1
|
Solar KG, Ventresca M, Zamyadi R, Zhang J, Jetly R, Vartanian O, Rhind SG, Dunkley BT. Repetitive subconcussion results in disrupted neural activity independent of concussion history. Brain Commun 2024; 6:fcae348. [PMID: 39440300 PMCID: PMC11495223 DOI: 10.1093/braincomms/fcae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
Concussion is a public health crisis that results in a complex cascade of neurochemical changes that can have life-changing consequences. Subconcussions are generally considered less serious, but we now realize repetitive subconcussions can lead to serious neurological deficits. Subconcussions are common in contact sports and the military where certain personnel are exposed to repetitive occupational blast overpressure. Post-mortem studies show subconcussion is a better predictor than concussion for chronic traumatic encephalopathy-a progressive and fatal neurodegenerative tauopathy, only diagnosable post-mortem-thus, an in vivo biomarker would be transformative. Magnetoencephalography captures the dynamics of neuronal electrochemical action, and functional MRI shows that functional connectivity is associated with tauopathy patterns. Therefore, both imaging modalities could provide surrogate markers of tauopathy. In this cross-sectional study, we examined the effects of repetitive subconcussion on neuronal activity and functional connectivity using magnetoencephalography and functional MRI, and on neurological symptoms and mental health in a military sample. For magnetoencephalography and outcome analyses, 81 participants were split into 'high' and 'low' blast exposure groups using the generalized blast exposure value: n = 41 high blast (26.4-65.7 years; 4 females) and n = 40 low blast (28.0-63.3 years; 8 females). For functional MRI, two high blast male participants without data were excluded: n = 39 (29.6-65.7 years). Magnetoencephalography revealed disrupted neuronal activity in participants with a greater history of repetitive subconcussions, including neural slowing (higher delta activity) in right fronto-temporal lobes and subcortical regions (hippocampus, amygdala, caudate, pallidum and thalamus), and functional dysconnectivity in the posterior default mode network (lower connectivity at low and high gamma). These abnormalities were independent of concussion or traumatic stress history, and magnetoencephalography showed functional dysconnectivity not detected in functional MRI. Besides magnetoencephalography changes, those with higher blast exposure had poorer somatic and cognitive outcomes, with no blast-related differences in mental health or associations between neurological symptoms and neuronal activity. This study suggests that repetitive subconcussions have deleterious effects on brain function and that magnetoencephalography provides an avenue for both treatment targets by identifying affected brain regions and in prevention by identifying those at risk of cumulative subconcussive neurotrauma.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Matthew Ventresca
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Rouzbeh Zamyadi
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Rakesh Jetly
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1A 0K6
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada M5S 2W6
| | - Benjamin T Dunkley
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5G 1X8
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
2
|
McEvoy C, Crabtree A, Case J, Means GE, Muench P, Thomas RG, Ivory RA, Mihalik J, Meabon JS. Cumulative Blast Impulse Is Predictive for Changes in Chronic Neurobehavioral Symptoms Following Low Level Blast Exposure during Military Training. Mil Med 2024; 189:e2069-e2077. [PMID: 38553989 DOI: 10.1093/milmed/usae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 08/31/2024] Open
Abstract
INTRODUCTION Cumulative low-level blast exposure during military training may be a significant occupational hazard, increasing the risk of poor long-term outcomes in brain function. US Public Law 116-92 section 717 mandates that US Department of Defense agencies document the blast exposure of each Service member to help inform later disability and health care decisions. However, which empirical measures of training blast exposure, such as the number of incidents, peak overpressure, or impulse, best inform changes in the neurobehavioral symptoms reflecting brain health have not been established. MATERIALS AND METHODS This study was approved by the US Army Special Operations Command, the University of North Carolina at Chapel Hill, and the VA Puget Sound Health Care System. Using methods easily deployable across different organizational structures, this study sought to identify and measure candidate risk factors related to career occupational blast exposure predictive of changes in neurobehavioral symptom burden. Blast dosimetry-symptom relationships were first evaluated in mice and then tested in a military training environment. In mice, the righting time neurobehavioral response was measured after exposure to a repetitive low-level blast paradigm modeled after Special Operations training. In the military training environment, 23 trainees enrolled in a 6-week explosive breaching training course, 13 instructors, and 10 Service member controls without blast exposure participated in the study (46 total). All participants provided weekly Neurobehavioral Symptom Inventory (NSI) surveys. Peak blast overpressure, impulse, total number of blasts, Time in Low-Level Blast Occupation, and Time in Service were analyzed by Bayesian analysis of regression modeling to determine their probability of influence on the post-training symptoms reported by participants. RESULTS We tested the hypothesis that cumulative measures of low-level blast exposure were predictive of changes in neurobehavioral symptoms. In mice, repetitive blast resulted in reduced righting times correlated with cumulative blast impulse. In Service members, peak blast overpressure, impulse, total number of blasts, Time in Low-Level Blast Occupation, and Time in Service all showed strong evidence of influence on NSI scores after blast exposure. However, only models including baseline NSI scores and cumulative blast impulse provided significant predictive value following validation. CONCLUSIONS These results indicate that measures of cumulative blast impulse may have utility in predicting changes in NSI scores. Such paired dosimetry-symptom measures are expected to be an important tool in safely guiding Service members' occupational exposure and optimizing force readiness and lethality.
Collapse
Affiliation(s)
- Cory McEvoy
- United States Army Special Operations Command, Fort Liberty, NC 28310, USA
- CU Anschutz Center for COMBAT Research, Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Adam Crabtree
- United States Army Special Operations Command, Fort Liberty, NC 28310, USA
| | - John Case
- United States Army Special Operations Command, Fort Liberty, NC 28310, USA
| | - Gary E Means
- United States Army Special Operations Command, Fort Liberty, NC 28310, USA
| | - Peter Muench
- United States Army Special Operations Command, Fort Liberty, NC 28310, USA
| | - Ronald G Thomas
- Division of Biostatistics, Department of Family Medicine & Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca A Ivory
- University of Washington School of Nursing, Seattle, WA 98195, USA
- University of Delaware School of Nursing, Newark, DE 19713, USA
| | - Jason Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - James S Meabon
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98259, USA
| |
Collapse
|
3
|
Hadi Z, Mahmud M, Seemungal BM. Brain Mechanisms Explaining Postural Imbalance in Traumatic Brain Injury: A Systematic Review. Brain Connect 2024; 14:144-177. [PMID: 38343363 DOI: 10.1089/brain.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Introduction: Persisting imbalance and falls in community-dwelling traumatic brain injury (TBI) survivors are linked to reduced long-term survival. However, a detailed understanding of the impact of TBI upon the brain mechanisms mediating imbalance is lacking. To understand the state of the art concerning the brain mechanisms mediating imbalance in TBI, we performed a systematic review of the literature. Methods: PubMed, Web of Science, and Scopus were searched and peer-reviewed research articles in humans, with any severity of TBI (mild, moderate, severe, or concussion), which linked a postural balance assessment (objective or subjective) with brain imaging (through computed tomography, T1-weighted imaging, functional magnetic resonance imaging [fMRI], resting-state fMRI, diffusion tensor imaging, magnetic resonance spectroscopy, single-photon emission computed tomography, electroencephalography, magnetoencephalography, near-infrared spectroscopy, and evoked potentials) were included. Out of 1940 articles, 60 were retrieved and screened, and 25 articles fulfilling inclusion criteria were included. Results: The most consistent finding was the link between imbalance and the cerebellum; however, the regions within the cerebellum were inconsistent. Discussion: The lack of consistent findings could reflect that imbalance in TBI is due to a widespread brain network dysfunction, as opposed to focal cortical damage. The inconsistency in the reported findings may also be attributed to heterogeneity of methodology, including data analytical techniques, small sample sizes, and choice of control groups. Future studies should include a detailed clinical phenotyping of vestibular function in TBI patients to account for the confounding effect of peripheral vestibular disorders on imbalance and brain imaging.
Collapse
Affiliation(s)
- Zaeem Hadi
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Mohammad Mahmud
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Sullan MJ, Stearns-Yoder KA, Wang Z, Hoisington AJ, Bramoweth AD, Carr W, Ge Y, Galfalvy H, Haghighi F, Brenner LA. Study protocol: Identifying transcriptional regulatory alterations of chronic effects of blast and disturbed sleep in United States Veterans. PLoS One 2024; 19:e0301026. [PMID: 38536869 PMCID: PMC10971577 DOI: 10.1371/journal.pone.0301026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 11/12/2024] Open
Abstract
Injury related to blast exposure dramatically rose during post-911 era military conflicts in Iraq and Afghanistan. Mild traumatic brain injury (mTBI) is among the most common injuries following blast, an exposure that may not result in a definitive physiologic marker (e.g., loss of consciousness). Recent research suggests that exposure to low level blasts and, more specifically repetitive blast exposure (RBE), which may be subconcussive in nature, may also impact long term physiologic and psychological outcomes, though findings have been mixed. For military personnel, blast-related injuries often occur in chaotic settings (e.g., combat), which create challenges in the immediate assessment of related-injuries, as well as acute and post-acute sequelae. As such, alternate means of identifying blast-related injuries are needed. Results from previous work suggest that epigenetic markers, such as DNA methylation, may provide a potential stable biomarker of cumulative blast exposure that can persist over time. However, more research regarding blast exposure and associations with short- and long-term sequelae is needed. Here we present the protocol for an observational study that will be completed in two phases: Phase 1 will address blast exposure among Active Duty Personnel and Phase 2 will focus on long term sequelae and biological signatures among Veterans who served in the recent conflicts and were exposed to repeated blast events as part of their military occupation. Phase 2 will be the focus of this paper. We hypothesize that Veterans will exhibit similar differentially methylated regions (DMRs) associated with changes in sleep and other psychological and physical metrics, as observed with Active Duty Personnel. Additional analyses will be conducted to compare DMRs between Phase 1 and 2 cohorts, as well as self-reported psychological and physical symptoms. This comparison between Service Members and Veterans will allow for exploration regarding the natural history of blast exposure in a quasi-longitudinal manner. Findings from this study are expected to provide additional evidence for repetitive blast-related physiologic changes associated with long-term neurobehavioral symptoms. It is expected that findings will provide foundational data for the development of effective interventions following RBE that could lead to improved long-term physical and psychological health.
Collapse
Affiliation(s)
- Molly J. Sullan
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kelly A. Stearns-Yoder
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Zhaoyu Wang
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States of America
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Andrew J. Hoisington
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Department of Systems Engineering & Management, Air Force Institute of Technology, Wright Patterson AFB, OH, United States of America
| | - Adam D. Bramoweth
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
- Center for Health Equity Research and Promotion (CHERP), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Hanga Galfalvy
- Departments of Psychiatry and Biostatistics, Columbia University, New York, NY, United States of America
| | - Fatemah Haghighi
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States of America
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lisa A. Brenner
- VA Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional VA Medical Center (RMRVAMC), Aurora, CO, United States of America
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Departments of Psychiatry and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
5
|
Lippa SM, Bailie JM, French LM, Brickell TA, Lange RT. Lifetime blast exposure is not related to cognitive performance or psychiatric symptoms in US military personnel. Clin Neuropsychol 2024:1-23. [PMID: 38494345 DOI: 10.1080/13854046.2024.2328881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Objective: The present study aimed to examine the impact of lifetime blast exposure (LBE) on neuropsychological functioning in service members and veterans (SMVs). Method: Participants were 282 SMVs, with and without history of traumatic brain injury (TBI), who were prospectively enrolled in a Defense and Veterans Brain Injury Center (DVBIC)-Traumatic Brain Injury Center of Excellence (TBICoE) Longitudinal TBI Study. A cross-sectional analysis of baseline data was conducted. LBE was based on two factors: Military Occupational Speciality (MOS) and SMV self-report. Participants were divided into three groups based on LBE: Blast Naive (n = 61), Blast + Low Risk MOS (n = 96), Blast + High Risk MOS (n = 125). Multivariate analysis of variance (MANOVA) was used to examine group differences on neurocognitive domains and the Minnesota Multiphasic Personality Inventory-2 Restructured Form. Results: There were no statistically significant differences in attention/working memory, processing speed, executive functioning, and memory (Fs < 1.75, ps > .1, ηp2s < .032) or in General Cognition (Fs < 0.95, ps > .3, ηp2s < .008). Prior to correction for covariates, lifetime blast exposure was related to Restructured Clinical (F(18,542) = 1.77, p = .026, ηp2 = .055), Somatic/Cognitive (F(10,550) = 1.99, p = .033, ηp2 = .035), and Externalizing Scales (F(8,552) = 2.17, p = .028, ηp2 = .030); however, these relationships did not remain significant after correction for covariates (Fs < 1.53, ps > .145, ηp2s < .032). Conclusions: We did not find evidence of a relationship between LBE and neurocognitive performance or psychiatric symptoms. This stands in contrast to prior studies demonstrating an association between lifetime blast exposure and highly sensitive blood biomarkers and/or neuroimaging. Overall, findings suggest the neuropsychological impact of lifetime blast exposure is minimal in individuals remaining in or recently retired from military service.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jason M Bailie
- Traumatic Brain Injury Center of Excellence, Bethesda, MD, USA
- Naval Hospital Camp Pendleton, Oceanside, CA, USA
- General Dynamics Information Technology, Fairfax, VA, USA
| | - Louis M French
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Traumatic Brain Injury Center of Excellence, Bethesda, MD, USA
| | - Tracey A Brickell
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Traumatic Brain Injury Center of Excellence, Bethesda, MD, USA
- General Dynamics Information Technology, Fairfax, VA, USA
| | - Rael T Lange
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Traumatic Brain Injury Center of Excellence, Bethesda, MD, USA
- General Dynamics Information Technology, Fairfax, VA, USA
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Hoppes CW, Lambert KH, Whitney SL, Erbele ID, Esquivel CR, Yuan TT. Leveraging Technology for Vestibular Assessment and Rehabilitation in the Operational Environment: A Scoping Review. Bioengineering (Basel) 2024; 11:117. [PMID: 38391603 PMCID: PMC10886105 DOI: 10.3390/bioengineering11020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION The vestibular system, essential for gaze and postural stability, can be damaged by threats on the battlefield. Technology can aid in vestibular assessment and rehabilitation; however, not all devices are conducive to the delivery of healthcare in an austere setting. This scoping review aimed to examine the literature for technologies that can be utilized for vestibular assessment and rehabilitation in operational environments. MATERIALS AND METHODS A comprehensive search of PubMed was performed. Articles were included if they related to central or peripheral vestibular disorders, addressed assessment or rehabilitation, leveraged technology, and were written in English. Articles were excluded if they discussed health conditions other than vestibular disorders, focused on devices or techniques not conducive to the operational environment, or were written in a language other than English. RESULTS Our search strategy yielded 32 articles: 8 articles met our inclusion and exclusion criteria whereas the other 24 articles were rejected. DISCUSSION There is untapped potential for leveraging technology for vestibular assessment and rehabilitation in the operational environment. Few studies were found in the peer-reviewed literature that described the application of technology to improve the identification of central and/or peripheral vestibular system impairments; triage of acutely injured patients; diagnosis; delivery and monitoring of rehabilitation; and determination of readiness for return to duty. CONCLUSIONS This scoping review highlighted technology for vestibular assessment and rehabilitation feasible for use in an austere setting. Such technology may be leveraged for prevention; monitoring exposure to mechanisms of injury; vestibular-ocular motor evaluation; assessment, treatment, and monitoring of rehabilitation progress; and return-to-duty determination after vestibular injury. FUTURE DIRECTIONS The future of vestibular assessment and rehabilitation may be shaped by austere manufacturing and 3D printing; artificial intelligence; drug delivery in combination with vestibular implantation; organ-on-chip and organoids; cell and gene therapy; and bioprinting.
Collapse
Affiliation(s)
- Carrie W Hoppes
- Army-Baylor University Doctoral Program in Physical Therapy, 3630 Stanley Road, Joint Base San Antonio-Fort Sam Houston, TX 78234, USA
| | - Karen H Lambert
- Hearing Center of Excellence, 2200 Bergquist Drive, Lackland Air Force Base, TX 78236, USA
| | - Susan L Whitney
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Isaac D Erbele
- Department of Otolaryngology-Head and Neck Surgery, San Antonio Uniformed Services Health Education Consortium, Brooke Army Medical Center, 3551 Roger Brooke Drive, Joint Base San Antonio-Fort Sam Houston, TX 78234, USA
- Department of Surgery, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Carlos R Esquivel
- Wilford Hall Ambulatory Surgical Center, 2200 Bergquist Drive, Lackland Air Force Base, TX 78236, USA
| | - Tony T Yuan
- Department of Radiology and Radiological Sciences, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Geng C, Wang X, Chen J, Sun N, Wang Y, Li Z, Han L, Hou S, Fan H, Li N, Gong Y. Repetitive Low-Level Blast Exposure via Akt/NF-κB Signaling Pathway Mediates the M1 Polarization of Mouse Alveolar Macrophage MH-S Cells. Int J Mol Sci 2023; 24:10596. [PMID: 37445774 DOI: 10.3390/ijms241310596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Repetitive low-level blast (rLLB) exposure is a potential risk factor for the health of soldiers or workers who are exposed to it as an occupational characteristic. Alveolar macrophages (AMs) are susceptible to external blast waves and produce pro-inflammatory or anti-inflammatory effects. However, the effect of rLLB exposure on AMs is still unclear. Here, we generated rLLB waves through a miniature manual Reddy-tube and explored their effects on MH-S cell morphology, phenotype transformation, oxidative stress status, and apoptosis by immunofluorescence, real-time quantitative PCR (qPCR), western blotting (WB) and flow cytometry. Ipatasertib (GDC-0068) or PDTC was used to verify the role of the Akt/NF-κB signaling pathway in these processes. Results showed that rLLB treatment could cause morphological irregularities and cytoskeletal disorders in MH-S cells and promote their polarization to the M1 phenotype by increasing iNOS, CD86 and IL-6 expression. The molecular mechanism is through the Akt/NF-κB signaling pathway. Moreover, we found reactive oxygen species (ROS) burst, Ca2+ accumulation, mitochondrial membrane potential reduction, and early apoptosis of MH-S cells. Taken together, our findings suggest rLLB exposure may cause M1 polarization and early apoptosis of AMs. Fortunately, it is blocked by specific inhibitors GDC-0068 or PDTC. This study provides a new treatment strategy for preventing and alleviating health damage in the occupational population caused by rLLB exposure.
Collapse
Affiliation(s)
- Chenhao Geng
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jiale Chen
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Zizheng Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
9
|
Hellewell SC, Granger DA, Cernak I. Blast-Induced Neurotrauma Results in Spatially Distinct Gray Matter Alteration Alongside Hormonal Alteration: A Preliminary Investigation. Int J Mol Sci 2023; 24:ijms24076797. [PMID: 37047768 PMCID: PMC10094760 DOI: 10.3390/ijms24076797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Blast-induced neurotrauma (BINT) frequently occurs during military training and deployment and has been linked to long-term neuropsychological and neurocognitive changes, and changes in brain structure. As military personnel experience frequent exposures to stress, BINT may negatively influence stress coping abilities. This study aimed to determine the effects of BINT on gray matter volume and hormonal alteration. Participants were Canadian Armed Forces personnel and veterans with a history of BINT (n = 12), and first responder controls (n = 8), recruited due to their characteristic occupational stress professions. Whole saliva was collected via passive drool on the morning of testing and analyzed for testosterone (pg/mL), cortisol (μg/dL), and testosterone/cortisol (T/C) ratio. Voxel-based morphometry was performed to compare gray matter (GM) volume, alongside measurement of cortical thickness and subcortical volumes. Saliva analyses revealed distinct alterations following BINT, with significantly elevated testosterone and T/C ratio. Widespread and largely symmetric loci of reduced GM were found specific to BINT, particularly in the temporal gyrus, precuneus, and thalamus. These findings suggest that BINT affects hypothalamic-pituitary-adrenal and -gonadal axis function, and causes anatomically-specific GM loss, which were not observed in a comparator group with similar occupational stressors. These findings support BINT as a unique injury with distinct structural and endocrine consequences.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California at Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31902, USA
| |
Collapse
|
10
|
Woodall JLA, Sak JA, Cowdrick KR, Bove Muñoz BM, McElrath JH, Trimpe GR, Mei Y, Myhre RL, Rains JK, Hutchinson CR. Repetitive Low-level Blast Exposure and Neurocognitive Effects in Army Ranger Mortarmen. Mil Med 2023; 188:e771-e779. [PMID: 34557921 DOI: 10.1093/milmed/usab394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Occupational exposure to repetitive, low-level blasts in military training and combat has been tied to subconcussive injury and poor health outcomes for service members. Most low-level blast studies to date have focused on explosive breaching and firing heavy weapon systems; however, there is limited research on the repetitive blast exposure and physiological effects that mortarmen experience when firing mortar weapon systems. Motivated by anecdotal symptoms of mortarmen, the purpose of this paper is to characterize this exposure and its resulting neurocognitive effects in order to provide preliminary findings and actionable recommendations to safeguard the health of mortarmen. MATERIALS AND METHODS In collaboration with the U.S. Army Rangers at Fort Benning, blast exposure, symptoms, and pupillary light reflex were measured during 3 days of firing 81 mm and 120 mm mortars in training. Blast exposure analysis included the examination of the blast overpressure (BOP) and cumulative exposure by mortarman position, as well as comparison to the 4 psi safety threshold. Pupillary light reflex responses were analyzed with linear mixed effects modeling. All neurocognitive results were compared between mortarmen (n = 11) and controls (n = 4) and cross-compared with blast exposure and blast history. RESULTS Nearly 500 rounds were fired during the study, resulting in a high cumulative blast exposure for all mortarmen. While two mortarmen had average BOPs exceeding the 4 psi safety limit (Fig. 2), there was a high prevalence of mTBI-like symptoms among all mortarmen, with over 70% experiencing headaches, ringing in the ears, forgetfulness/poor memory, and taking longer to think during the training week (n ≥ 8/11). Mortarmen also had smaller and slower pupillary light reflex responses relative to controls, with significantly slower dilation velocity (P < 0.05) and constriction velocity (P < 0.10). CONCLUSION Mortarmen experienced high cumulative blast exposure coinciding with altered neurocognition that is suggestive of blast-related subconcussive injury. These neurocognitive effects occurred even in mortarmen with average BOP below the 4 psi safety threshold. While this study was limited by a small sample size, its results demonstrate a concerning health risk for mortarmen that requires additional study and immediate action. Behavioral changes like ducking and standing farther from the mortar when firing can generally help reduce mortarmen BOP exposure, but we recommend the establishment of daily cumulative safety thresholds and daily firing limits in training to reduce cumulative blast exposure, and ultimately, improve mortarmen's quality of life and longevity in service.
Collapse
Affiliation(s)
- Julia L A Woodall
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jordyn A Sak
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kyle R Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brady M Bove Muñoz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jessica H McElrath
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Grace R Trimpe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yajun Mei
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - James K Rains
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
11
|
|
12
|
Edlow BL, Bodien YG, Baxter T, Belanger H, Cali R, Deary K, Fischl B, Foulkes AS, Gilmore N, Greve DN, Hooker JM, Huang SY, Kelemen JN, Kimberly WT, Maffei C, Masood M, Perl D, Polimeni JR, Rosen BR, Tromly S, Tseng CEJ, Yao EF, Zurcher NR, Mac Donald CL, Dams-O'Connor K. Long-Term Effects of Repeated Blast Exposure in United States Special Operations Forces Personnel: A Pilot Study Protocol. J Neurotrauma 2022; 39:1391-1407. [PMID: 35620901 PMCID: PMC9529318 DOI: 10.1089/neu.2022.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that repeated blast exposure (RBE) is associated with brain injury in military personnel. United States (U.S.) Special Operations Forces (SOF) personnel experience high rates of blast exposure during training and combat, but the effects of low-level RBE on brain structure and function in SOF have not been comprehensively characterized. Further, the pathophysiological link between RBE-related brain injuries and cognitive, behavioral, and physical symptoms has not been fully elucidated. We present a protocol for an observational pilot study, Long-Term Effects of Repeated Blast Exposure in U.S. SOF Personnel (ReBlast). In this exploratory study, 30 active-duty SOF personnel with RBE will participate in a comprehensive evaluation of: 1) brain network structure and function using Connectome magnetic resonance imaging (MRI) and 7 Tesla MRI; 2) neuroinflammation and tau deposition using positron emission tomography; 3) blood proteomics and metabolomics; 4) behavioral and physical symptoms using self-report measures; and 5) cognition using a battery of conventional and digitized assessments designed to detect subtle deficits in otherwise high-performing individuals. We will identify clinical, neuroimaging, and blood-based phenotypes that are associated with level of RBE, as measured by the Generalized Blast Exposure Value. Candidate biomarkers of RBE-related brain injury will inform the design of a subsequent study that will test a diagnostic assessment battery for detecting RBE-related brain injury. Ultimately, we anticipate that the ReBlast study will facilitate the development of interventions to optimize the brain health, quality of life, and battle readiness of U.S. SOF personnel.
Collapse
Affiliation(s)
- Brian L Edlow
- Harvard Medical School, 1811, 175 Cambridge Street - Suite 300, Boston, Massachusetts, United States, 02115.,Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Yelena G Bodien
- Massachusetts General Hospital, 2348, Department of Neurology, 101 Merrimac, Boston, Massachusetts, United States, 02114;
| | - Timothy Baxter
- University of South Florida, 7831, Institute for Applied Engineering, Tampa, Florida, United States;
| | - Heather Belanger
- University of South Florida, 7831, Department of Psychiatry and Behavioral Neurosciences, Tampa, Florida, United States;
| | - Ryan Cali
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Katryna Deary
- Navy SEAL Foundation, Virginia Beach, Virginia, United States;
| | - Bruce Fischl
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Room 2301, 149 13th Street, Charlestown, Massachusetts, United States, 02129-2020.,Massachusetts General Hospital;
| | - Andrea S Foulkes
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Natalie Gilmore
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Douglas N Greve
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Jacob M Hooker
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Susie Y Huang
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Jessica N Kelemen
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - W Taylor Kimberly
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Chiara Maffei
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Maryam Masood
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Daniel Perl
- Uniformed Services University of the Health Sciences, 1685, Pathology, 4301 Jones Bridge Road, Room B3138, Bethesda, Maryland, United States, 20814;
| | - Jonathan R Polimeni
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Bruce R Rosen
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States;
| | - Samantha Tromly
- University of South Florida, 7831, Institute for Applied Engineering, Tampa, Florida, United States;
| | - Chieh-En J Tseng
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Eveline F Yao
- United States Special Operations Command, Office of the Surgeon General, MacDill Air Force Base, United States;
| | - Nicole R Zurcher
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Christine L Mac Donald
- University of Washington, 7284, Department of Neurological Surgery, Seattle, Washington, United States;
| | - Kristen Dams-O'Connor
- Icahn School of Medicine at Mount Sinai, 5925, Rehabilitation Medicine, One Gustave Levy Place, Box 1163, New York, New York, United States, 10029; kristen.dams-o'
| |
Collapse
|
13
|
Miller MR, DiBattista A, Patel MA, Daley M, Tenn C, Nakashima A, Rhind SG, Vartanian O, Shiu MY, Caddy N, Garrett M, Saunders D, Smith I, Jetly R, Fraser DD. A Distinct Metabolite Signature in Military Personnel Exposed to Repetitive Low-Level Blasts. Front Neurol 2022; 13:831792. [PMID: 35463119 PMCID: PMC9021419 DOI: 10.3389/fneur.2022.831792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Military Breachers and Range Staff (MBRS) are subjected to repeated sub-concussive blasts, and they often report symptoms that are consistent with a mild traumatic brain injury (mTBI). Biomarkers of blast injury would potentially aid blast injury diagnosis, surveillance and avoidance. Our objective was to identify plasma metabolite biomarkers in military personnel that were exposed to repeated low-level or sub-concussive blast overpressure. A total of 37 military members were enrolled (18 MBRS and 19 controls), with MBRS having participated in 8–20 breaching courses per year, with a maximum exposure of 6 blasts per day. The two cohorts were similar except that the number of blast exposures were significantly higher in the MBRS, and the MBRS cohort suffered significantly more post-concussive symptoms and poorer health on assessment. Metabolomics profiling demonstrated significant differences between groups with 74% MBRS classification accuracy (CA). Feature reduction identified 6 metabolites that resulted in a MBRS CA of 98%, and included acetic acid (23.7%), formate (22.6%), creatine (14.8%), acetone (14.2%), methanol (12,7%), and glutamic acid (12.0%). All 6 metabolites were examined with individual receiver operating characteristic (ROC) curve analyses and demonstrated areas-under-the-curve (AUCs) of 0.82–0.91 (P ≤ 0.001) for MBRS status. Several parsimonious combinations of three metabolites increased accuracy of ROC curve analyses to AUCs of 1.00 (P < 0.001), while a combination of volatile organic compounds (VOCs; acetic acid, acetone and methanol) yielded an AUC of 0.98 (P < 0.001). Candidate biomarkers for chronic blast exposure were identified, and if validated in a larger cohort, may aid surveillance and care of military personnel. Future point-of-care screening could be developed that measures VOCs from breath, with definitive diagnoses confirmed with plasma metabolomics profiling.
Collapse
Affiliation(s)
- Michael R. Miller
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | - Alicia DiBattista
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Neurolytix Inc., Toronto, ON, Canada
| | - Maitray A. Patel
- Department of Computer Science, Western University, London, ON, Canada
| | - Mark Daley
- Department of Computer Science, Western University, London, ON, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Norleen Caddy
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Michelle Garrett
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Doug Saunders
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Ingrid Smith
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Rakesh Jetly
- Canadian Forces Health Services, National Defence Headquarters, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Douglas D. Fraser
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
- Neurolytix Inc., Toronto, ON, Canada
- Clinical Neurological Sciences, Western University, London, ON, Canada
- Physiology and Pharmacology, Western University, London, ON, Canada
- *Correspondence: Douglas D. Fraser
| |
Collapse
|