1
|
Cao Z, Li Z, Meng L, Cao D, Zhao K, Hu S, Li Y, Zhao K, Ma Q, Li Y, Fan Y, Ma X, Gong F, Li Z, Qiu D, Zhang L, Zhang X, Ren R, Yin D. Genome-wide characterization of pyrabactin resistance 1-like (PYL) family genes revealed AhPYL6 confer the resistance to Ralstonia solanacearum in peanut. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109295. [PMID: 39556922 DOI: 10.1016/j.plaphy.2024.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Bacterial wilt (BW) caused by Ralstonia solanacearum severely impacts the yield and quality of peanut (Arachis hypogaea L.), a globally cultivated industrial crop. Despite the abscisic acid (ABA) signaling pathway have been identified as key factors in peanut resistance to BW, the molecular mechanism remains unclear. Through systematic identification, it was discovered that the peanut genome contains 18 ABA receptor pyrabactin resistance 1-like (PYL) family genes, which show conservation with other plant species. Among these PYL genes in peanut (referred to as AhPYL), AhPYL6 and AhPYL16 showed significant up-regulation in response to salicylic acid, jasmonic acid, ABA treatments, and R. solanacearum infection. Subsequently, the full-length AhPYL6 was cloned and functionally characterized. The fusion protein AhPYL6-YFP was predominantly expressed in the cytoplasm and nucleus of tobacco leaves, and overexpression of AhPYL6 notably enhanced resistance against R. solanacearum. Expression analysis revealed that the expression levels defense -related genes including NbNPR1, NbPR2, NbPR3, NbHRS203, NbEFE26, and NbNDR1 were significantly up-regulated by the overexpression of AhPYL6, which suggested that AhPYL6 confers the resistance to R. solanacearum through promoting expression of defense -related genes. These findings highlight the potential roles of PYL ABA receptors in the plant defense response to bacterial pathogens.
Collapse
Affiliation(s)
- Zenghui Cao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhan Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lin Meng
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Di Cao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Kai Zhao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Sasa Hu
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yanzhe Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Kunkun Zhao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Qian Ma
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yaoyao Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yi Fan
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xingli Ma
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Fangping Gong
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhongfeng Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ding Qiu
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lin Zhang
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xingguo Zhang
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Rui Ren
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Dongmei Yin
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
2
|
Zhang C, Li Z, Sun T, Zang S, Wang D, Su Y, Wu Q, Que Y. Sugarcane ScCAX4 is a Negative Regulator of Resistance to Pathogen Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13205-13216. [PMID: 38809782 DOI: 10.1021/acs.jafc.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.
Collapse
Affiliation(s)
- Chang Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenxiang Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Zou W, Sun T, Chen Y, Wang D, You C, Zang S, Lin P, Wu Q, Su Y, Que Y. Sugarcane ScOPR1 gene enhances plant disease resistance through the modulation of hormonal signaling pathways. PLANT CELL REPORTS 2024; 43:158. [PMID: 38822833 DOI: 10.1007/s00299-024-03241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
KEY MESSAGE Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.
Collapse
Affiliation(s)
- Wenhui Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
4
|
Zhao K, Li Z, Ke Y, Ren R, Cao Z, Li Z, Wang K, Wang X, Wang J, Ma Q, Cao D, Zhao K, Li Y, Hu S, Qiu D, Gong F, Ma X, Zhang X, Fan G, Liang Z, Yin D. Dynamic N 6 -methyladenosine RNA modification regulates peanut resistance to bacterial wilt. THE NEW PHYTOLOGIST 2024; 242:231-246. [PMID: 38326943 DOI: 10.1111/nph.19568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
N6 -methyladenosine (m6 A) is the most abundant mRNA modification in eukaryotes and is an important regulator of gene expression as well as many other critical biological processes. However, the characteristics and functions of m6 A in peanut (Arachis hypogea L.) resistance to bacterial wilt (BW) remain unknown. Here, we analyzed the dynamic of m6 A during infection of resistant (H108) and susceptible (H107) peanut accessions with Ralstonia solanacearum (R. solanacearum), the causative agent of BW. Throughout the transcriptome, we identified 'URUAY' as a highly conserved motif for m6 A in peanut. The majority of differential m6 A located within the 3' untranslated region (UTR) of the transcript, with fewer in the exons. Integrative analysis of RNA-Seq and m6 A methylomes suggests the correlation between m6 A and gene expression in peanut R. solanacearum infection, and functional analysis reveals that m6 A-associated genes were related to plant-pathogen interaction. Our experimental analysis suggests that AhALKBH15 is an m6 A demethylase in peanut, leading to decreased m6 A levels and upregulation of the resistance gene AhCQ2G6Y. The upregulation of AhCQ2G6Y expression appears to promote BW resistance in the H108 accession.
Collapse
Affiliation(s)
- Kai Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongfeng Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yunzhuo Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Ren
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zenghui Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhan Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kuopeng Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoxuan Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinzhi Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qian Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Di Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kunkun Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yaoyao Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sasa Hu
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ding Qiu
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fangping Gong
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xingli Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xingguo Zhang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongmei Yin
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Wang X, Qi F, Sun Z, Liu H, Wu Y, Wu X, Xu J, Liu H, Qin L, Wang Z, Sang S, Dong W, Huang B, Zheng Z, Zhang X. Transcriptome sequencing and expression analysis in peanut reveal the potential mechanism response to Ralstonia solanacearum infection. BMC PLANT BIOLOGY 2024; 24:207. [PMID: 38515036 PMCID: PMC10956345 DOI: 10.1186/s12870-024-04877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.
Collapse
Affiliation(s)
- Xiao Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Feiyan Qi
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hongfei Liu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Yue Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Xiaohui Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jing Xu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hua Liu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Li Qin
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zhenyu Wang
- Henan Academy of Agricultural Sciences, Institute of Plant Protection, Zhengzhou, 450002, China
| | - Suling Sang
- Henan Academy of Agricultural Sciences, Institute of Plant Protection, Zhengzhou, 450002, China
| | - Wenzhao Dong
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zheng Zheng
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China.
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Yang D, Chen T, Wu Y, Tang H, Yu J, Dai X, Zheng Y, Wan X, Yang Y, Tan X. Genome-wide analysis of the peanut CaM/CML gene family reveals that the AhCML69 gene is associated with resistance to Ralstonia solanacearum. BMC Genomics 2024; 25:200. [PMID: 38378471 PMCID: PMC10880322 DOI: 10.1186/s12864-024-10108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Calmodulins (CaMs)/CaM-like proteins (CMLs) are crucial Ca2+-binding sensors that can decode and transduce Ca2+ signals during plant development and in response to various stimuli. The CaM/CML gene family has been characterized in many plant species, but this family has not yet been characterized and analyzed in peanut, especially for its functions in response to Ralstonia solanacearum. In this study, we performed a genome-wide analysis to analyze the CaM/CML genes and their functions in resistance to R. solanacearum. RESULTS Here, 67, 72, and 214 CaM/CML genes were identified from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively. The genes were divided into nine subgroups (Groups I-IX) with relatively conserved exon‒intron structures and motif compositions. Gene duplication, which included whole-genome duplication, tandem repeats, scattered repeats, and unconnected repeats, produced approximately 81 pairs of homologous genes in the AhCaM/CML gene family. Allopolyploidization was the main reason for the greater number of AhCaM/CML members. The nonsynonymous (Ka) versus synonymous (Ks) substitution rates (less than 1.0) suggested that all homologous pairs underwent intensive purifying selection pressure during evolution. AhCML69 was constitutively expressed in different tissues of peanut plants and was involved in the response to R. solanacearum infection. The AhCML69 protein was localized in the cytoplasm and nucleus. Transient overexpression of AhCML69 in tobacco leaves increased resistance to R. solanacearum infection and induced the expression of defense-related genes, suggesting that AhCML69 is a positive regulator of disease resistance. CONCLUSIONS This study provides the first comprehensive analysis of the AhCaM/CML gene family and potential genetic resources for the molecular design and breeding of peanut bacterial wilt resistance.
Collapse
Affiliation(s)
- Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Huiquan Tang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Junyi Yu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| |
Collapse
|
7
|
Sicilia A, Russo R, Catara V, Lo Piero AR. Hub Genes and Pathways Related to Lemon ( Citrus limon) Leaf Response to Plenodomus tracheiphilus Infection and Influenced by Pseudomonas mediterranea Biocontrol Activity. Int J Mol Sci 2024; 25:2391. [PMID: 38397068 PMCID: PMC10889467 DOI: 10.3390/ijms25042391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The lemon industry in the Mediterranean basin is strongly threatened by "mal secco" disease (MSD) caused by the fungus Plenodomus tracheiphlilus. Leaf pretreatments with Pseudomonas mediterranea 3C have been proposed as innovative tools for eco-sustainable interventions aimed at controlling the disease. In this study, by exploiting the results of previously performed RNAseq analysis, WCGNA was conducted among gene expression patterns in both inoculated (Pt) and pretreated and fungus-inoculated lemon plants (Citrus limon L.) (3CPt), and two indicators of fungal infection, i.e., the amount of fungus DNA measured in planta and the disease index (DI). The aims of this work were (a) to identify gene modules significantly associated with those traits, (b) to construct co-expression networks related to mal secco disease; (c) to define the effect and action mechanisms of P. mediterranea by comparing the networks. The results led to the identification of nine hub genes in the networks, with three of them belonging to receptor-like kinases (RLK), such as HERK1, CLAVATA1 and LRR, which play crucial roles in plant-pathogen interaction. Moreover, the comparison between networks indicated that the expression of those receptors is not induced in the presence of P. mediterranea, suggesting how powerful WCGNA is in discovering crucial genes that must undergo further investigation and be eventually knocked out.
Collapse
Affiliation(s)
| | | | | | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.S.); (R.R.); (V.C.)
| |
Collapse
|
8
|
Li Z, Cao Z, Ma X, Cao D, Zhao K, Zhao K, Ma Q, Gong F, Li Z, Qiu D, Zhang X, Liu H, Ren R, Yin D. Natural resistance-associated macrophage proteins are involved in tolerance to heavy metal Cd 2+ toxicity and resistance to bacterial wilt of peanut (Arachis hypogaea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108411. [PMID: 38309181 DOI: 10.1016/j.plaphy.2024.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil and industrial crops. However, heavy-metal pollution and frequent soil diseases, poses a significant threat to the production of green and healthy peanuts. Herein, we investigated the effects of heavy metal Cd2+ toxicity to the peanuts, and screened out two peanut cultivars H108 and YZ 9102 with higher Cd2+-tolerance. RNA-seq revealed that Natural resistance-associated macrophage proteins (NRAMP)-like genes were involved in the Cd2+ stress tolerance in H108. Genome-wide identification revealed that 28, 13 and 9 Nramp-like genes existing in the A. hypogaea, A. duranensis and A. ipaensis, respectively. The 50 peanut NRAMP genes share conserved architectural characters, and they were classified into two groups. Expressions of AhNramps, particularly AhNramp4, AhNramp12, AhNramp19, and AhNramp25 could be greatly induced by not only cadmium toxicity, but also copper and zinc stresses. The expression profiles of AhNramp14, AhNramp16 and AhNramp25 showed significant differences in the H108 (resistance) and H107 (susceptible) under the infection of bacterial wilt. In addition, we found that the expression profiles of AhNramp14, AhNramp16, and AhNramp25 were greatly up- or down-regulated by the application of exogenous salicylic acid, methyl jasmonate, and abscisic acid. The AhNramp25, of which expression was affected by both heavy metal toxicity and bacterial wilt infection, were selected as strong candidate genes for peanut stress breeding. Our findings will provide an additional information required for further analysis of AhNramps involved in tolerance to heavy metal toxicity and resistance to bacterial wilt of peanut.
Collapse
Affiliation(s)
- Zhan Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zenghui Cao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xingli Ma
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Di Cao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Kunkun Zhao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Kai Zhao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Qian Ma
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Fangping Gong
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zhongfeng Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Ding Qiu
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xingguo Zhang
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Rui Ren
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Dongmei Yin
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
9
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
10
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Liu Q, Zhang C, Fang H, Yi L, Li M. Indispensable Biomolecules for Plant Defense Against Pathogens: NBS-LRR and "nitrogen pool" Alkaloids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111752. [PMID: 37268110 DOI: 10.1016/j.plantsci.2023.111752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
In a complex natural environment, plants have evolved intricate and subtle defense response regulatory mechanisms for survival. Plant specific defenses, including the disease resistance protein nucleotide-binding site leucine-rich repeat (NBS-LRR) protein and metabolite derived alkaloids, are key components of these complex mechanisms. The NBS-LRR protein can specifically recognize the invasion of pathogenic microorganisms to trigger the immune response mechanism. Alkaloids, synthesized from amino acids or their derivatives, can also inhibit pathogens. This study reviews NBS-LRR protein activation, recognition, and downstream signal transduction in plant protection, as well as the synthetic signaling pathways and regulatory defense mechanisms associated with alkaloids. In addition, we clarify the basic regulation mechanism and summarize their current applications and the development of future applications in biotechnology for these plant defense molecules. Studies on the NBS-LRR protein and alkaloid plant disease resistance molecules may provide a theoretical foundation for the cultivation of disease resistant crops and the development of botanical pesticides.
Collapse
Affiliation(s)
- Qian Liu
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Chunhong Zhang
- Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Huiyong Fang
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, China.
| | - Minhui Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China; Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China.
| |
Collapse
|
12
|
Huang R, Li H, Gao C, Yu W, Zhang S. Advances in omics research on peanut response to biotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1101994. [PMID: 37284721 PMCID: PMC10239885 DOI: 10.3389/fpls.2023.1101994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
Peanut growth, development, and eventual production are constrained by biotic and abiotic stresses resulting in serious economic losses. To understand the response and tolerance mechanism of peanut to biotic and abiotic stresses, high-throughput Omics approaches have been applied in peanut research. Integrated Omics approaches are essential for elucidating the temporal and spatial changes that occur in peanut facing different stresses. The integration of functional genomics with other Omics highlights the relationships between peanut genomes and phenotypes under specific stress conditions. In this review, we focus on research on peanut biotic stresses. Here we review the primary types of biotic stresses that threaten sustainable peanut production, the multi-Omics technologies for peanut research and breeding, and the recent advances in various peanut Omics under biotic stresses, including genomics, transcriptomics, proteomics, metabolomics, miRNAomics, epigenomics and phenomics, for identification of biotic stress-related genes, proteins, metabolites and their networks as well as the development of potential traits. We also discuss the challenges, opportunities, and future directions for peanut Omics under biotic stresses, aiming sustainable food production. The Omics knowledge is instrumental for improving peanut tolerance to cope with various biotic stresses and for meeting the food demands of the exponentially growing global population.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongqing Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Caiji Gao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Liaoning Peanut Research Institute, Liaoning Academy of Agricultural Sciences, Fuxing, China
- China Good Crop Company (Shenzhen) Limited, Shenzhen, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Wankhade AP, Chimote VP, Viswanatha KP, Yadaru S, Deshmukh DB, Gattu S, Sudini HK, Deshmukh MP, Shinde VS, Vemula AK, Pasupuleti J. Genome-wide association mapping for LLS resistance in a MAGIC population of groundnut (Arachis hypogaea L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:43. [PMID: 36897383 DOI: 10.1007/s00122-023-04256-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The identified 30 functional nucleotide polymorphisms or genic SNP markers would offer essential information for marker-assisted breeding in groundnut. A genome-wide association study (GWAS) on component traits of LLS resistance in an eight-way multiparent advance generation intercross (MAGIC) population of groundnut in the field and in a light chamber (controlled conditions) was performed via an Affymetrix 48 K single-nucleotide polymorphism (SNP) 'Axiom Arachis' array. Multiparental populations with high-density genotyping enable the detection of novel alleles. In total, five quantitative trait loci (QTLs) with marker - log10(p value) scores ranging from 4.25 to 13.77 for the incubation period (IP) and six QTLs with marker - log10(p value) scores ranging from 4.33 to 10.79 for the latent period (LP) were identified across the A- and B-subgenomes. A total of 62 markers‒trait associations (MTAs) were identified across the A- and B-subgenomes. Markers for LLS scores and the area under the disease progression curve (AUDPC) recorded for plants in the light chamber and under field conditions presented - log10 (p value) scores ranging from 4.22 to 27.30. The highest number of MTAs (six) was identified on chromosomes A05, B07 and B09. Out of a total of 73 MTAs, 37 and 36 MTAs were detected in subgenomes A and B, respectively. Taken together, these results suggest that both subgenomes have equal potential genomic regions contributing to LLS resistance. A total of 30 functional nucleotide polymorphisms or genic SNP markers were detected, among which eight genes were found to encode leucine-rich repeat (LRR) receptor-like protein kinases and putative disease resistance proteins. These important SNPs can be used in breeding programmes for the development of cultivars with improved disease resistance.
Collapse
Affiliation(s)
- Ankush Purushottam Wankhade
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
- Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri, Maharashtra, 413 722, India
| | | | | | - Shasidhar Yadaru
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Dnyaneshwar Bandu Deshmukh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Swathi Gattu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | | | | | - Anil Kumar Vemula
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Janila Pasupuleti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India.
| |
Collapse
|
14
|
Zhang C, Xie W, Fu H, Chen Y, Chen H, Cai T, Yang Q, Zhuang Y, Zhong X, Chen K, Gao M, Liu F, Wan Y, Pandey MK, Varshney RK, Zhuang W. Whole genome resequencing identifies candidate genes and allelic diagnostic markers for resistance to Ralstonia solanacearum infection in cultivated peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1048168. [PMID: 36684803 PMCID: PMC9845939 DOI: 10.3389/fpls.2022.1048168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bacterial wilt disease (BWD), caused by Ralstonia solanacearum is a major challenge for peanut production in China and significantly affects global peanut field productivity. It is imperative to identify genetic loci and putative genes controlling resistance to R. solanacearum (RRS). Therefore, a sequencing-based trait mapping approach termed "QTL-seq" was applied to a recombination inbred line population of 581 individuals from the cross of Yueyou 92 (resistant) and Xinhuixiaoli (susceptible). A total of 381,642 homozygous single nucleotide polymorphisms (SNPs) and 98,918 InDels were identified through whole genome resequencing of resistant and susceptible parents for RRS. Using QTL-seq analysis, a candidate genomic region comprising of 7.2 Mb (1.8-9.0 Mb) was identified on chromosome 12 which was found to be significantly associated with RRS based on combined Euclidean Distance (ED) and SNP-index methods. This candidate genomic region had 180 nonsynonymous SNPs and 14 InDels that affected 75 and 11 putative candidate genes, respectively. Finally, eight nucleotide binding site leucine rich repeat (NBS-LRR) putative resistant genes were identified as the important candidate genes with high confidence. Two diagnostic SNP markers were validated and revealed high phenotypic variation in the different resistant and susceptible RIL lines. These findings advocate the expediency of the QTL-seq approach for precise and rapid identification of candidate genomic regions, and the development of diagnostic markers that are applicable in breeding disease-resistant peanut varieties.
Collapse
Affiliation(s)
- Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wenping Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiwen Fu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuting Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhui Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Zhong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kun Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijia Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Yu H, Sun E, Mao X, Chen Z, Xu T, Zuo L, Jiang D, Cao Y, Zuo C. Evolutionary and functional analysis reveals the crucial roles of receptor-like proteins in resistance to Valsa canker in Rosaceae. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:162-177. [PMID: 36255986 DOI: 10.1093/jxb/erac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Rosaceae is an economically important plant family that can be affected by a multitude of pathogenic microbes, some of which can cause dramatic losses in production. As a type of pattern-recognition receptor, receptor-like proteins (RLPs) are considered vital regulators of plant immunity. Based on genome-wide identification, bioinformatic analysis, and functional determination, we investigated the evolutionary characteristics of RLPs, and specifically those that regulate Valsa canker, a devastating fungal disease affecting apple and pear production. A total of 3028 RLPs from the genomes of 19 species, including nine Rosaceae, were divided into 24 subfamilies. Five subfamilies and seven co-expression modules were found to be involved in the responses to Valsa canker signals of the resistant pear rootstock Pyrus betulifolia 'Duli-G03'. Fourteen RLPs were subsequently screened as candidate genes for regulation of resistance. Among these, PbeRP23 (Chr13.g24394) and PbeRP27 (Chr16.g31400) were identified as key resistance genes that rapidly enhance the resistance of 'Duli-G03' and strongly initiate immune responses, and hence they have potential for further functional exploration and breeding applications for resistance to Valsa canker. In addition, as a consequence of this work we have established optimal methods for the classification and screening of disease-resistant RLPs.
Collapse
Affiliation(s)
- Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, Guangzhou, 510640, China
| | - Tong Xu
- Chengdu Life Baseline Technology Co, Ltd, Chengdu, 610041, China
| | - Longgang Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Daji Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanan Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
16
|
Guimaraes PM, Quintana AC, Mota APZ, Berbert PS, Ferreira DDS, de Aguiar MN, Pereira BM, de Araújo ACG, Brasileiro ACM. Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:3483. [PMID: 36559595 PMCID: PMC9786959 DOI: 10.3390/plants11243483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The association of both cell-surface PRRs (Pattern Recognition Receptors) and intracellular receptor NLRs (Nucleotide-Binding Leucine-Rich Repeat) in engineered plants have the potential to activate strong defenses against a broad range of pathogens. Here, we describe the identification, characterization, and in planta functional analysis of a novel truncated NLR (TNx) gene from the wild species Arachis stenosperma (AsTIR19), with a protein structure lacking the C-terminal LRR (Leucine Rich Repeat) domain involved in pathogen perception. Overexpression of AsTIR19 in tobacco plants led to a significant reduction in infection caused by Sclerotinia sclerotiorum, with a further reduction in pyramid lines containing an expansin-like B gene (AdEXLB8) potentially involved in defense priming. Transcription analysis of tobacco transgenic lines revealed induction of hormone defense pathways (SA; JA-ET) and PRs (Pathogenesis-Related proteins) production. The strong upregulation of the respiratory burst oxidase homolog D (RbohD) gene in the pyramid lines suggests its central role in mediating immune responses in plants co-expressing the two transgenes, with reactive oxygen species (ROS) production enhanced by AdEXLB8 cues leading to stronger defense response. Here, we demonstrate that the association of potential priming elicitors and truncated NLRs can produce a synergistic effect on fungal resistance, constituting a promising strategy for improved, non-specific resistance to plant pathogens.
Collapse
Affiliation(s)
- Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| | | | - Ana Paula Zotta Mota
- INRAE, Institut Sophia Agrobiotech, CNRS, Université Côte d’Azur, 06903 Sophia Antipolis, France
| | | | | | | | | | | | - Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| |
Collapse
|
17
|
Genome-Wide Identification of Auxin-Responsive GH3 Gene Family in Saccharum and the Expression of ScGH3-1 in Stress Response. Int J Mol Sci 2022; 23:ijms232112750. [PMID: 36361540 PMCID: PMC9654502 DOI: 10.3390/ijms232112750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Gretchen Hagen3 (GH3), one of the three major auxin-responsive gene families, is involved in hormone homeostasis in vivo by amino acid splicing with the free forms of salicylic acid (SA), jasmonic acid (JA) or indole-3-acetic acid (IAA). Until now, the functions of sugarcane GH3 (SsGH3) family genes in response to biotic stresses have been largely unknown. In this study, we performed a systematic identification of the SsGH3 gene family at the genome level and identified 41 members on 19 chromosomes in the wild sugarcane species, Saccharum spontaneum. Many of these genes were segmentally duplicated and polyploidization was the main contributor to the increased number of SsGH3 members. SsGH3 proteins can be divided into three major categories (SsGH3-I, SsGH3-II, and SsGH3-III) and most SsGH3 genes have relatively conserved exon-intron arrangements and motif compositions. Diverse cis-elements in the promoters of SsGH3 genes were predicted to be essential players in regulating SsGH3 expression patterns. Multiple transcriptome datasets demonstrated that many SsGH3 genes were responsive to biotic and abiotic stresses and possibly had important functions in the stress response. RNA sequencing and RT-qPCR analysis revealed that SsGH3 genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, the SsGH3 homolog ScGH3-1 gene (GenBank accession number: OP429459) was cloned from the sugarcane cultivar (Saccharum hybrid) ROC22 and verified to encode a nuclear- and membrane-localization protein. ScGH3-1 was constitutively expressed in all tissues of sugarcane and the highest amount was observed in the stem pith. Interestingly, it was down-regulated after smut pathogen infection but up-regulated after MeJA and SA treatments. Furthermore, transiently overexpressed Nicotiana benthamiana, transduced with the ScGH3-1 gene, showed negative regulation in response to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum. Finally, a potential model for ScGH3-1-mediated regulation of resistance to pathogen infection in transgenic N. benthamiana plants was proposed. This study lays the foundation for a comprehensive understanding of the sequence characteristics, structural properties, evolutionary relationships, and expression of the GH3 gene family and thus provides a potential genetic resource for sugarcane disease-resistance breeding.
Collapse
|
18
|
Yang Y, Chen T, Dai X, Yang D, Wu Y, Chen H, Zheng Y, Zhi Q, Wan X, Tan X. Comparative transcriptome analysis revealed molecular mechanisms of peanut leaves responding to Ralstonia solanacearum and its type III secretion system mutant. Front Microbiol 2022; 13:998817. [PMID: 36090119 PMCID: PMC9453164 DOI: 10.3389/fmicb.2022.998817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease that limits peanut production and quality, but the molecular mechanisms of the peanut response to R. solanacearum remain unclear. In this study, we reported the first work analyzing the transcriptomic changes of the resistant and susceptible peanut leaves infected with R. solanacearum HA4-1 and its type III secretion system mutant strains by the cutting leaf method at different timepoints (0, 24, 36, and 72 h post inoculation). A total of 125,978 differentially expressed genes (DEGs) were identified and subsequently classified into six groups to analyze, including resistance-response genes, susceptibility-response genes, PAMPs induced resistance-response genes, PAMPs induced susceptibility-response genes, T3Es induced resistance-response genes, and T3Es induced susceptibility-response genes. KEGG enrichment analyses of these DEGs showed that plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway were the outstanding pathways. Further analysis revealed that CMLs/CDPKs-WRKY module, MEKK1-MKK2-MPK3 cascade, and auxin signaling played important roles in the peanut response to R. solanacearum. Upon R. solanacearum infection (RSI), three early molecular events were possibly induced in peanuts, including Ca2+ activating CMLs/CDPKs-WRKY module to regulate the expression of resistance/susceptibility-related genes, auxin signaling was induced by AUX/IAA-ARF module to activate auxin-responsive genes that contribute to susceptibility, and MEKK1-MKK2-MPK3-WRKYs was activated by phosphorylation to induce the expression of resistance/susceptibility-related genes. Our research provides new ideas and abundant data resources to elucidate the molecular mechanism of the peanut response to R. solanacearum and to further improve the bacterial wilt resistance of peanuts.
Collapse
Affiliation(s)
- Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingqing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Xiaorong Wan,
| | - Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Xiaodan Tan,
| |
Collapse
|
19
|
Chen K, Zhuang Y, Wang L, Li H, Lei T, Li M, Gao M, Wei J, Dang H, Raza A, Yang Q, Sharif Y, Yang H, Zhang C, Zou H, Zhuang W. Comprehensive genome sequence analysis of the devastating tobacco bacterial phytopathogen Ralstonia solanacearum strain FJ1003. Front Genet 2022; 13:966092. [PMID: 36072670 PMCID: PMC9441608 DOI: 10.3389/fgene.2022.966092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its high genetic diversity and broad host range, Ralstonia solanacearum, the causative phytopathogen of the bacterial wilt (BW) disease, is considered a "species complex". The R. solanacearum strain FJ1003 belonged to phylotype I, and was isolated from the Fuzhou City in Fujian Province of China. The pathogen show host specificity and infects tobacco, especially in the tropical and subtropical regions. To elucidate the pathogenic mechanisms of FJ1003 infecting tobacco, a complete genome sequencing of FJ1003 using single-molecule real-time (SMRT) sequencing technology was performed. The full genome size of FJ1003 was 5.90 Mb (GC%, 67%), containing the chromosome (3.7 Mb), megaplasmid (2.0 Mb), and small plasmid (0.2 Mb). A total of 5133 coding genes (3446 and 1687 genes for chromosome and megaplasmid, respectively) were predicted. A comparative genomic analysis with other strains having the same and different hosts showed that the FJ1003 strain had 90 specific genes, possibly related to the host range of R. solanacearum. Horizontal gene transfer (HGT) was widespread in the genome. A type Ⅲ effector protein (Rs_T3E_Hyp14) was present on both the prophage and genetic island (GI), suggesting that this gene might have been acquired from other bacteria via HGT. The Rs_T3E_Hyp14 was proved to be a virulence factor in the pathogenic process of R. solanacearum through gene knockout strategy, which affects the pathogenicity and colonization ability of R. solanacearum in the host. Therefore, this study will improve our understanding of the virulence of R. solanacearum and provide a theoretical basis for tobacco disease resistance breeding.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhui Zhuang
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaqi Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taijie Lei
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengke Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijia Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxian Wei
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Dang
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ali Raza
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yasir Sharif
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Yang
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weijian Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Tan X, Dai X, Chen T, Wu Y, Yang D, Zheng Y, Chen H, Wan X, Yang Y. Complete Genome Sequence Analysis of Ralstonia solanacearum Strain PeaFJ1 Provides Insights Into Its Strong Virulence in Peanut Plants. Front Microbiol 2022; 13:830900. [PMID: 35273586 PMCID: PMC8904134 DOI: 10.3389/fmicb.2022.830900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
The bacterial wilt of peanut (Arachis hypogaea L.) caused by Ralstonia solanacearum is a devastating soil-borne disease that seriously restricted the world peanut production. However, the molecular mechanism of R. solanacearum–peanut interaction remains largely unknown. We found that R. solanacearum HA4-1 and PeaFJ1 isolated from peanut plants showed different pathogenicity by inoculating more than 110 cultivated peanuts. Phylogenetic tree analysis demonstrated that HA4-1 and PeaFJ1 both belonged to phylotype I and sequevar 14M, which indicates a high degree of genomic homology between them. Genomic sequencing and comparative genomic analysis of PeaFJ1 revealed 153 strain-specific genes compared with HA4-1. The PeaFJ1 strain-specific genes consisted of diverse virulence-related genes including LysR-type transcriptional regulators, two-component system-related genes, and genes contributing to motility and adhesion. In addition, the repertoire of the type III effectors of PeaFJ1 was bioinformatically compared with that of HA4-1 to find the candidate effectors responsible for their different virulences. There are 79 effectors in the PeaFJ1 genome, only 4 of which are different effectors compared with HA4-1, including RipS4, RipBB, RipBS, and RS_T3E_Hyp6. Based on the virulence profiles of the two strains against peanuts, we speculated that RipS4 and RipBB are candidate virulence effectors in PeaFJ1 while RipBS and RS_T3E_Hyp6 are avirulence effectors in HA4-1. In general, our research greatly reduced the scope of virulence-related genes and made it easier to find out the candidates that caused the difference in pathogenicity between the two strains. These results will help to reveal the molecular mechanism of peanut–R. solanacearum interaction and develop targeted control strategies in the future.
Collapse
Affiliation(s)
- Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
21
|
Mao X, Wang C, Lv Q, Tian Y, Wang D, Chen B, Mao J, Li W, Chu M, Zuo C. Cyclic nucleotide gated channel genes (CNGCs) in Rosaceae: genome-wide annotation, evolution and the roles on Valsa canker resistance. PLANT CELL REPORTS 2021; 40:2369-2382. [PMID: 34480605 DOI: 10.1007/s00299-021-02778-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In Rosaceae, tandem duplication caused the drastic expansion of CNGC gene family Group I. The members MdCN11 and MdCN19 negatively regulate Valsa canker resistance. Apple (Malus domestica) and pear (Pyrus bretschneideri and P. communis) are important fruit crops in Rosaceae family but are suffering from threats of Valsa canker. Cyclic nucleotide-gated ion channels (CNGCs) take crucial roles in plant immune responses. In the present study, a total of 355 CNGCs was identified from 8 Rosaceae plants. Based on phylogenetic analysis, 540 CNGCs from 18 plants (8 in Rosaceae and 10 others) could be divided into four groups. Group I was greatly expanded in Rosaceae resulted from tandem duplications. A large number of cis-acting regulatory elements (cis-elements) responsive to signals from multiple stresses and hormones were identified in the promoter regions of CNGCs in Malus spp. and Pyrus spp. Expressions of most Group I members were obviously up-regulated in Valsa canker susceptible varieties but not in the resistant ones. Furthermore, overexpression of the MdCN11 and MdCN19 in both apple fruits and 'Duli' (P. betulifolia) suspension cells compromised Valsa canker resistance. Overexpression of MdCN11 induced expression of hypersensitive response (HR)-related genes. In conclusion, tandem duplication resulted in a drastic expansion of CNGC Group I members in Rosaceae. Among these, MdCN11 and MdCN19 negatively regulate the Valsa canker resistance via inducting HR.
Collapse
Affiliation(s)
- Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chao Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qianqian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhen Tian
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dongdong Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Crop Science in Arid Environment of Gansu Province, Lanzhou, 730070, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mingyu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Crop Science in Arid Environment of Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
22
|
Gutierrez N, Torres AM. QTL dissection and mining of candidate genes for Ascochyta fabae and Orobanche crenata resistance in faba bean (Vicia faba L.). BMC PLANT BIOLOGY 2021; 21:551. [PMID: 34809555 PMCID: PMC8607628 DOI: 10.1186/s12870-021-03335-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ascochyta blight caused by Ascochyta fabae Speg. and broomrape (Orobanche crenata) are among the economically most significant pathogens of faba bean. Several QTLs conferring resistance against the two pathogens have been identified and validated in different genetic backgrounds. The aim of this study was to saturate the most stable QTLs for ascochyta and broomrape resistance in two Recombinant Inbred Line (RIL) populations, 29H x Vf136 and Vf6 x Vf136, to identify candidate genes conferring resistance against these two pathogens. RESULTS We exploited the synteny between faba bean and the model species Medicago truncatula by selecting a set of 219 genes encoding putative WRKY transcription factors and defense related proteins falling within the target QTL intervals, for genotyping and marker saturation in the two RIL populations. Seventy and 50 of the candidate genes could be mapped in 29H x Vf136 and Vf6 x Vf136, respectively. Besides the strong reduction of the QTL intervals, the mapping process allowed replacing previous dominant and pedigree-specific RAPD flanking markers with robust and transferrable SNP markers, revealing promising candidates for resistance against the two pathogens. CONCLUSIONS Although further efforts in association mapping and expression studies will be required to corroborate the candidate genes for resistance, the fine-mapping approach proposed here increases the genetic resolution of relevant QTL regions and paves the way for an efficient deployment of useful alleles for faba bean ascochyta and broomrape resistance through marker-assisted breeding.
Collapse
Affiliation(s)
- Natalia Gutierrez
- Área de Genómica y Biotecnología, IFAPA-Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain.
| | - Ana M Torres
- Área de Genómica y Biotecnología, IFAPA-Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain
| |
Collapse
|