1
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Hoedjes KM, Grath S, Posnien N, Ritchie MG, Schlötterer C, Abbott JK, Almudi I, Coronado-Zamora M, Durmaz Mitchell E, Flatt T, Fricke C, Glaser-Schmitt A, González J, Holman L, Kankare M, Lenhart B, Orengo DJ, Snook RR, Yılmaz VM, Yusuf L. From whole bodies to single cells: A guide to transcriptomic approaches for ecology and evolutionary biology. Mol Ecol 2024:e17382. [PMID: 38856653 DOI: 10.1111/mec.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
RNA sequencing (RNAseq) methodology has experienced a burst of technological developments in the last decade, which has opened up opportunities for studying the mechanisms of adaptation to environmental factors at both the organismal and cellular level. Selecting the most suitable experimental approach for specific research questions and model systems can, however, be a challenge and researchers in ecology and evolution are commonly faced with the choice of whether to study gene expression variation in whole bodies, specific tissues, and/or single cells. A wide range of sometimes polarised opinions exists over which approach is best. Here, we highlight the advantages and disadvantages of each of these approaches to provide a guide to help researchers make informed decisions and maximise the power of their study. Using illustrative examples of various ecological and evolutionary research questions, we guide the readers through the different RNAseq approaches and help them identify the most suitable design for their own projects.
Collapse
Affiliation(s)
- Katja M Hoedjes
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sonja Grath
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | | | | | - Isabel Almudi
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Claudia Fricke
- Institute for Zoology/Animal Ecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Benedict Lenhart
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Vera M Yılmaz
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Leeban Yusuf
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
3
|
Hsu SK, Lai WY, Novak J, Lehner F, Jakšić AM, Versace E, Schlötterer C. Reproductive isolation arises during laboratory adaptation to a novel hot environment. Genome Biol 2024; 25:141. [PMID: 38807159 PMCID: PMC11134630 DOI: 10.1186/s13059-024-03285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations from different environments, but not among replicate populations from the same environment. In contrast, reproductive isolation among populations independently adapted to the same/similar environment can arise from both mutation-order speciation or system drift. RESULTS In experimentally evolved populations adapting to a hot environment for over 100 generations, we find evidence for pre- and postmating reproductive isolation. On one hand, an altered lipid metabolism and cuticular hydrocarbon composition pointed to possible premating barriers between the ancestral and replicate evolved populations. On the other hand, the pronounced gene expression differences in male reproductive genes may underlie the postmating isolation among replicate evolved populations adapting to the same environment with the same standing genetic variation. CONCLUSION Our study confirms that replicated evolution experiments provide valuable insights into the mechanisms of speciation. The rapid emergence of the premating reproductive isolation during temperature adaptation showcases incipient ecological speciation. The potential evidence of postmating reproductive isolation among replicates gave rise to two hypotheses: (1) mutation-order speciation through a common selection on early fecundity leading to an inherent inter-locus sexual conflict; (2) system drift with genetic drift along the neutral ridges.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Johannes Novak
- Institute of Animal Nutrition and Functional Plant Compounds, Vetmeduni Vienna, Vienna, Austria
| | - Felix Lehner
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
- Present Address: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elisabetta Versace
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | | |
Collapse
|
4
|
Lai WY, Nolte V, Jakšić AM, Schlötterer C. Evolution of Phenotypic Variance Provides Insights into the Genetic Basis of Adaptation. Genome Biol Evol 2024; 16:evae077. [PMID: 38620076 PMCID: PMC11057206 DOI: 10.1093/gbe/evae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Most traits are polygenic, and the contributing loci can be identified by genome-wide association studies. The genetic basis of adaptation (adaptive architecture) is, however, difficult to characterize. Here, we propose to study the adaptive architecture of traits by monitoring the evolution of their phenotypic variance during adaptation to a new environment in well-defined laboratory conditions. Extensive computer simulations show that the evolution of phenotypic variance in a replicated experimental evolution setting can distinguish between oligogenic and polygenic adaptive architectures. We compared gene expression variance in male Drosophila simulans before and after 100 generations of adaptation to a novel hot environment. The variance change in gene expression was indistinguishable for genes with and without a significant change in mean expression after 100 generations of evolution. We suggest that the majority of adaptive gene expression evolution can be explained by a polygenic architecture. We propose that tracking the evolution of phenotypic variance across generations can provide an approach to characterize the adaptive architecture.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
- Present address: École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
5
|
Cavigliasso F, Savitsky M, Koval A, Erkosar B, Savary L, Gallart-Ayala H, Ivanisevic J, Katanaev VL, Kawecki TJ. Cis-regulatory polymorphism at fiz ecdysone oxidase contributes to polygenic evolutionary response to malnutrition in Drosophila. PLoS Genet 2024; 20:e1011204. [PMID: 38452112 PMCID: PMC10962836 DOI: 10.1371/journal.pgen.1011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/25/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
We investigate the contribution of a candidate gene, fiz (fezzik), to complex polygenic adaptation to juvenile malnutrition in Drosophila melanogaster. Experimental populations maintained for >250 generations of experimental evolution to a nutritionally poor larval diet (Selected populations) evolved several-fold lower fiz expression compared to unselected Control populations. Here we show that this divergence in fiz expression is mediated by a cis-regulatory polymorphism. This polymorphism, originally sampled from a natural population in Switzerland, is distinct from a second cis-regulatory SNP previously identified in non-African D. melanogaster populations, implying that two independent cis-regulatory variants promoting high fiz expression segregate in non-African populations. Enzymatic analyses of Fiz protein expressed in E. coli demonstrate that it has ecdysone oxidase activity acting on both ecdysone and 20-hydroxyecdysone. Four of five fiz paralogs annotated to ecdysteroid metabolism also show reduced expression in Selected larvae, implying that malnutrition-driven selection favored general downregulation of ecdysone oxidases. Finally, as an independent test of the role of fiz in poor diet adaptation, we show that fiz knockdown by RNAi results in faster larval growth on the poor diet, but at the cost of greatly reduced survival. These results imply that downregulation of fiz in Selected populations was favored by selection on the nutritionally poor diet because of its role in suppressing growth in response to nutrient shortage. However, they suggest that fiz downregulation is only adaptive in combination with other changes evolved by Selected populations, which ensure that the organism can sustain the faster growth promoted by fiz downregulation.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mikhail Savitsky
- HumanaFly Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Berra Erkosar
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Liu Y, Su L, Wang R, Dai X, Li X, Chang Y, Zhao S, Chen H, Yin Z, Wu G, Zhou H, Zheng L, Zhai Y. Comparative 4D Label-Free Quantitative Proteomic Analysis of Bombus terrestris Provides Insights into Proteins and Processes Associated with Diapause. Int J Mol Sci 2023; 25:326. [PMID: 38203496 PMCID: PMC10778897 DOI: 10.3390/ijms25010326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Diapause, an adaptative strategy for survival under harsh conditions, is a dynamic multi-stage process. Bombus terrestris, an important agricultural pollinator, is declining in the wild, but artificial breeding is possible by imitating natural conditions. Mated queen bees enter reproductive diapause in winter and recover in spring, but the regulatory mechanisms remain unclear. Herein, we conducted a comparative 4D label-free proteomic analysis of queen bees during artificial breeding at seven timepoints, including pre-diapause, diapause, and post-diapause stages. Through bioinformatics analysis of proteomic and detection of substance content changes, our results found that, during pre-diapause stages, queen bees had active mitochondria with high levels of oxidative phosphorylation, high body weight, and glycogen and TAG content, all of which support energy consumption during subsequent diapause. During diapause stages, body weight and water content were decreased but glycerol increased, contributing to cold resistance. Dopamine content, immune defense, and protein phosphorylation were elevated, while fat metabolism, protein export, cell communication, signal transduction, and hydrolase activity decreased. Following diapause termination, JH titer, water, fatty acid, and pyruvate levels increased, catabolism, synaptic transmission, and insulin signaling were stimulated, ribosome and cell cycle proteins were upregulated, and cell proliferation was accelerated. Meanwhile, TAG and glycogen content decreased, and ovaries gradually developed. These findings illuminate changes occurring in queen bees at different diapause stages during commercial production.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Xiuxue Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Yuqing Chang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Guang’an Wu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
| | - Hao Zhou
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| |
Collapse
|
7
|
Rundell TB, Brunelli M, Alvi A, Safian G, Capobianco C, Tu W, Subedi S, Fiumera A, Musselman LP. Polygenic adaptation to overnutrition reveals a role for cholinergic signaling in longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544888. [PMID: 37398379 PMCID: PMC10312690 DOI: 10.1101/2023.06.14.544888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Overnutrition by high-sugar (HS) feeding reduces both the lifespan and healthspan across taxa. Pressuring organisms to adapt to overnutrition can highlight genes and pathways important for the healthspan in stressful environments. We used an experimental evolution approach to adapt four replicate, outbred population pairs of Drosophila melanogaster to a HS or control diet. Sexes were separated and aged on either diet until mid-life, then mated to produce the next generation, allowing enrichment for protective alleles over time. All HS-selected populations increased their lifespan and were therefore used as a platform to compare allele frequencies and gene expression. Pathways functioning in the nervous system were overrepresented in the genomic data and showed evidence for parallel evolution, although very few genes were the same across replicates. Acetylcholine-related genes, including the muscarinic receptor mAChR-A, showed significant changes in allele frequency in multiple selected populations and differential expression on a HS diet. Using genetic and pharmacological approaches, we show that cholinergic signaling affects Drosophila feeding in a sugar-specific fashion. Together, these results suggest that adaptation produces changes in allele frequencies that benefit animals under conditions of overnutrition and that it is repeatable at the pathway level.
Collapse
|
8
|
Schlötterer C. How predictable is adaptation from standing genetic variation? Experimental evolution in Drosophila highlights the central role of redundancy and linkage disequilibrium. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220046. [PMID: 37004724 PMCID: PMC10067264 DOI: 10.1098/rstb.2022.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Experimental evolution is well-suited to test the predictability of evolution without the confounding effects of inaccurate forecasts about future environments. Most of the literature about parallel (and thus predictable) evolution has been carried out in asexual microorganisms, which adapt by de novo mutations. Nevertheless, parallel evolution has also been studied in sexual species at the genomic level. Here, I review the evidence for parallel evolution in Drosophila, the best-studied obligatory outcrossing model for adaptation from standing genetic variation in the laboratory. Similar to asexual microorganisms, evidence for parallel evolution varies between the focal hierarchical levels. Selected phenotypes consistently respond in a very predicable way, but the underlying allele frequency changes are much less predictable. The most important insight is that the predictability of the genomic selection response for polygenic traits depends highly on the founder population and to a much lesser extent on the selection regime. This implies that predicting adaptive genomic response is challenging and requires a good understanding of the adaptive architecture (including linkage disequilibrium) in the ancestral populations. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
9
|
Roberts RJV, Pop S, Prieto-Godino LL. Evolution of central neural circuits: state of the art and perspectives. Nat Rev Neurosci 2022; 23:725-743. [DOI: 10.1038/s41583-022-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
|
10
|
Ebner JN, Wyss MK, Ritz D, von Fumetti S. Effects of thermal acclimation on the proteome of the planarian Crenobia alpina from an alpine freshwater spring. J Exp Biol 2022; 225:276068. [PMID: 35875852 PMCID: PMC9440759 DOI: 10.1242/jeb.244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Species' acclimation capacity and their ability to maintain molecular homeostasis outside ideal temperature ranges will partly predict their success following climate change-induced thermal regime shifts. Theory predicts that ectothermic organisms from thermally stable environments have muted plasticity, and that these species may be particularly vulnerable to temperature increases. Whether such species retained or lost acclimation capacity remains largely unknown. We studied proteome changes in the planarian Crenobia alpina, a prominent member of cold-stable alpine habitats that is considered to be a cold-adapted stenotherm. We found that the species' critical thermal maximum (CTmax) is above its experienced habitat temperatures and that different populations exhibit differential CTmax acclimation capacity, whereby an alpine population showed reduced plasticity. In a separate experiment, we acclimated C. alpina individuals from the alpine population to 8, 11, 14 or 17°C over the course of 168 h and compared their comprehensively annotated proteomes. Network analyses of 3399 proteins and protein set enrichment showed that while the species' proteome is overall stable across these temperatures, protein sets functioning in oxidative stress response, mitochondria, protein synthesis and turnover are lower in abundance following warm acclimation. Proteins associated with an unfolded protein response, ciliogenesis, tissue damage repair, development and the innate immune system were higher in abundance following warm acclimation. Our findings suggest that this species has not suffered DNA decay (e.g. loss of heat-shock proteins) during evolution in a cold-stable environment and has retained plasticity in response to elevated temperatures, challenging the notion that stable environments necessarily result in muted plasticity. Summary: The proteome of an alpine Crenobia alpina population shows plasticity in response to acclimation to warmer temperatures.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mirjam Kathrin Wyss
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- 2 Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Stefanie von Fumetti
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Kapoor A, Padmavathi A, Madhwal S, Mukherjee T. Dual control of dopamine in Drosophila myeloid-like progenitor cell proliferation and regulation of lymph gland growth. EMBO Rep 2022; 23:e52951. [PMID: 35476897 PMCID: PMC9171693 DOI: 10.15252/embr.202152951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
In Drosophila, definitive haematopoiesis takes place in a specialized organ termed "lymph gland". It harbours multi-potent stem-like blood progenitor cells whose development controls overall growth of this haematopoietic tissue and formation of mature blood cells. With respect to its development, neurotransmitters have emerged as potent regulators of blood-progenitor cell development and function. In this study, we extend our understanding of neurotransmitters and show that progenitors are self-sufficient with regard to synthesizing dopamine, a well-established neurotransmitter. These cells also have modules for dopamine sensing through the receptor and transporter. We found that modulating expression of these components in progenitor cells affected lymph gland growth, which suggested growth-promoting function of dopamine in blood-progenitor cells. Cell-cycle analysis of developing lymph glands revealed an unexpected requirement for intracellular dopamine in moderating the progression of early progenitor cells from S to G2 phase of the cell cycle, while activation of dopamine receptor signalling later in development regulated their progression from G2 and entry into mitosis. The dual capacity in which dopamine operated, first intracellularly to coordinate S/G2 transition and later extracellularly in G2/M transition, was critical for the growth of the lymph gland. Overall, the data presented highlight a novel non-canonical use of dopamine in the myeloid system that reveals an uncharacterized function of intracellular dopamine in cell-cycle phasing with outcomes on haematopoietic growth and immunity as well.
Collapse
Affiliation(s)
- Ankita Kapoor
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Achalla Padmavathi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
12
|
Lahondère C, Bonizzoni M. Thermal biology of invasive Aedes mosquitoes in the context of climate change. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100920. [PMID: 35421621 DOI: 10.1016/j.cois.2022.100920] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 05/06/2023]
Abstract
The increasing incidence of arboviral diseases in tropical endemic areas and their emergence in new temperate countries is one of the most important challenges that Public Health agencies are currently facing. Because mosquitoes are poikilotherms, shifts in temperature influence physiological functions besides egg viability. These traits impact not only vector density, but also their interaction with their hosts and arboviruses. As such the relationship among mosquitoes, arboviral diseases and temperature is complex. Here, we summarize current knowledge on the thermal biology of Aedes invasive mosquitoes, highlighting differences among species. We also emphasize the need to expand knowledge on the variability in thermal sensitivity across populations within a species, especially in light of climate change that encompasses increase not only in mean environmental temperature but also in the frequency of hot and cold snaps. Finally, we suggest a novel experimental approach to investigate the molecular architecture of thermal adaptation in mosquitoes.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, USA; The Fralin Life Science Institute, USA; Center of Emerging, Zoonotic and Arthropod-borne Pathogens, USA; The Global Change Center, USA; Department of Entomology at Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
13
|
Christodoulaki E, Nolte V, Lai WY, Schlötterer C. Natural variation in Drosophila shows weak pleiotropic effects. Genome Biol 2022; 23:116. [PMID: 35578368 PMCID: PMC9109288 DOI: 10.1186/s13059-022-02680-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background Pleiotropy describes the phenomenon in which a gene affects multiple phenotypes. The extent of pleiotropy is still disputed, mainly because of issues of inadequate power of analyses. A further challenge is that empirical tests of pleiotropy are restricted to a small subset of all possible phenotypes. To overcome these limitations, we propose a new measurement of pleiotropy that integrates across many phenotypes and multiple generations to improve power. Results We infer pleiotropy from the fitness cost imposed by frequency changes of pleiotropic loci. Mixing Drosophila simulans populations, which adapted independently to the same new environment using different sets of genes, we show that the adaptive frequency changes have been accompanied by measurable fitness costs. Conclusions Unlike previous studies characterizing the molecular basis of pleiotropy, we show that many loci, each of weak effect, contribute to genome-wide pleiotropy. We propose that the costs of pleiotropy are reduced by the modular architecture of gene expression, which facilitates adaptive gene expression changes with low impact on other functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02680-4.
Collapse
Affiliation(s)
- Eirini Christodoulaki
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria
| | - Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | | |
Collapse
|
14
|
Lirakis M, Nolte V, Schlötterer C. Pool-GWAS on reproductive dormancy in Drosophila simulans suggests a polygenic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6523974. [PMID: 35137042 PMCID: PMC8895979 DOI: 10.1093/g3journal/jkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
15
|
Lai WY, Schlötterer C. Evolution of phenotypic variance in response to a novel hot environment. Mol Ecol 2021; 31:934-945. [PMID: 34775658 DOI: 10.1111/mec.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Shifts in trait means are widely considered as evidence for adaptive responses, but the impact on phenotypic variance remains largely unexplored. Classic quantitative genetics provides a theoretical framework to predict how selection on phenotypic mean affects the variance. In addition to this indirect effect, it is also possible that the variance of the trait is the direct target of selection, but experimentally characterized cases are rare. Here, we studied gene expression variance of Drosophila simulans males before and after 100 generations of adaptation to a novel hot laboratory environment. In each of the two independently evolved populations, the variance of 125 and 97 genes was significantly reduced. We propose that the drastic loss in environmental complexity from nature to the laboratory may have triggered selection for reduced variance. Our observation that selection could drive changes in the variance of gene expression could have important implications for studies of adaptation processes in natural and experimental populations.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
16
|
Bakovic V, Martin Cerezo ML, Höglund A, Fogelholm J, Henriksen R, Hargeby A, Wright D. The genomics of phenotypically differentiated Asellus aquaticus cave, surface stream and lake ecotypes. Mol Ecol 2021; 30:3530-3547. [PMID: 34002902 DOI: 10.1111/mec.15987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Organisms well suited for the study of ecotype formation have wide distribution ranges, where they adapt to multiple drastically different habitats repeatedly over space and time. Here we study such ecotypes in a Crustacean model, Asellus aquaticus, a commonly occurring isopod found in freshwater habitats as diverse as streams, caves and lakes. Previous studies focusing on cave vs. surface ecotypes have attributed depigmentation, eye loss and prolonged antennae to several south European cave systems. Likewise, surveys across multiple Swedish lakes have identified the presence of dark-pigmented "reed" and light-pigmented "stonewort" ecotypes, which can be found within the same lake. In this study, we sequenced the first draft genome of A. aquaticus, and subsequently use this to map reads and call variants in surface stream, cave and two lake ecotypes. In addition, the draft genome was combined with a RADseq approach to perform a quantitative trait locus (QTL) mapping study using a laboratory bred F2 and F4 cave × surface intercross. We identified genomic regions associated with body pigmentation, antennae length and body size. Furthermore, we compared genome-wide differentiation between natural populations and found several genes potentially associated with these habitats. The assessment of the cave QTL regions in the light-dark comparison of lake populations suggests that the regions associated with cave adaptation are also involved with genomic differentiation in the lake ecotypes. These demonstrate how troglomorphic adaptations can be used as a model for related ecotype formation.
Collapse
Affiliation(s)
- Vid Bakovic
- IFM Biology, University of Linköping, Linköping, Sweden
| | | | | | | | - Rie Henriksen
- IFM Biology, University of Linköping, Linköping, Sweden
| | | | | |
Collapse
|
17
|
Hsu S, Belmouaden C, Nolte V, Schlötterer C. Parallel gene expression evolution in natural and laboratory evolved populations. Mol Ecol 2021; 30:884-894. [PMID: 32979867 PMCID: PMC7891358 DOI: 10.1111/mec.15649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
Abstract
Ecological adaptation is frequently inferred by the comparison of natural populations from different environments. Nevertheless, inference of the selective forces suffers the challenge that many environmental factors covary. With well-controlled environmental conditions, experimental evolution provides a powerful approach to complement the analysis of natural populations. On the other hand, it is apparent that laboratory conditions differ in many ways from natural environments, which raises the question as to what extent selection responses in experimental evolution studies can inform us about adaptation processes in the wild. In this study, we compared the expression profiles of replicated Drosophila melanogaster populations which have been exposed to two distinct temperature regimes (18/28 and 10/20°C) in the laboratory for more than 80 generations. Using gene-wise differential expression analysis and co-expression network analysis, we identified 541 genes and three coregulated gene modules that evolved in the same direction in both temperature regimes, and most of these changes probably reflect an adaptation to the space constraint or diurnal temperature fluctuation that is common in both selection regimes. In total, 203 genes and seven modules evolved temperature-specific expression changes. Remarkably, we detected a significant overlap of these temperature-adaptive genes/modules from experimental evolution with temperature-adaptive genes inferred from natural Drosophila populations covering two different temperature clines. We conclude that well-designed experimental evolution studies are a powerful tool to dissect evolutionary responses.
Collapse
Affiliation(s)
- Sheng‐Kai Hsu
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population GeneticsVetmeduni ViennaViennaAustria
| | - Chaimae Belmouaden
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Present address:
Faculty of Fundamental and Applied Sciences of PoitiersFrance
| | - Viola Nolte
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
| | | |
Collapse
|
18
|
Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive selection. Nat Rev Genet 2020; 21:769-781. [PMID: 32601318 DOI: 10.1038/s41576-020-0250-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Most adaption processes have a polygenic genetic basis, but even with the recent explosive growth of genomic data we are still lacking a unified framework describing the dynamics of selected alleles. Building on recent theoretical and empirical work we introduce the concept of adaptive architecture, which extends the genetic architecture of an adaptive trait by factors influencing its adaptive potential and population genetic principles. Because adaptation can be typically achieved by many different combinations of adaptive alleles (redundancy), we describe how two characteristics - heterogeneity among loci and non-parallelism between replicated populations - are hallmarks for the characterization of polygenic adaptation in evolving populations. We discuss how this unified framework can be applied to natural and experimental populations.
Collapse
Affiliation(s)
- Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Joachim Hermisson
- Mathematics and BioSciences Group, Faculty of Mathematics and Max Perutz Labs, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
19
|
Langmüller AM, Nolte V, Galagedara R, Poupardin R, Dolezal M, Schlötterer C. Fitness effects for Ace insecticide resistance mutations are determined by ambient temperature. BMC Biol 2020; 18:157. [PMID: 33121485 PMCID: PMC7597021 DOI: 10.1186/s12915-020-00882-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Such mutations are typically costly in an insecticide-free environment, and their frequency is determined by the balance between insecticide treatment and cost of resistance. Ace, a key gene in neuronal signaling, is a prominent target of many insecticides and across several species, three amino acid replacements (I161V, G265A, and F330Y) provide resistance against several insecticides. Because temperature disturbs neuronal signaling homeostasis, we reasoned that the cost of insecticide resistance could be modulated by ambient temperature. RESULTS Experimental evolution of a natural Drosophila simulans population at hot and cold temperature regimes uncovered a surprisingly strong effect of ambient temperature. In the cold temperature regime, the resistance mutations were strongly counter selected (s = - 0.055), but in a hot environment, the fitness costs of resistance mutations were reduced by almost 50% (s = - 0.031). We attribute this unexpected observation to the advantage of the reduced enzymatic activity of resistance mutations in hot environments. CONCLUSION We show that fitness costs of insecticide resistance genes are temperature-dependent and suggest that the duration of insecticide-free periods need to be adjusted for different climatic regions to reflect these costs. We suggest that such environment-dependent fitness effects may be more common than previously assumed and pose a major challenge for modeling climate change.
Collapse
Affiliation(s)
- Anna Maria Langmüller
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ruwansha Galagedara
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Rodolphe Poupardin
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Present Address: Paracelsus Medical University Salzburg, Strubergasse 21, 5020, Salzburg, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|