1
|
Ma Y, Chang W, Li Y, Xu J, Song Y, Yao X, Wang L, Sun Y, Guo L, Zhang H, Liu X. Plant cuticles repress organ initiation and development during skotomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100850. [PMID: 38409782 PMCID: PMC11211553 DOI: 10.1016/j.xplc.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yongli Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xinmiao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
2
|
Zhang Y, Yang C, Liu S, Xie Z, Chang H, Wu T. Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. PLANT CELL REPORTS 2024; 43:99. [PMID: 38494540 DOI: 10.1007/s00299-024-03189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
KEY MESSAGE In this manuscript, authors reviewed and explore the information on beneficial role of phytohormones to mitigate adverse effects of heavy metals toxicity in plants. Global farming systems are seriously threatened by heavy metals (HMs) toxicity, which can result in decreased crop yields, impaired food safety, and negative environmental effects. A rise in curiosity has been shown recently in creating sustainable methods to reduce HMs toxicity in plants and improve agricultural productivity. To accomplish this, phytohormones, which play a crucial role in controlling plant development and adaptations to stress, have emerged as intriguing possibilities. With a particular focus on environmentally friendly farming methods, the current review provides an overview of phytohormone-mediated strategies for reducing HMs toxicity in plants. Several physiological and biochemical activities, including metal uptake, translocation, detoxification, and stress tolerance, are mediated by phytohormones, such as melatonin, auxin, gibberellin, cytokinin, ethylene, abscisic acid, salicylic acid, and jasmonates. The current review offers thorough explanations of the ways in which phytohormones respond to HMs to help plants detoxify and strengthen their resilience to metal stress. It is crucial to explore the potential uses of phytohormones as long-term solutions for reducing the harmful effects of HMs in plants. These include accelerating phytoextraction, decreasing metal redistribution to edible plant portions, increasing plant tolerance to HMs by hormonal manipulation, and boosting metal sequestration in roots. These methods seek to increase plant resistance to HMs stress while supporting environmentally friendly agricultural output. In conclusion, phytohormones present potential ways to reduce the toxicity of HMs in plants, thus promoting sustainable agriculture.
Collapse
Affiliation(s)
- Yumang Zhang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Chunyuan Yang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China.
| | - Shuxia Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhonglei Xie
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongyan Chang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Wu
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
| |
Collapse
|
3
|
Jhanji S, Goyal E, Chumber M, Kaur G. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108352. [PMID: 38266558 DOI: 10.1016/j.plaphy.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
In higher plants, seed is a propagule which ensures dissemination and survival of species. Developmental phases of a seed comprise embryogenesis, maturation and germination paving a way to its final fate i.e. seedling establishment. The final stage of seed maturation is marked by dehydration, acquisition of dessication tolerance and induction of dormancy. A precise Abscisic acid (ABA) to Gibberellins (GA) ratio, accumulation of miRNA 156, low level of reactive oxygen species (ROS) and enzyme inactivity govern seed dormancy. This also prevent pre harvest sprouting of the seeds. Overtime, stored seed mRNAs and proteins are degraded through oxidation of specific nucleotides in response to ROS accumulation. This degradation alleviates seed dormancy and transforms a dormant seed into a germinating seed. At this stage, ABA catabolism and degradation accompanied by GA synthesis contribute to low ABA to GA ratio. GA as well as ROS acts downstream, to mobilize reserve food materials, rupture testa, enhance imbibition and protrude radicle. All these events mark seed germination. Further, seedling is established under the governance of auxin and light. ABA and GA are master regulators while auxin, cytokinins, ethylene, jasmonic acid, brassinosteroids act through interdependent pathways to tightly regulate seed dormancy, germination and seedling establishment. In this review, the role of phytohormones and ROS in accordance with environmental factors in governing seed dormancy, promoting seed germination and thus, establishing a seedling is discussed in detail.
Collapse
Affiliation(s)
- Shalini Jhanji
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Eena Goyal
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Manisha Chumber
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurpreet Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
4
|
Pérez-León MI, González-Fuentes JA, Valdez-Aguilar LA, Benavides-Mendoza A, Alvarado-Camarillo D, Castillo-Chacón CE. Effect of Glutamic Acid and 6-benzylaminopurine on Flower Bud Biostimulation, Fruit Quality and Antioxidant Activity in Blueberry. PLANTS (BASEL, SWITZERLAND) 2023; 12:2363. [PMID: 37375988 DOI: 10.3390/plants12122363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Blueberry is a highly demanded and consumed fruit due to its beneficial effects on human health, because of its bioactive compounds with a high antioxidant capacity. The interest in increasing the yield and quality of blueberries has led to the application of some innovative techniques such as biostimulation. The objective of this research was to assess the effect of the exogenous application of glutamic acid (GLU) and 6-benzylaminopurine (6-BAP) as biostimulants on flower bud sprouting, fruit quality, and antioxidant compounds in blueberry cv. Biloxi. The application of GLU and 6-BAP positively affected bud sprouting, fruit quality, and antioxidant content. The application of 500 and 10 mg L-1 GLU and 6-BAP, respectively, increased the number of flower buds, while 500 and 20 mg L-1 generated fruits with higher content of flavonoids, vitamin C, and anthocyanins and higher enzymatic activity of catalase and ascorbate peroxidase enzymes. Hence, the application of these biostimulants is an effective way to enhance the yield and fruit quality of blueberries.
Collapse
Affiliation(s)
- María Itzel Pérez-León
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico
| | | | - Luis Alonso Valdez-Aguilar
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico
| | | | - Daniela Alvarado-Camarillo
- Departamento de Ciencias del Suelo, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico
| | | |
Collapse
|
5
|
Zhang N, Xu K, Liu S, Yan R, Liu Z, Wu Y, Peng Y, Zhang X, Yukawa Y, Wu J. RNA Polymerase III-Dependent BoNR8 and AtR8 lncRNAs Contribute to Hypocotyl Elongation in Response to Light and Abscisic Acid. PLANT & CELL PHYSIOLOGY 2023; 64:646-659. [PMID: 36961744 DOI: 10.1093/pcp/pcad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/24/2023] [Indexed: 06/16/2023]
Abstract
Hypocotyl elongation is inhibited by light and promoted by darkness. The plant hormone abscisic acid (ABA) also inhibits hypocotyl elongation. However, details of the molecular mechanism that regulates the integrated effects of light and ABA signaling on hypocotyl elongation remain unclear. Long non-coding RNAs (lncRNAs; >200 nt) do not encode proteins but play many physiological roles in organisms. Until now, only a few lncRNAs related to hypocotyl elongation have been reported. The lncRNAs BoNR8 (272 nt) and AtR8 (259 nt), both of which are transcribed by RNA polymerase III, are homologous lncRNAs that are abundantly present in cabbage and Arabidopsis, respectively. These lncRNAs shared 77% sequence identity, and their predicted RNA secondary structures were similar; the non-conserved nucleotides in both sequences were positioned mainly in the stem-loop regions of the secondary structures. A previous study showed that BoNR8 regulated seed germination along with ABA and that AtR8 may be involved in innate immune function in Arabidopsis. Our results show that the expression levels of BoNR8 and AtR8 were differentially affected by light and ABA and that overexpression (OX) of both BoNR8 and AtR8 in Arabidopsis regulated hypocotyl elongation depending on light and ABA.. The expression levels of light-related genes PHYB, COP1, HY5 and PIF4 and ABA-related genes ABI3 and ABI5 were altered in the AtR8-OX and BoNR8-OX lines, and, in an ABI3-defective mutant, hypocotyl elongation was greatly increased under dark condition with the addition of ABA. These results indicate that BoNR8 and AtR8 regulate hypocotyl elongation together with ABI3 and key downstream light signaling genes.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Kai Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shengyi Liu
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466- 850 Japan
| | - Rong Yan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin 150040, China
| | - Ying Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yifang Peng
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Xiaoxu Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yasushi Yukawa
- Graduate School of Science, Nagoya City University, Nagoya, 467-8501 Japan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Juan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Faizan M, Cheng SH, Tonny SH, Robab MI. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:186-195. [PMID: 36244191 DOI: 10.1016/j.plaphy.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones (SLs) have been implicated in various developmental processes of the plant, including the response against several abiotic stresses. It is well known as a class of endogenous phytohormones that regulates shoot branching, secondary growth and root morphology. This hormone facilitates plants in responding to nitrogen and phosphorus starvation by shaping the above and below ground structural design. SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Heavy metals (HMs) in soil are considered a serious environmental problem that causes various harmful effects on plants. SLs along with other plant hormones imply the role in plant architecture is far from being fully understood. Strategy to remove/remediation of HMs from the soil with the help of SLs has not been defined yet. Therefore, the present review aims to comprehensively provide an overview of SLs role in fine-tuning plant architectures, relation with other plant hormones under abiotic stress, and remediation of HMs contaminated soil using SLs.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India.
| | - Shi Hui Cheng
- School of Biosciences, University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agriculture University, Mymensingh, 2202, Bangladesh
| | - Merajul Islam Robab
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| |
Collapse
|
7
|
Stoynova-Bakalova E, Bakalov DV, Baskin TI. Ethylene represses the promoting influence of cytokinin on cell division and expansion of cotyledons in etiolated Arabidopsis thaliana seedlings. PeerJ 2022; 10:e14315. [PMID: 36340204 PMCID: PMC9632460 DOI: 10.7717/peerj.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/07/2022] [Indexed: 01/22/2023] Open
Abstract
The plant hormones ethylene and cytokinin influence many processes; sometimes they act cooperatively, other times antagonistically. To study their antagonistic interaction, we used the cotyledons of etiolated, intact seedlings of Arabidopsis thaliana. We focused on cell division and expansion, because both processes are quantified readily in paradermal sections. Here, we show that exogenous cytokinins modestly stimulate cell division and expansion in the cotyledon, with a phenyl-urea class compound exerting a larger effect than benzyl-adenine. Similarly, both processes were stimulated modestly when ethylene response was inhibited, either chemically with silver nitrate or genetically with the eti5 ethylene-insensitive mutant. However, combining cytokinin treatment with ethylene insensitivity was synergistic, strongly stimulating both cell division and expansion. Evidently, ethylene represses the growth promoting influence of cytokinin, whether endogenous or applied. We suggest that the intact etiolated cotyledon offers a useful system to characterize how ethylene antagonizes cytokinin responsiveness.
Collapse
Affiliation(s)
| | - Dimitar V. Bakalov
- Department of Pathophysiology, Medical University of Sofia, Sofia, Bulgaria
| | - Tobias I. Baskin
- Biology Department, University of Massachusetts at Amherst, Amherst, MA, United States of America
| |
Collapse
|
8
|
Cortleven A, Roeber VM, Frank M, Bertels J, Lortzing V, Beemster GTS, Schmülling T. Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:838284. [PMID: 35646013 PMCID: PMC9134115 DOI: 10.3389/fpls.2022.838284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Plants are exposed to regular diurnal rhythms of light and dark. Changes in the photoperiod by the prolongation of the light period cause photoperiod stress in short day-adapted Arabidopsis thaliana. Here, we report on the transcriptional response to photoperiod stress of wild-type A. thaliana and photoperiod stress-sensitive cytokinin signaling and clock mutants and identify a core set of photoperiod stress-responsive genes. Photoperiod stress caused altered expression of numerous reactive oxygen species (ROS)-related genes. Photoperiod stress-sensitive mutants displayed similar, but stronger transcriptomic changes than wild-type plants. The alterations showed a strong overlap with those occurring in response to ozone stress, pathogen attack and flagellin peptide (flg22)-induced PAMP triggered immunity (PTI), which have in common the induction of an apoplastic oxidative burst. Interestingly, photoperiod stress triggers transcriptional changes in jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling and results in increased JA, SA and camalexin levels. These responses are typically observed after pathogen infections. Consequently, photoperiod stress increased the resistance of Arabidopsis plants to a subsequent infection by Pseudomonas syringae pv. tomato DC3000. In summary, we show that photoperiod stress causes transcriptional reprogramming resembling plant pathogen defense responses and induces systemic acquired resistance (SAR) in the absence of a pathogen.
Collapse
Affiliation(s)
- Anne Cortleven
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Venja M. Roeber
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Manuel Frank
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Vivien Lortzing
- Institute of Biology/Applied Zoology—Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:625-645. [PMID: 35108444 PMCID: PMC8989509 DOI: 10.1111/pbi.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 05/19/2023]
Abstract
LONELY GUY (LOG) was first identified in a screen of rice mutants with defects in meristem maintenance. In plants, LOG codes for cytokinin riboside 5'-monophosphate phosphoribohydrolase, which converts inactive cytokinin nucleotides directly to the active free bases. Many enzymes with the PGGxGTxxE motif have been misannotated as lysine decarboxylases; conversely not all enzymes containing this motif are cytokinin-specific LOGs. As LOG mutants clearly impact yield in rice, we investigated the LOG gene family in bread wheat. By interrogating the wheat (Triticum aestivum) genome database, we show that wheat has multiple LOGs. The close alignment of TaLOG1, TaLOG2 and TaLOG6 with the X-ray structures of two functional Arabidopsis thaliana LOGs allows us to infer that the wheat LOGs 1-11 are functional LOGs. Using RNA-seq data sets, we assessed TaLOG expression across 70 tissue types, their responses to various stressors, the pattern of cis-regulatory elements (CREs) and intron/exon patterns. TaLOG gene family members are expressed variously across tissue types. When the TaLOG CREs are compared with those of the cytokinin dehydrogenases (CKX) and glucosyltransferases (CGT), there is close alignment of CREs between TaLOGs and TaCKXs reflecting the key role of CKX in maintaining cytokinin homeostasis. However, we suggest that the main homeostatic mechanism controlling cytokinin levels in response to biotic and abiotic challenge resides in the CGTs, rather than LOG or CKX. However, LOG transgenics and identified mutants in rice variously impact yield, providing interesting avenues for investigation in wheat.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Yichu Guo
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiancheng Song
- School of Life SciencesYantai UniversityYantaiChina
- Yantai Jien Biological Science & Technology LtdYEDAYantaiChina
| | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
10
|
Saini S, Kaur N, Pati PK. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112578. [PMID: 34352573 DOI: 10.1016/j.ecoenv.2021.112578] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) stress in plants has received considerable global attention as it threatens sustainable growth in agriculture worldwide. Hence, desperate efforts have been undertaken for combating the effects of this stress in plants. Interestingly, the use of phytohormones in reducing the impact of HM toxicity has gained much momentum in the recent past. Phytohormones act as chemical messengers that improve the HM stress resistance in plants, thus allowing them to retain their growth and developmental plasticity. Their exogenous application as well as manipulation of endogenous levels through precise targeting of their biosynthesis/signaling components is a promising approach for providing a protective shield against HM stress in plants. However, for the successful use of phytohormones for field plants exposed to HM toxicity, in-depth knowledge of the key pathways regulated by them is of prime importance. Hence, the present review mainly summarizes the key conceptual developments on the involvement of phytohormones in the mitigation of HM stress in plants. The role of various genes, proteins, and signaling components involved in phytohormones associated HM stress tolerance and their modulation has also been discussed. Thus, this update will pave the way for improving HM stress tolerance in plants with the advent of phytohormones for sustainable agriculture growth in the future.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Botany, GGDSD College, Sector-32C, Chandigarh, India.
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
11
|
Li SM, Zheng HX, Zhang XS, Sui N. Cytokinins as central regulators during plant growth and stress response. PLANT CELL REPORTS 2021; 40:271-282. [PMID: 33025178 DOI: 10.1007/s00299-020-02612-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Cytokinins are a class of phytohormone that participate in the regulation of the plant growth, development, and stress response. In this review, the potential regulating mechanism during plant growth and stress response are discussed. Cytokinins are a class of phytohormone that participate in the regulation of plant growth, physiological activities, and yield. Cytokinins also play a key role in response to abiotic stresses, such as drought, salt and high or low temperature. Through the signal transduction pathway, cytokinins interact with various transcription factors via a series of phosphorylation cascades to regulate cytokinin-target gene expression. In this review, we systematically summarize the biosynthesis and metabolism of cytokinins, cytokinin signaling, and associated gene regulation, and highlight the function of cytokinins during plant development and resistance to abiotic stress. We also focus on the importance of crosstalk between cytokinins and other classes of phytohormones, including auxin, ethylene, strigolactone, and gibberellin. Our aim is to provide a comprehensive overview of recent findings on the mechanisms by which cytokinins act as central regulators of plant development and stress reactions, and highlight topics for future research.
Collapse
Affiliation(s)
- Si-Min Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|