1
|
Kang K, do Espirito Santo É, Diaz CJ, Oliver A, Saxton L, May L, Mayfield S, Molino JVD. Establishing the green algae Chlamydomonas incerta as a platform for recombinant protein production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.618925. [PMID: 39484490 PMCID: PMC11527144 DOI: 10.1101/2024.10.25.618925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Chlamydomonas incerta, a genetically close relative of the model green alga Chlamydomonas reinhardtii, shows significant potential as a host for recombinant protein expression. Because of the close genetic relationship between C. incerta and C. reinhardtii, this species offers an additional reference point for advancing our understanding of photosynthetic organisms, and also provides a potential new candidate for biotechnological applications. This study investigates C. incerta's capacity to express three recombinant proteins: the fluorescent protein mCherry, the hemicellulose-degrading enzyme xylanase, and the plastic-degrading enzyme PHL7. We have also examined the capacity to target protein expression to various cellular compartments in this alga, including the cytosol, secretory pathway, cytoplasmic membrane, and cell wall. When compared directly with C. reinhardtii, C. incerta exhibited a distinct but notable capacity for recombinant protein production. Cellular transformation with a vector encoding mCherry revealed that C. incerta produced approximately 3.5 times higher fluorescence levels and a 3.7-fold increase in immunoblot intensity compared to C. reinhardtii. For xylanase expression and secretion, both C. incerta and C. reinhardtii showed similar secretion capacities and enzymatic activities, with comparable xylan degradation rates, highlighting the industrial applicability of xylanase expression in microalgae. Finally, C. incerta showed comparable PHL7 activity levels to C. reinhardtii, as demonstrated by the in vitro degradation of a polyester polyurethane suspension, Impranil® DLN. Finally, we also explored the potential of cellular fusion for the generation of genetic hybrids between C. incerta and C. reinhardtii as a means to enhance phenotypic diversity and augment genetic variation. We were able to generate genetic fusion that could exchange both the recombinant protein genes, as well as associated selectable marker genes into recombinant offspring. These findings emphasize C. incerta's potential as a robust platform for recombinant protein production, and as a powerful tool for gaining a better understanding of microalgal biology.
Collapse
Affiliation(s)
- Kalisa Kang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Évellin do Espirito Santo
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Pãulo, Brazil
| | - Crisandra Jade Diaz
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Lisa Saxton
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Lauren May
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States of America
| | - Stephen Mayfield
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Algenesis Inc., 1238 Sea Village Dr., Cardiff, CA, United States of America
| | - João Vitor Dutra Molino
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
2
|
Bromham L. Mutation rate is central to understanding evolution. AMERICAN JOURNAL OF BOTANY 2024; 111:e16422. [PMID: 39397293 DOI: 10.1002/ajb2.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Lindell Bromham
- Macroevolution and Macroecology Group, Research, School of Biology, Australian National University, Canberra ACT, 0200, Australia
| |
Collapse
|
3
|
López-Cortegano E, Chebib J, Jonas A, Vock A, Künzel S, Tautz D, Keightley PD. Variation in the Spectrum of New Mutations among Inbred Strains of Mice. Mol Biol Evol 2024; 41:msae163. [PMID: 39101589 PMCID: PMC11327921 DOI: 10.1093/molbev/msae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is ∼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is ∼μ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward C→A transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.
Collapse
Affiliation(s)
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anastasia Vock
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
4
|
Quiroz D, Oya S, Lopez-Mateos D, Zhao K, Pierce A, Ortega L, Ali A, Carbonell-Bejerano P, Yarov-Yarovoy V, Suzuki S, Hayashi G, Osakabe A, Monroe G. H3K4me1 recruits DNA repair proteins in plants. THE PLANT CELL 2024; 36:2410-2426. [PMID: 38531669 PMCID: PMC11132887 DOI: 10.1093/plcell/koae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined 2 proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single-base substitution (SBS) mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation data set. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1-binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants.
Collapse
Affiliation(s)
- Daniela Quiroz
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
| | - Satoyo Oya
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Diego Lopez-Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Kehan Zhao
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Alice Pierce
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Lissandro Ortega
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alissza Ali
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sae Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Akihisa Osakabe
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Balogun EJ, Ness RW. The Effects of De Novo Mutation on Gene Expression and the Consequences for Fitness in Chlamydomonas reinhardtii. Mol Biol Evol 2024; 41:msae035. [PMID: 38366781 PMCID: PMC10910851 DOI: 10.1093/molbev/msae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Mutation is the ultimate source of genetic variation, the bedrock of evolution. Yet, predicting the consequences of new mutations remains a challenge in biology. Gene expression provides a potential link between a genotype and its phenotype. But the variation in gene expression created by de novo mutation and the fitness consequences of mutational changes to expression remain relatively unexplored. Here, we investigate the effects of >2,600 de novo mutations on gene expression across the transcriptome of 28 mutation accumulation lines derived from 2 independent wild-type genotypes of the green algae Chlamydomonas reinhardtii. We observed that the amount of genetic variance in gene expression created by mutation (Vm) was similar to the variance that mutation generates in typical polygenic phenotypic traits and approximately 15-fold the variance seen in the limited species where Vm in gene expression has been estimated. Despite the clear effect of mutation on expression, we did not observe a simple additive effect of mutation on expression change, with no linear correlation between the total expression change and mutation count of individual MA lines. We therefore inferred the distribution of expression effects of new mutations to connect the number of mutations to the number of differentially expressed genes (DEGs). Our inferred DEE is highly L-shaped with 95% of mutations causing 0-1 DEG while the remaining 5% are spread over a long tail of large effect mutations that cause multiple genes to change expression. The distribution is consistent with many cis-acting mutation targets that affect the expression of only 1 gene and a large target of trans-acting targets that have the potential to affect tens or hundreds of genes. Further evidence for cis-acting mutations can be seen in the overabundance of mutations in or near differentially expressed genes. Supporting evidence for trans-acting mutations comes from a 15:1 ratio of DEGs to mutations and the clusters of DEGs in the co-expression network, indicative of shared regulatory architecture. Lastly, we show that there is a negative correlation with the extent of expression divergence from the ancestor and fitness, providing direct evidence of the deleterious effects of perturbing gene expression.
Collapse
Affiliation(s)
- Eniolaye J Balogun
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S-3B2, Canada
| | - Rob W Ness
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
| |
Collapse
|
6
|
Legrand C, Andriantsoa R, Lichter P, Raddatz G, Lyko F. Time-resolved, integrated analysis of clonally evolving genomes. PLoS Genet 2023; 19:e1011085. [PMID: 38096267 PMCID: PMC10754456 DOI: 10.1371/journal.pgen.1011085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/28/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Clonal genome evolution is a key feature of asexually reproducing species and human cancer development. While many studies have described the landscapes of clonal genome evolution in cancer, few determine the underlying evolutionary parameters from molecular data, and even fewer integrate theory with data. We derived theoretical results linking mutation rate, time, expansion dynamics, and biological/clinical parameters. Subsequently, we inferred time-resolved estimates of evolutionary parameters from mutation accumulation, mutational signatures and selection. We then applied this framework to predict the time of speciation of the marbled crayfish, an enigmatic, globally invasive parthenogenetic freshwater crayfish. The results predict that speciation occurred between 1986 and 1990, which is consistent with biological records. We also used our framework to analyze whole-genome sequencing datasets from primary and relapsed glioblastoma, an aggressive brain tumor. The results identified evolutionary subgroups and showed that tumor cell survival could be inferred from genomic data that was generated during the resection of the primary tumor. In conclusion, our framework allowed a time-resolved, integrated analysis of key parameters in clonally evolving genomes, and provided novel insights into the evolutionary age of marbled crayfish and the progression of glioblastoma.
Collapse
Affiliation(s)
- Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Precision Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Lynch M, Ali F, Lin T, Wang Y, Ni J, Long H. The divergence of mutation rates and spectra across the Tree of Life. EMBO Rep 2023; 24:e57561. [PMID: 37615267 PMCID: PMC10561183 DOI: 10.15252/embr.202357561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several-fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift-barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population-genetic analysis and raises challenges for future applications in these areas.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Farhan Ali
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| |
Collapse
|
8
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Sane M, Diwan GD, Bhat BA, Wahl LM, Agashe D. Shifts in mutation spectra enhance access to beneficial mutations. Proc Natl Acad Sci U S A 2023; 120:e2207355120. [PMID: 37216547 PMCID: PMC10235995 DOI: 10.1073/pnas.2207355120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 05/24/2023] Open
Abstract
Biased mutation spectra are pervasive, with wide variation in the magnitude of mutational biases that influence genome evolution and adaptation. How do such diverse biases evolve? Our experiments show that changing the mutation spectrum allows populations to sample previously undersampled mutational space, including beneficial mutations. The resulting shift in the distribution of fitness effects is advantageous: Beneficial mutation supply and beneficial pleiotropy both increase, while deleterious load reduces. More broadly, simulations indicate that reducing or reversing the direction of a long-term bias is always selectively favored. Such changes in mutation bias can occur easily via altered function of DNA repair genes. A phylogenetic analysis shows that these genes are repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite directions. Thus, shifts in mutation spectra may evolve under selection and can directly alter the outcome of adaptive evolution by facilitating access to beneficial mutations.
Collapse
Affiliation(s)
- Mrudula Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Gaurav D. Diwan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Bioquant, University of Heidelberg,69120Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Bhoomika A. Bhat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Undergraduate Programme, Indian Institute of Science, Bengaluru 560012, India
| | - Lindi M. Wahl
- Mathematics, Western University, London, ON, N6A 5B7, Canada
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| |
Collapse
|
10
|
Monroe JG. Potential and limits of (mal)adaptive mutation rate plasticity in plants. THE NEW PHYTOLOGIST 2023; 237:2020-2026. [PMID: 36444532 DOI: 10.1111/nph.18640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Genetic mutations provide the heritable material for plant adaptation to their environments. At the same time, the environment can affect the mutation rate across plant genomes. However, the extent to which environmental plasticity in mutation rates can facilitate or hinder adaptation remains a longstanding and unresolved question. Emerging discoveries of mechanisms affecting mutation rate variability provide opportunities to consider this question in a new light. Links between chromatin states, transposable elements, and DNA repair suggest cases of adaptive mutation rate plasticity could occur. Yet, numerous evolutionary and biological forces are expected to limit the impact of any such mutation rate plasticity on adaptive evolution. Persistent uncertainty about the significance of mutation rate plasticity on adaptation motivates new experimental and theoretical research relevant to understanding plant responses in changing environments.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
11
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
12
|
Hasan AR, Lachapelle J, El-Shawa SA, Potjewyd R, Ford SA, Ness RW. Salt stress alters the spectrum of de novo mutation available to selection during experimental adaptation of Chlamydomonas reinhardtii. Evolution 2022; 76:2450-2463. [PMID: 36036481 DOI: 10.1111/evo.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
The genetic basis of adaptation is driven by both selection and the spectrum of available mutations. Given that the rate of mutation is not uniformly distributed across the genome and varies depending on the environment, understanding the signatures of selection across the genome is aided by first establishing what the expectations of genetic change are from mutation. To determine the interaction between salt stress, selection, and mutation across the genome, we compared mutations observed in a selection experiment for salt tolerance in Chlamydomonas reinhardtii to those observed in mutation accumulation (MA) experiments with and without salt exposure. MA lines evolved under salt stress had a single-nucleotide mutation rate of 1.1 × 10 - 9 $1.1 \times 10^{-9}$ , similar to that of MA lines under standard conditions ( 9.6 × 10 - 10 $9.6 \times 10^{-10}$ ). However, we found that salt stress led to an increased rate of indel mutations, but that many of these mutations were removed under selection. Finally, lines adapted to salt also showed excess clustering of mutations in the genome and the co-expression network, suggesting a role for positive selection in retaining mutations in particular compartments of the genome during the evolution of salt tolerance. Our study shows that characterizing mutation rates and spectra expected under stress helps disentangle the effects of environment and selection during adaptation.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Josianne Lachapelle
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Sara A El-Shawa
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Department of Mathematical and Computational Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Roman Potjewyd
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Scott A Ford
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
13
|
Pan J, Li W, Ni J, Wu K, Konigsberg I, Rivera CE, Tincher C, Gregory C, Zhou X, Doak TG, Lee H, Wang Y, Gao X, Lynch M, Long H. Rates of Mutations and Transcript Errors in the Foodborne Pathogen Salmonella enterica subsp. enterica. Mol Biol Evol 2022; 39:msac081. [PMID: 35446958 PMCID: PMC9040049 DOI: 10.1093/molbev/msac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because errors at the DNA level power pathogen evolution, a systematic understanding of the rate and molecular spectra of mutations could guide the avoidance and treatment of infectious diseases. We thus accumulated tens of thousands of spontaneous mutations in 768 repeatedly bottlenecked lineages of 18 strains from various geographical sites, temporal spread, and genetic backgrounds. Entailing over ∼1.36 million generations, the resultant data yield an average mutation rate of ∼0.0005 per genome per generation, with a significant within-species variation. This is one of the lowest bacterial mutation rates reported, giving direct support for a high genome stability in this pathogen resulting from high DNA-mismatch-repair efficiency and replication-machinery fidelity. Pathogenicity genes do not exhibit an accelerated mutation rate, and thus, elevated mutation rates may not be the major determinant for the diversification of toxin and secretion systems. Intriguingly, a low error rate at the transcript level is not observed, suggesting distinct fidelity of the replication and transcription machinery. This study urges more attention on the most basic evolutionary processes of even the best-known human pathogens and deepens the understanding of their genome evolution.
Collapse
Affiliation(s)
- Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Weiyi Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Iain Konigsberg
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Caitlyn E. Rivera
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Colin Gregory
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Xia Zhou
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Thomas G. Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Heewook Lee
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, No. 72 Binhai Road, Qingdao, Shandong Province 266237, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
14
|
Abstract
Non-random usage of synonymous codons, known as “codon bias”, has been described in many organisms, from bacteria to Drosophila, but little is known about it in phytoplankton. This phenomenon is thought to be driven by selection for translational efficiency. As the efficacy of selection is proportional to the effective population size, species with large population sizes, such as phytoplankton, are expected to have strong codon bias. To test this, we measured codon bias in 215 strains from Haptophyta, Chlorophyta, Ochrophyta (except diatoms that were studied previously), Dinophyta, Cryptophyta, Ciliophora, unicellular Rhodophyta and Chlorarachniophyta. Codon bias is modest in most groups, despite the astronomically large population sizes of marine phytoplankton. The strength of the codon bias, measured with the effective number of codons, is the strongest in Haptophyta and the weakest in Chlorarachniophyta. The optimal codons are GC-ending in most cases, but several shifts to AT-ending codons were observed (mainly in Ochrophyta and Ciliophora). As it takes a long time to reach a new equilibrium after such shifts, species having AT-ending codons show a lower frequency of optimal codons compared to other species. Genetic diversity, calculated for species with more than three strains sequenced, is modest, indicating that the effective population sizes are many orders of magnitude lower than the astronomically large census population sizes, which helps to explain the modest codon bias in marine phytoplankton. This study represents the first comparative analysis of codon bias across multiple major phytoplankton groups.
Collapse
|