1
|
Ma Y, Wen Y, Wang C, Wu Z, Yuan X, Xiong Y, Chen K, He L, Zhang Y, Wang Z, Li L, Yang Z, Sun Y, Chen Z, Ma J. ZIP Genes Are Involved in the Retransfer of Zinc Ions during the Senescence of Zinc-Deficient Rice Leaves. Int J Mol Sci 2023; 24:13989. [PMID: 37762290 PMCID: PMC10531140 DOI: 10.3390/ijms241813989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Rice lacks sufficient amounts of zinc despite its vitality for human health. Leaf senescence enables redistribution of nutrients to other organs, yet Zn retransfer during deficiency is often overlooked. In this hydroponic experiment, we studied the effect of Zn deficiency on rice seedlings, focusing on the fourth leaf under control and deficient conditions. Growth phenotype analysis showed that the growth of rice nodal roots was inhibited in Zn deficiency, and the fourth leaf exhibited accelerated senescence and increased Zn ion transfer. Analyzing differentially expressed genes showed that Zn deficiency regulates more ZIP family genes involved in Zn ion retransfer. OsZIP3 upregulation under Zn-deficient conditions may not be induced by Zn deficiency, whereas OsZIP4 is only induced during Zn deficiency. Gene ontology enrichment analysis showed that Zn-deficient leaves mobilized more biological pathways (BPs) during aging, and the enrichment function differed from that of normal aging leaves. The most apparent "zinc ion transport" BP was stronger than that of normal senescence, possibly due to Zn-deficient leaves mobilizing large amounts of BP related to lipid metabolism during senescence. These results provide a basis for further functional analyses of genes and the study of trace element transfer during rice leaf senescence.
Collapse
Affiliation(s)
- Yangming Ma
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yanfang Wen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Cheng Wang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Ziniu Wu
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiaojuan Yuan
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Ying Xiong
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Kairui Chen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Limei He
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yue Zhang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhonglin Wang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Leilei Li
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhiyuan Yang
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yongjian Sun
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Zhongkui Chen
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Jun Ma
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
2
|
Thiébaut N, Hanikenne M. Zinc deficiency responses: bridging the gap between Arabidopsis and dicotyledonous crops. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1699-1716. [PMID: 34791143 DOI: 10.1093/jxb/erab491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) deficiency is a widespread phenomenon in agricultural soils worldwide and has a major impact on crop yield and quality, and hence on human nutrition and health. Although dicotyledonous crops represent >30% of human plant-based nutrition, relatively few efforts have been dedicated to the investigation of Zn deficiency response mechanisms in dicotyledonous, in contrast to monocotyledonous crops, such as rice or barley. Here, we describe the Zn requirement and impact of Zn deficiency in several economically important dicotyledonous crops, Phaseolus vulgaris, Glycine max, Brassica oleracea, and Solanum lycopersicum. We briefly review our current knowledge of the Zn deficiency response in Arabidopsis and outline how this knowledge is translated in dicotyledonous crops. We highlight commonalities and differences between dicotyledonous species (and with monocotyledonous species) regarding the function and regulation of Zn transporters and chelators, as well as the Zn-sensing mechanisms and the role of hormones in the Zn deficiency response. Moreover, we show how the Zn homeostatic network intimately interacts with other nutrients, such as iron or phosphate. Finally, we outline how variation in Zn deficiency tolerance and Zn use efficiency among cultivars of dicotyledonous species can be leveraged for the design of Zn biofortification strategies.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS - PhytoSystems, Translational Plant Biology, University of Liège, 4000 Liège, Belgium
| | - Marc Hanikenne
- InBioS - PhytoSystems, Translational Plant Biology, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
3
|
Amini S, Arsova B, Gobert S, Carnol M, Bosman B, Motte P, Watt M, Hanikenne M. Transcriptional regulation of ZIP genes is independent of local zinc status in Brachypodium shoots upon zinc deficiency and resupply. PLANT, CELL & ENVIRONMENT 2021; 44:3376-3397. [PMID: 34263935 DOI: 10.1111/pce.14151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The biological processes underlying zinc homeostasis are targets for genetic improvement of crops to counter human malnutrition. Detailed phenotyping, ionomic, RNA-Seq analyses and flux measurements with 67 Zn isotope revealed whole-plant molecular events underlying zinc homeostasis upon varying zinc supply and during zinc resupply to starved Brachypodium distachyon (Brachypodium) plants. Although both zinc deficiency and excess hindered Brachypodium growth, accumulation of biomass and micronutrients into roots and shoots differed depending on zinc supply. The zinc resupply dynamics involved 1,893 zinc-responsive genes. Multiple zinc-regulated transporter and iron-regulated transporter (IRT)-like protein (ZIP) transporter genes and dozens of other genes were rapidly and transiently down-regulated in early stages of zinc resupply, suggesting a transient zinc shock, sensed locally in roots. Notably, genes with identical regulation were observed in shoots without zinc accumulation, pointing to root-to-shoot signals mediating whole-plant responses to zinc resupply. Molecular events uncovered in the grass model Brachypodium are useful for the improvement of staple monocots.
Collapse
Affiliation(s)
- Sahand Amini
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Borjana Arsova
- Root Dynamics Group, IBG-2 - Plant Sciences, Institut für Bio- und Geowissenschaften (IBG), Forschungszentrum Jülich, Jülich, Germany
| | - Sylvie Gobert
- Laboratory of Oceanology, MARE Center, FOCUS, University of Liège, Liège, Belgium
- Station de Recherches Sous-Marines et Océanographiques (STARESO), Pointe de la Revellata, Calvi, France
| | - Monique Carnol
- InBioS - PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Bernard Bosman
- InBioS - PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Michelle Watt
- Root Dynamics Group, IBG-2 - Plant Sciences, Institut für Bio- und Geowissenschaften (IBG), Forschungszentrum Jülich, Jülich, Germany
| | - Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Xie R, Zhao J, Lu L, Jernstedt J, Guo J, Brown PH, Tian S. Spatial imaging reveals the pathways of Zn transport and accumulation during reproductive growth stage in almond plants. PLANT, CELL & ENVIRONMENT 2021; 44:1858-1868. [PMID: 33665861 DOI: 10.1111/pce.14037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The reproductive processes of several deciduous trees are highly sensitive to Zn deficiency. An understanding of the patterns of Zn storage and remobilization during bud development and bud break is critical for the development of fertilization strategies to prevent deficiencies and may be valuable in selection and breeding programs to develop more Zn-resilient cultivars. In this study, we provide insights into the in situ distribution of Zn in almond reproductive organs at tissue, cellular, and subcellular scales using synchrotron-based X-ray fluorescence. The concentrations of Zn in different parts of the vegetative and reproductive tissues were also analysed. Our results show that the small branches subtending the flower and fruit, pollen grain, transmitting tissues of styles, and seed embryo are all important storage sites for Zn. An increase in Zn concentrations in almond reproductive organs mostly occur during the expanding growth phase, such as bud-flush and the mid-fruit enlargement stage; however, Zn transport to floral parts and fruit tissues was restricted at the pedicel and seed coat, suggesting a bottleneck in the export of Zn from the mother plant to filial tissues. Our results provide direct visual evidence for in-situ Zn distribution within the reproductive tissues of a deciduous tree species.
Collapse
Affiliation(s)
- Ruohan Xie
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Jianqi Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Jiansheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Patrick H Brown
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zeng H, Zhang X, Ding M, Zhang X, Zhu Y. Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. PHYSIOLOGIA PLANTARUM 2019; 167:330-351. [PMID: 30536844 DOI: 10.1111/ppl.12894] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) deficiency is a widespread agricultural problem in arable soils of the whole world. However, the molecular mechanisms underlying Zn-deficiency response are largely unknown. Here, we analyzed the transcriptomic profilings of soybean leaves and roots in response to Zn deficiency through Illumina's high-throughput RNA sequencing in order to understand the molecular basis of Zn-deficiency response in the plants. A total of 614 and 1011 gene loci were found to be differentially expressed in leaves and roots, respectively, and 88 loci were commonly found in both leaves and roots. Twelve differentially expressed genes (DEGs) were randomly selected for validation by quantitative reverse transcription polymerase chain reaction, and their fold changes were similar to those of RNA-seq. Gene ontology enrichment analysis showed that ion transport, nicotianamine (NA) biosynthetic process and queuosine biosynthetic process were enriched in the upregulated genes, while oxidation-reduction process and defense response were enriched in the downregulated genes. Among the DEGs, 20 DEGs are potentially involved in Zn homeostasis, including seven ZRT, IRT-related protein (ZIP) transporter genes, three NA synthase genes, and seven metallothionein genes; 40 DEGs are possibly involved in diverse hormonal signals such as auxin, cytokinin, ethylene and gibberellin; nine DEGs are putatively involved in calcium signaling; 85 DEGs are putative transcription factor genes. Nine DEGs were found to contain zinc-deficiency-response element in their promoter regions. These results could provide comprehensive insights into the soybean response to Zn deficiency and will be helpful for further elucidation of the molecular mechanisms of Zn-deficiency response and Zn-deficiency tolerance in plants.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ming Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiajun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Changes in the Profiles of Yield, Yield Component, Oil Content, and Citral Content in Litsea cubeba (Lour.) Persoon Following Foliar Fertilization with Zinc and Boron. FORESTS 2019. [DOI: 10.3390/f10010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mountain pepper (Litsea cubeba (Lour.) Persoon) is an important oil plant used as an ingredient in edible oil, cooking condiments, cosmetics, pesticides, and potential biofuels. Zinc and boron are essential micronutrients for plant growth. However, the effects of zinc and boron on the yield, yield component, oil content, and citral content in L. cubeba have not been determined. This study was conducted to evaluate the efficacy of the foliar application of zinc, boron, and multiple micronutrients (zinc + boron) on the yield, yield component, oil content, and citral content of three varieties (Fuyang 1 (FY1), Jianou 2 (JO2), and Jianou 3 (JO3)) of L. cubeba. Zinc sulfate (0.25%), boric acid (0.25%), and zinc sulfate (0.25%) + boric acid (0.25%) were sprayed on selected trees at five different times at full bloom and 28 days before harvest, once every seven days. The results indicated that Zn had a negative effect on the yield, yield component, oil content, and citral content of the FY1, JO2, and JO3 varieties compared to the untreated trees. B had positive effects on the yield, yield component, oil content, and citral content of the JO2 and JO3 varieties but not on those of the FY1 variety when compared to the untreated trees. The highest levels of yield, yield component, oil content, and citral content for all three varieties were obtained with the combined application of zinc sulfate + boric acid. Hence, the foliar application of multiple micronutrients (zinc + boron) is an effective method to improve the yield, oil content, and citral content in L. cubeba. In addition, the 100-fruit weight (HFW) was positively correlated with the yield, oil content, and citral content and could be used as a tool to select new cultivars with high yield, high oil content, and high citral content under zinc sulfate, boric acid, and zinc sulfate + boric acid applications in L. cubeba.
Collapse
|