty acid beta-oxidation. Moreover, we identified many proteins that were never reported in the context of guard cell biology. Among them are proteins that might play a role in signalling or circadian rhythm.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany.
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium.
| | - Jue Lan
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sebastien Carpentier
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42 - Box 2455, 3001, Leuven, Belgium
| |
Collapse
|
11
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|