1
|
Villanueva-García D, Mota-Rojas D, Miranda-Cortés A, Ibarra-Ríos D, Casas-Alvarado A, Mora-Medina P, Martínez-Burnes J, Olmos-Hernández A, Hernández-Avalos I. Caffeine: cardiorespiratory effects and tissue protection in animal models. Exp Anim 2021; 70:431-439. [PMID: 34039788 PMCID: PMC8614017 DOI: 10.1538/expanim.20-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 10/31/2022] Open
Abstract
The aim of this review is to analyze the cardiorespiratory and tissue-protective effects of caffeine in animal models. Peer-reviewed literature published between 1975 and 2021 was retrieved from CAB Abstracts, PubMed, ISI Web of Knowledge, and Scopus. Extracted data were analyzed to address the mechanism of action of caffeine on cardiorespiratory parameters (heart rate and rhythm), vasopressor effects, and some indices of respiratory function; we close this review by discussing the current debate on the research carried out on the effects of caffeine on tissue protection. Adenosine acts through specific receptors and is a negative inotropic and chronotropic agent. Blockage of its cardiac receptors can cause tachycardia (with arrhythmogenic potential) due to the intense activity of β1 receptors. In terms of tissue protection, caffeine inhibits hyperoxia-induced pulmonary inflammation by decreasing proinflammatory cytokine expression in animal models. The protection that caffeine provides to tissues is not limited to the CNS, as studies have demonstrated that it generates attenuation of inflammatory effects in pulmonary tissue. It inhibits the effects of some pro-inflammatory cytokines and prevents functional and structural changes.
Collapse
Affiliation(s)
- Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, 06720, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Universidad Autónoma Metropolitana (UAM) Xochimilco Campus, Calzada del Hueso 1100. Col. Villa Quietud. Coyoacán, 04960, Mexico City, Mexico
| | - Agatha Miranda-Cortés
- Clinical Pharmacology and Veterinary Anaesthesia, Department of Biological Science, FESC, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sebastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| | - Daniel Ibarra-Ríos
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, 06720, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Universidad Autónoma Metropolitana (UAM) Xochimilco Campus, Calzada del Hueso 1100. Col. Villa Quietud. Coyoacán, 04960, Mexico City, Mexico
| | - Patricia Mora-Medina
- Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán, Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sabastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km 5 Carretera Victoria-Mante, 87000, Cd. Victoria, Tamaulipas, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology, Department Bioterio and Experimental Surgery. Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, 289, 14389, Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Clinical Pharmacology and Veterinary Anaesthesia, Department of Biological Science, FESC, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sebastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| |
Collapse
|
2
|
Uwaifo GI. Beware Energy Drinks: A Case of a Toxic Triad Syndrome in a Diabetic Patient With Nonalcoholic Fatty Liver Disease. Am J Med Sci 2019; 358:304-311. [PMID: 31543103 DOI: 10.1016/j.amjms.2019.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Abstract
Energy drinks are widely used and very popular. They are touted as "harmless" energy boosters for use in professional, recreational and domestic settings. They are typically high in monosaccharides, and caffeine with other assorted products like ginseng. Careful study of the potential risks of their use is nonexistent while rigorous documentation of their touted energy boosting capacity is also meagre. We present the cautionary case of a 46-year-old Caucasian man with well-controlled type 2 diabetes and nonalcoholic fatty liver disease who developed a toxic triad syndrome of gastritis, hepatitis and pancreatitis within 4 months of commencing daily consumption of 2-3 160z cans of the energy drink Monster Energy. His clinical symptoms and biochemical derangements promptly resolved with stopping the beverage. We discuss the potential risks inherent in unsupervised liberal consumption of energy drinks and the need for both caution and vigilance among clinicians and patients.
Collapse
Affiliation(s)
- Gabriel I Uwaifo
- Department of Endocrinology, Diabetes, Metabolism, and Weight Management, Ochsner Medical Center, New Orleans, Louisiana.
| |
Collapse
|
3
|
Desbrow B, Hall S, O'Connor H, Slater G, Barnes K, Grant G. Caffeine content of pre‐workout supplements commonly used by Australian consumers. Drug Test Anal 2018; 11:523-529. [DOI: 10.1002/dta.2501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ben Desbrow
- School of Allied Health SciencesGriffith University Australia
| | - Susan Hall
- School of Pharmacy & PharmacologyGriffith University Australia
| | - Helen O'Connor
- Faculty of Health Sciences and Charles Perkins CentreThe University of Sydney Australia
| | - Gary Slater
- School of Health and Sport SciencesUniversity of the Sunshine Coast Australia
| | - Katelyn Barnes
- School of Allied Health SciencesGriffith University Australia
| | - Gary Grant
- School of Pharmacy & PharmacologyGriffith University Australia
| |
Collapse
|