1
|
Bartolić P, Morgan EJ, Padilla-García N, Kolář F. Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow. ANNALS OF BOTANY 2024; 134:537-550. [PMID: 38868992 PMCID: PMC11523636 DOI: 10.1093/aob/mcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
Collapse
Affiliation(s)
- Paolo Bartolić
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
2
|
Ravikanthachari N, Steward RA, Boggs CL. Patterns of genetic variation and local adaptation of a native herbivore to a lethal invasive plant. Mol Ecol 2024; 33:e17326. [PMID: 38515231 DOI: 10.1111/mec.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Understanding the evolutionary processes that influence fitness is critical to predicting species' responses to selection. Interactions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation or maladaptation, especially in heterogenous landscapes. Populations experiencing novel environments or resources are ideal for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used whole-genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single population between habitats with and without the lethal plant, highlighting the effects of strong selection. Finally, we identified that selection was acting on larval ability to feed on the plant rather than on females' ability to avoid oviposition, thus uncovering the specific ontogenetic target of selection. Our work highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.
Collapse
Affiliation(s)
- Nitin Ravikanthachari
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Rachel A Steward
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Carol L Boggs
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- School of Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
4
|
Robinson KM, Schiffthaler B, Liu H, Rydman SM, Rendón-Anaya M, Kalman TA, Kumar V, Canovi C, Bernhardsson C, Delhomme N, Jenkins J, Wang J, Mähler N, Richau KH, Stokes V, A'Hara S, Cottrell J, Coeck K, Diels T, Vandepoele K, Mannapperuma C, Park EJ, Plaisance S, Jansson S, Ingvarsson PK, Street NR. An Improved Chromosome-scale Genome Assembly and Population Genetics resource for Populus tremula. PHYSIOLOGIA PLANTARUM 2024; 176:e14511. [PMID: 39279509 DOI: 10.1111/ppl.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Aspen (Populus tremula L.) is a keystone species and a model system for forest tree genomics. We present an updated resource comprising a chromosome-scale assembly, population genetics and genomics data. Using the resource, we explore the genetic basis of natural variation in leaf size and shape, traits with complex genetic architecture. We generated the genome assembly using long-read sequencing, optical and high-density genetic maps. We conducted whole-genome resequencing of the Umeå Aspen (UmAsp) collection. Using the assembly and re-sequencing data from the UmAsp, Swedish Aspen (SwAsp) and Scottish Aspen (ScotAsp) collections we performed genome-wide association analyses (GWAS) using Single Nucleotide Polymorphisms (SNPs) for 26 leaf physiognomy phenotypes. We conducted Assay of Transposase Accessible Chromatin sequencing (ATAC-Seq), identified genomic regions of accessible chromatin, and subset SNPs to these regions, improving the GWAS detection rate. We identified candidate long non-coding RNAs in leaf samples, quantified their expression in an updated co-expression network, and used this to explore the functions of candidate genes identified from the GWAS. A GWAS found SNP associations for seven traits. The associated SNPs were in or near genes annotated with developmental functions, which represent candidates for further study. Of particular interest was a ~177-kbp region harbouring associations with several leaf phenotypes in ScotAsp. We have incorporated the assembly, population genetics, genomics, and GWAS data into the PlantGenIE.org web resource, including updating existing genomics data to the new genome version, to enable easy exploration and visualisation. We provide all raw and processed data to facilitate reuse in future studies.
Collapse
Affiliation(s)
- Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Hui Liu
- National Engineering Laboratory for Tree Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, China
| | - Sara M Rydman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Martha Rendón-Anaya
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Teitur Ahlgren Kalman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Vikash Kumar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Camilla Canovi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Carolina Bernhardsson
- Evolutionary Biology Centre, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Jerry Jenkins
- Hudson-Alpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Kerstin H Richau
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | - Stuart A'Hara
- Forest Research, Northern Research Station, Roslin, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Roslin, UK
| | - Kizi Coeck
- Vlaams Instituut voor Biotechnologie Nucleomics Core, Leuven, Belgium
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Eung-Jun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Suwon, Korea
| | | | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Skytte Af Sätra J, Garkava-Gustavsson L, Ingvarsson PK. Why we thrive beneath a northern sky - genomic signals of selection in apple for adaptation to northern Sweden. Heredity (Edinb) 2024; 133:67-77. [PMID: 38834867 PMCID: PMC11286948 DOI: 10.1038/s41437-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.
Collapse
Affiliation(s)
- J Skytte Af Sätra
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - L Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - P K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Dai X, Xiang S, Zhang Y, Yang S, Hu Q, Wu Z, Zhou T, Xiang J, Chen G, Tan X, Wang J, Ding J. Genomic evidence for evolutionary history and local adaptation of two endemic apricots: Prunus hongpingensis and P. zhengheensis. HORTICULTURE RESEARCH 2024; 11:uhad215. [PMID: 38689695 PMCID: PMC11059793 DOI: 10.1093/hr/uhad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/16/2023] [Indexed: 05/02/2024]
Abstract
Apricot, belonging to the Armeniaca section of Rosaceae, is one of the economically important crop fruits that has been extensively cultivated. The natural wild apricots offer valuable genetic resources for crop improvement. However, some of them are endemic, with small populations, and are even at risk of extinction. In this study we unveil chromosome-level genome assemblies for two southern China endemic apricots, Prunus hongpingensis (PHP) and P. zhengheensis (PZH). We also characterize their evolutionary history and the genomic basis of their local adaptation using whole-genome resequencing data. Our findings reveal that PHP and PZH are closely related to Prunus armeniaca and form a distinct lineage. Both species experienced a decline in effective population size following the Last Glacial Maximum (LGM), which likely contributed to their current small population sizes. Despite the observed decrease in genetic diversity and heterozygosity, we do not observe an increased accumulation of deleterious mutations in these two endemic apricots. This is likely due to the combined effects of a low inbreeding coefficient and strong purifying selection. Furthermore, we identify a set of genes that have undergone positive selection and are associated with local environmental adaptation in PHP and PZH, respectively. These candidate genes can serve as valuable genetic resources for targeted breeding and improvement of cultivated apricots. Overall, our study not only enriches our comprehension of the evolutionary history of apricot species but also offers crucial insights for the conservation and future breeding of other endemic species amidst rapid climate changes.
Collapse
Affiliation(s)
- Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Yulin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Siting Yang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Qianqian Hu
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Tingting Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Jingsong Xiang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Gongyou Chen
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Xiaohua Tan
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| |
Collapse
|
7
|
Carvalho-Madrigal S, Sanín MJ. The role of introgressive hybridization in shaping the geographically isolated gene pools of wax palm populations (genus Ceroxylon). Mol Phylogenet Evol 2024; 193:108013. [PMID: 38195012 DOI: 10.1016/j.ympev.2024.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
The speciation continuum is the process by which genetic groups diverge until they reach reproductive isolation. It has become common in the literature to show that this process is gradual and flickering, with possibly many instances of secondary contact and introgression after divergence has started. The level of divergence might vary among genomic regions due to, among others, the different forces and roles of selection played by the shared regions. Through hybrid capture, we sequenced ca. 4,000 nuclear regions in populations of six species of wax palms, five of which form a monophyletic group (genus Ceroxylon, Arecaceae: Ceroxyloideae). We show that in this group, the different populations show varying degrees of introgressive hybridization, and two of them are backcrosses of the other three 'pure' species. This is particularly interesting because these three species are dioecious, have a shared main pollinator, and have slightly overlapping reproductive seasons but highly divergent morphologies. Our work supports shows wax palms diverge under positive and background selection in allopatry, and hybridize due to secondary contact and inefficient reproductive barriers, which sustain genetic diversity. Introgressed regions are generally not under positive selection. Peripheral populations are backcrosses of other species; thus, introgressive hybridization is likely modulated by demographic effects rather than selective pressures. In general, these species might function as an 'evolutionary syngameon' where expanding, peripheral, small, and isolated populations maintain diversity by crossing with available individuals of other wax palms. In the Andean context, species can benefit from gained variation from a second taxon or the enhancement of population sizes by recreating a common genetic pool.
Collapse
Affiliation(s)
| | - María José Sanín
- School of Mathematical and Natural Sciences, Arizona State University, West Valley Campus, Glendale, United States.
| |
Collapse
|
8
|
Piatkowski B, Weston DJ, Aguero B, Duffy A, Imwattana K, Healey AL, Schmutz J, Shaw AJ. Divergent selection and climate adaptation fuel genomic differentiation between sister species of Sphagnum (peat moss). ANNALS OF BOTANY 2023; 132:499-512. [PMID: 37478307 PMCID: PMC10666999 DOI: 10.1093/aob/mcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIMS New plant species can evolve through the reinforcement of reproductive isolation via local adaptation along habitat gradients. Peat mosses (Sphagnaceae) are an emerging model system for the study of evolutionary genomics and have well-documented niche differentiation among species. Recent molecular studies have demonstrated that the globally distributed species Sphagnum magellanicum is a complex of morphologically cryptic lineages that are phylogenetically and ecologically distinct. Here, we describe the architecture of genomic differentiation between two sister species in this complex known from eastern North America: the northern S. diabolicum and the largely southern S. magniae. METHODS We sampled plant populations from across a latitudinal gradient in eastern North America and performed whole genome and restriction-site associated DNA sequencing. These sequencing data were then analyzed computationally. KEY RESULTS Using sliding-window population genetic analyses we find that differentiation is concentrated within 'islands' of the genome spanning up to 400 kb that are characterized by elevated genetic divergence, suppressed recombination, reduced nucleotide diversity and increased rates of non-synonymous substitution. Sequence variants that are significantly associated with genetic structure and bioclimatic variables occur within genes that have functional enrichment for biological processes including abiotic stress response, photoperiodism and hormone-mediated signalling. Demographic modelling demonstrates that these two species diverged no more than 225 000 generations ago with secondary contact occurring where their ranges overlap. CONCLUSIONS We suggest that this heterogeneity of genomic differentiation is a result of linked selection and reflects the role of local adaptation to contrasting climatic zones in driving speciation. This research provides insight into the process of speciation in a group of ecologically important plants and strengthens our predictive understanding of how plant populations will respond as Earth's climate rapidly changes.
Collapse
Affiliation(s)
- Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aaron Duffy
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Karn Imwattana
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Adam L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Hernández F, Palmieri L, Brunet J. Introgression and persistence of cultivar alleles in wild carrot (Daucus carota) populations in the United States. AMERICAN JOURNAL OF BOTANY 2023; 110:e16242. [PMID: 37681637 DOI: 10.1002/ajb2.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
PREMISE Cultivated species and their wild relatives often hybridize in the wild, and the hybrids can survive and reproduce in some environments. However, it is unclear whether cultivar alleles are permanently incorporated into the wild genomes or whether they are purged by natural selection. This question is key to accurately assessing the risk of escape and spread of cultivar genes into wild populations. METHODS We used genomic data and population genomic methods to study hybridization and introgression between cultivated and wild carrot (Daucus carota) in the United States. We used single nucleotide polymorphisms (SNPs) obtained via genotyping by sequencing for 450 wild individuals from 29 wild georeferenced populations in seven states and 144 cultivars from the United States, Europe, and Asia. RESULTS Cultivated and wild carrot formed two genetically differentiated groups, and evidence of crop-wild admixture was detected in several but not all wild carrot populations in the United States. Two regions were identified where cultivar alleles were present in wild carrots: California and Nantucket Island (Massachusetts). Surprisingly, there was no evidence of introgression in some populations with a long-known history of sympatry with the crop, suggesting that post-hybridization barriers might prevent introgression in some areas. CONCLUSIONS Our results provide support for the introgression and long-term persistence of cultivar alleles in wild carrots populations. We thus anticipate that the release of genetically engineered (GE) cultivars would lead to the introduction and spread of GE alleles in wild carrot populations.
Collapse
Affiliation(s)
- Fernando Hernández
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina
- CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Luciano Palmieri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Madison, WI, USA
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, WI, USA
| |
Collapse
|
10
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Escamez S, Robinson KM, Luomaranta M, Gandla ML, Mähler N, Yassin Z, Grahn T, Scheepers G, Stener LG, Jansson S, Jönsson LJ, Street NR, Tuominen H. Genetic markers and tree properties predicting wood biorefining potential in aspen (Populus tremula) bioenergy feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:65. [PMID: 37038157 PMCID: PMC10088276 DOI: 10.1186/s13068-023-02315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Wood represents the majority of the biomass on land and constitutes a renewable source of biofuels and other bioproducts. However, wood is recalcitrant to bioconversion, raising a need for feedstock improvement in production of, for instance, biofuels. We investigated the properties of wood that affect bioconversion, as well as the underlying genetics, to help identify superior tree feedstocks for biorefining. RESULTS We recorded 65 wood-related and growth traits in a population of 113 natural aspen genotypes from Sweden ( https://doi.org/10.5061/dryad.gtht76hrd ). These traits included three growth and field performance traits, 20 traits for wood chemical composition, 17 traits for wood anatomy and structure, and 25 wood saccharification traits as indicators of bioconversion potential. Glucose release after saccharification with acidic pretreatment correlated positively with tree stem height and diameter and the carbohydrate content of the wood, and negatively with the content of lignin and the hemicellulose sugar units. Most of these traits displayed extensive natural variation within the aspen population and high broad-sense heritability, supporting their potential in genetic improvement of feedstocks towards improved bioconversion. Finally, a genome-wide association study (GWAS) revealed 13 genetic loci for saccharification yield (on a whole-tree-biomass basis), with six of them intersecting with associations for either height or stem diameter of the trees. CONCLUSIONS The simple growth traits of stem height and diameter were identified as good predictors of wood saccharification yield in aspen trees. GWAS elucidated the underlying genetics, revealing putative genetic markers for bioconversion of bioenergy tree feedstocks.
Collapse
Affiliation(s)
- Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Kathryn M Robinson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Mikko Luomaranta
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Zakiya Yassin
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | - Thomas Grahn
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | | | - Lars-Göran Stener
- The Forestry Research Institute of Sweden, Ekebo, 268 90, Svalöv, Sweden
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| |
Collapse
|
12
|
Zhao D, Zhang J, Hui N, Wang L, Tian Y, Ni W, Long J, Jiang L, Li Y, Diao S, Li J, Tembrock LR, Wu Z, Wang Z. A Genomic Quantitative Study on the Contribution of the Ancestral-State Bases Relative to Derived Bases in the Divergence and Local Adaptation of Populus davidiana. Genes (Basel) 2023; 14:genes14040821. [PMID: 37107579 PMCID: PMC10137690 DOI: 10.3390/genes14040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Identifying alleles associated with adaptation to new environments will advance our understanding of evolution from the molecular level. Previous studies have found that the Populus davidiana southwest population in East Asia has differentiated from other populations in the range. We aimed to evaluate the contributions of the ancestral-state bases (ASBs) relative to derived bases (DBs) in the local adaptation of P. davidiana in the Yunnan-Guizhou Plateau from a quantitative perspective using whole-genome re-sequencing data from 90 P. davidiana samples from three regions across the species range. Our results showed that the uplift of the Qinghai-Tibet Plateau during the Neogene and associated climate fluctuations during the Middle Pleistocene were likely an important factor in the early divergence of P. davidiana. Highly differentiated genomic regions between populations were inferred to have undergone strong linked natural selection, and ASBs are the chief means by which populations of P. davidiana adapt to novel environmental conditions; however, when adapting to regions with high environmental differences relative to the ancestral range, the proportion of DBs was significantly higher than that of background regions, as ASBs are insufficient to cope with these environments. Finally, a number of genes were identified in the outlier region.
Collapse
Affiliation(s)
- Dandan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable, Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Nan Hui
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Li Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yang Tian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wanning Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jinhua Long
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Li Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yi Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jinhua Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable, Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Compton S, Stackpole C, Dixit A, Sekhwal MK, Kolb T, De la Torre AR. Differences in heat tolerance, water use efficiency and growth among Douglas-fir families and varieties evidenced by GWAS and common garden studies. AOB PLANTS 2023; 15:plad008. [PMID: 37007611 PMCID: PMC10052383 DOI: 10.1093/aobpla/plad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Severe and frequent heat and drought events challenge the survival and development of long-generation trees. In this study, we investigated the genomic basis of heat tolerance, water use efficiency and growth by performing genome-wide association studies in coastal Douglas-fir (Pseudotsuga menziesii) and intervarietal (menziesii × glauca) hybrid seedlings. GWAS results identified 32 candidate genes involved in primary and secondary metabolism, abiotic stress and signaling, among other functions. Water use efficiency (inferred from carbon isotope discrimination), photosynthetic capacity (inferred from %N), height and heat tolerance (inferred from electrolyte leakage in a heat stress experiment) were significantly different among Douglas-fir families and varieties. High-elevation seed sources had increased water use efficiency, which could be a result of higher photosynthetic capacity. Similarly, families with greater heat tolerance also had higher water use efficiency and slower growth, suggesting a conservative growth strategy. Intervarietal hybrids showed increased heat tolerance (lower electrolyte leakage at 50 and 55 °C) and higher water use efficiency compared with coastal families, suggesting that hybridization might be a source of pre-adapted alleles to warming climates and should be considered for large-scale reforestation projects under increasingly arid conditions.
Collapse
Affiliation(s)
| | | | - Aalap Dixit
- Department of Forestry, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Manoj K Sekhwal
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, AZ 86011, USA
| | - Thomas Kolb
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, AZ 86011, USA
| | | |
Collapse
|
14
|
Yuan S, Shi Y, Zhou BF, Liang YY, Chen XY, An QQ, Fan YR, Shen Z, Ingvarsson PK, Wang B. Genomic vulnerability to climate change in Quercus acutissima, a dominant tree species in East Asian deciduous forests. Mol Ecol 2023; 32:1639-1655. [PMID: 36626136 DOI: 10.1111/mec.16843] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yan-Ru Fan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Zhao Shen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
15
|
Bhargav VV, Freeland JR, Dorken ME. Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca). Heredity (Edinb) 2022; 129:195-201. [PMID: 35933492 PMCID: PMC9411187 DOI: 10.1038/s41437-022-00557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Interspecific hybridization has varied consequences for offspring fitness, with implications for the maintenance of species integrity. Hybrid vigour, when it occurs, can peak in first-generation (F1) hybrids and then decline in advanced-generation (F2+) hybrids. This hybrid breakdown, together with the processes affecting patterns of hybridization and hybrid fitness, determine the evolutionary stability of hybrid zones. An extensive hybrid zone in North America involving the cattails Typha latifolia, T. angustifolia, and their invasive hybrid T. × glauca is characterized by hybrid vigour among F1s, but the fitness of advanced-generation hybrids has not been studied. We compared seed germination and plant growth of T. latifolia (parental L), F1 T. × glauca (F1), hybrid backcrosses to T. angustifolia (bcA) and T. latifolia (bcL), and advanced-generation (F2) hybrids. Consistent with expectations under hybrid breakdown, we found reduced plant growth for F2 hybrids in comparison with F1s (plant height and above-ground biomass) and parental Ls (above-ground biomass). Backcrossed hybrids had intermediate measures of plant growth and bcLs were characterized by reduced seed germination in comparison with parental Ls. Hybrid breakdown could make the formation of F1s in North America finite because (1) hybridization among cattails is asymmetric, with T. angustifolia but not T. latifolia subject to genetic swamping, and (2) T. angustifolia is less common and subject to competitive displacement by F1s. Hybrid breakdown is therefore expected to reduce hybrid frequencies over time, contributing to the long-term maintenance of T. latifolia - the only native cattail in the study region.
Collapse
Affiliation(s)
- V Vikram Bhargav
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Joanna R Freeland
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Marcel E Dorken
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
16
|
Blanco Pastor JL. Alternative modes of introgression-mediated selection shaped crop adaptation to novel climates. Genome Biol Evol 2022; 14:6647590. [PMID: 35859297 PMCID: PMC9348624 DOI: 10.1093/gbe/evac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recent plant genomic studies provide fine-grained details on the evolutionary consequences of adaptive introgression during crop domestication. Modern genomic approaches and analytical methods now make it possible to better separate the introgression signal from the demographic signal thus providing a more comprehensive and complex picture of the role of introgression in local adaptation. Adaptive introgression has been fundamental for crop expansion and has involved complex patterns of gene flow. In addition to providing new and more favorable alleles of large effect, introgression during the early stages of domestication also increased allelic diversity at adaptive loci. Previous studies have largely underestimated the effect of such increased diversity following introgression. Recent genomic studies in wheat, potato, maize, grapevine, and ryegrass show that introgression of multiple genes, of as yet unknown effect, increased the effectiveness of purifying selection, and promoted disruptive or fluctuating selection in early cultivars and landraces. Historical selection processes associated with introgression from crop wild relatives provide an instructive analog for adaptation to current climate change and offer new avenues for crop breeding research that are expected to be instrumental for strengthening food security in the coming years.
Collapse
|
17
|
André D, Marcon A, Lee KC, Goretti D, Zhang B, Delhomme N, Schmid M, Nilsson O. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Curr Biol 2022; 32:2988-2996.e4. [PMID: 35660141 DOI: 10.1016/j.cub.2022.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
In temperate and boreal regions, perennials adapt their annual growth cycle to the change of seasons. These adaptations ensure survival in harsh environmental conditions, allowing growth at different latitudes and altitudes, and are therefore tightly regulated. Populus tree species cease growth and form terminal buds in autumn when photoperiod falls below a certain threshold.1 This is followed by establishment of dormancy and cold hardiness over the winter. At the center of the photoperiodic pathway in Populus is the gene FLOWERING LOCUS T2 (FT2), which is expressed during summer and harbors significant SNPs in its locus associated with timing of bud set.1-4 The paralogous gene FT1, on the other hand, is hyper-induced in chilling buds during winter.3,5 Even though its function is so far unknown, it has been suggested to be involved in the regulation of flowering and the release of winter dormancy.3,5 In this study, we employ CRISPR-Cas9-mediated gene editing to individually study the function of the FT-like genes in Populus trees. We show that while FT2 is required for vegetative growth during spring and summer and regulates the entry into dormancy, expression of FT1 is absolutely required for bud flush in spring. Gene expression profiling suggests that this function of FT1 is linked to the release of winter dormancy rather than to the regulation of bud flush per se. These data show how FT duplication and sub-functionalization have allowed Populus trees to regulate two completely different and major developmental control points during the yearly growth cycle.
Collapse
Affiliation(s)
- Domenique André
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Alice Marcon
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Keh Chien Lee
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 36 Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|