1
|
Garcia-Erill G, Wang X, Rasmussen MS, Quinn L, Khan A, Bertola LD, Santander CG, Balboa RF, Ogutu JO, Pečnerová P, Hanghøj K, Kuja J, Nursyifa C, Masembe C, Muwanika V, Bibi F, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Extensive Population Structure Highlights an Apparent Paradox of Stasis in the Impala (Aepyceros melampus). Mol Ecol 2024:e17539. [PMID: 39373069 DOI: 10.1111/mec.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Impalas are unusual among bovids because they have remained morphologically similar over millions of years-a phenomenon referred to as evolutionary stasis. Here, we sequenced 119 whole genomes from the two extant subspecies of impala, the common (Aepyceros melampus melampus) and black-faced (A. m. petersi) impala. We investigated the evolutionary forces working within the species to explore how they might be associated with its evolutionary stasis as a taxon. Despite being one of the most abundant bovid species, we found low genetic diversity overall, and a phylogeographic signal of spatial expansion from southern to eastern Africa. Contrary to expectations under a scenario of evolutionary stasis, we found pronounced genetic structure between and within the two subspecies with indications of ancient, but not recent, gene flow. Black-faced impala and eastern African common impala populations had more runs of homozygosity than common impala in southern Africa, and, using a proxy for genetic load, we found that natural selection is working less efficiently in these populations compared to the southern African populations. Together with the fossil record, our results are consistent with a fixed-optimum model of evolutionary stasis, in which impalas in the southern African core of the range are able to stay near their evolutionary fitness optimum as a generalist ecotone species, whereas eastern African impalas may struggle to do so due to the effects of genetic drift and reduced adaptation to the local habitat, leading to recurrent local extinction in eastern Africa and re-colonisation from the South.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology and Genetics, Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anubhab Khan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Bolner M, Bovo S, Ballan M, Schiavo G, Taurisano V, Ribani A, Bertolini F, Fontanesi L. A comprehensive atlas of nuclear sequences of mitochondrial origin (NUMT) inserted into the pig genome. Genet Sel Evol 2024; 56:64. [PMID: 39285356 PMCID: PMC11403998 DOI: 10.1186/s12711-024-00930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The integration of nuclear mitochondrial DNA (mtDNA) into the mammalian genomes is an ongoing, yet rare evolutionary process that produces nuclear sequences of mitochondrial origin (NUMT). In this study, we identified and analysed NUMT inserted into the pig (Sus scrofa) genome and in the genomes of a few other Suinae species. First, we constructed a comparative distribution map of NUMT in the Sscrofa11.1 reference genome and in 22 other assembled S. scrofa genomes (from Asian and European pig breeds and populations), as well as the assembled genomes of the Visayan warty pig (Sus cebifrons) and warthog (Phacochoerus africanus). We then analysed a total of 485 whole genome sequencing datasets, from different breeds, populations, or Sus species, to discover polymorphic NUMT (inserted/deleted in the pig genome). The insertion age was inferred based on the presence or absence of orthologous NUMT in the genomes of different species, taking into account their evolutionary divergence. Additionally, the age of the NUMT was calculated based on sequence degradation compared to the authentic mtDNA sequence. We also validated a selected set of representative NUMT via PCR amplification. RESULTS We have constructed an atlas of 418 NUMT regions, 70 of which were not present in any assembled genomes. We identified ancient NUMT regions (older than 55 million years ago, Mya) and NUMT that appeared at different time points along the Suinae evolutionary lineage. We identified very recent polymorphic NUMT (private to S. scrofa, with < 1 Mya), and more ancient polymorphic NUMT (3.5-10 Mya) present in various Sus species. These latest polymorphic NUMT regions, which segregate in European and Asian pig breeds and populations, are likely the results of interspecies admixture within the Sus genus. CONCLUSIONS This study provided a first comprehensive analysis of NUMT present in the Sus scrofa genome, comparing them to NUMT found in other species within the order Cetartiodactyla. The NUMT-based evolutionary window that we reconstructed from NUMT integration ages could be useful to better understand the micro-evolutionary events that shaped the modern pig genome and enriched the genetic diversity of this species.
Collapse
Affiliation(s)
- Matteo Bolner
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Mohamad Ballan
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
3
|
Wang Y, Gou Y, Yuan R, Zou Q, Zhang X, Zheng T, Fei K, Shi R, Zhang M, Li Y, Gong Z, Luo C, Xiong Y, Shan D, Wei C, Shen L, Tang G, Li M, Zhu L, Li X, Jiang Y. A chromosome-level genome of Chenghua pig provides new insights into the domestication and local adaptation of pigs. Int J Biol Macromol 2024; 270:131796. [PMID: 38677688 DOI: 10.1016/j.ijbiomac.2024.131796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
As a country with abundant genetic resources of pigs, the domestication history of pigs in China and the adaptive evolution of Chinese pig breeds at different latitudes have rarely been elucidated at the genome-wide level. To fill this gap, we first assembled a high-quality chromosome-level genome of the Chenghua pig and used it as a benchmark to analyse the genomes of 272 samples from three genera of three continents. The divergence of the three species belonging to three genera, Phacochoerus africanus, Potamochoerus porcus, and Sus scrofa, was assessed. The introgression of pig breeds redefined that the migration routes were basically from southern China to central and southwestern China, then spread to eastern China, arrived in northern China, and finally reached Europe. The domestication of pigs in China occurred ∼12,000 years ago, earlier than the available Chinese archaeological domestication evidence. In addition, FBN1 and NR6A1 were identified in our study as candidate genes related to extreme skin thickness differences in Eurasian pig breeds and adaptive evolution at different latitudes in Chinese pig breeds, respectively. Our study provides a new resource for the pig genomic pool and refines our understanding of pig genetic diversity, domestication, migration, and adaptive evolution at different latitudes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yuwei Gou
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xukun Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chenggang Luo
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Ying Xiong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chenyang Wei
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
4
|
Li G, Liu Y, Feng X, Diao S, Zhong Z, Li B, Teng J, Zhang W, Zeng H, Cai X, Gao Y, Liu X, Yuan X, Li J, Zhang Z. Integrating Multiple Database Resources to Elucidate the Gene Flow in Southeast Asian Pig Populations. Int J Mol Sci 2024; 25:5689. [PMID: 38891877 PMCID: PMC11171535 DOI: 10.3390/ijms25115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The domestic pig (Sus scrofa) and its subfamilies have experienced long-term and extensive gene flow, particularly in Southeast Asia. Here, we analyzed 236 pigs, focusing on Yunnan indigenous, European commercial, East Asian, and Southeast Asian breeds, using the Pig Genomics Reference Panel (PGRP v1) of Pig Genotype-Tissue Expression (PigGTEx) to investigate gene flow and associated complex traits by integrating multiple database resources. In this study, we discovered evidence of admixtures from European pigs into the genome of Yunnan indigenous pigs. Additionally, we hypothesized that a potential conceptual gene flow route that may have contributed to the genetic composition of the Diannan small-ear pig is a gene exchange from the Vietnamese pig. Based on the most stringent gene introgression scan using the fd statistic, we identified three specific loci on chromosome 8, ranging from 51.65 to 52.45 Mb, which exhibited strong signatures of selection and harbored the NAF1, NPY1R, and NPY5R genes. These genes are associated with complex traits, such as fat mass, immunity, and litter weight, in pigs, as supported by multiple bio-functionalization databases. We utilized multiple databases to explore the potential dynamics of genetic exchange in Southeast Asian pig populations and elucidated specific gene functionalities.
Collapse
Affiliation(s)
- Guangzhen Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yuqiang Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xueyan Feng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Shuqi Diao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhanming Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Bolang Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jinyan Teng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Wenjing Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Haonan Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaodian Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yahui Gao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| |
Collapse
|
5
|
Liu X, Lin L, Sinding MHS, Bertola LD, Hanghøj K, Quinn L, Garcia-Erill G, Rasmussen MS, Schubert M, Pečnerová P, Balboa RF, Li Z, Heaton MP, Smith TPL, Pinto RR, Wang X, Kuja J, Brüniche-Olsen A, Meisner J, Santander CG, Ogutu JO, Masembe C, da Fonseca RR, Muwanika V, Siegismund HR, Albrechtsen A, Moltke I, Heller R. Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations. Nat Commun 2024; 15:2921. [PMID: 38609362 PMCID: PMC11014984 DOI: 10.1038/s41467-024-47015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024] Open
Abstract
The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael P Heaton
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Rui Resende Pinto
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jonas Meisner
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Rute R da Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Chege M, Sewalt B, Lesilau F, de Snoo G, Patterson BD, Kariuki L, Otiende M, Omondi P, de Iongh H, Vrieling K, Bertola LD. Genetic diversity of lion populations in Kenya: Evaluating past management practices and recommendations for future conservation actions. Evol Appl 2024; 17:e13676. [PMID: 38505216 PMCID: PMC10950092 DOI: 10.1111/eva.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
The decline of lions (Panthera leo) in Kenya has raised conservation concerns about their overall population health and long-term survival. This study aimed to assess the genetic structure, differentiation and diversity of lion populations in the country, while considering the influence of past management practices. Using a lion-specific Single Nucleotide Polymorphism (SNP) panel, we genotyped 171 individuals from 12 populations representative of areas with permanent lion presence. Our results revealed a distinct genetic pattern with pronounced population structure, confirmed a north-south split and found no indication of inbreeding in any of the tested populations. Differentiation seems to be primarily driven by geographical barriers, human presence and climatic factors, but management practices may have also affected the observed patterns. Notably, the Tsavo population displayed evidence of admixture, perhaps attributable to its geographic location as a suture zone, vast size or past translocations, while the fenced populations of Lake Nakuru National Park and Solio Ranch exhibited reduced genetic diversity due to restricted natural dispersal. The Amboseli population had a high number of monomorphic loci likely reflecting a historical population decline. This illustrates that patterns of genetic diversity should be seen in the context of population histories and that future management decisions should take these insights into account. To address the conservation implications of our findings, we recommend prioritizing the maintenance of suitable habitats to facilitate population connectivity. Initiation of genetic restoration efforts and separately managing populations with unique evolutionary histories is crucial for preserving genetic diversity and promoting long-term population viability.
Collapse
Affiliation(s)
- Mumbi Chege
- Wildlife Research and Training InstituteNaivashaKenya
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
| | - Bobbie Sewalt
- Institute of Biology IBLLeiden UniversityLeidenThe Netherlands
| | - Francis Lesilau
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
| | - Geert de Snoo
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
- Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Bruce D. Patterson
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoUnited States
| | | | - Moses Otiende
- Wildlife Research and Training InstituteNaivashaKenya
| | | | - Hans de Iongh
- Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
- Department of Evolutionary EcologyUniversity of AntwerpAntwerpBelgium
- Department BiologyUniversity of AntwerpAntwerpBelgium
| | - K. Vrieling
- Institute of Biology IBLLeiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
7
|
Balboa RF, Bertola LD, Brüniche-Olsen A, Rasmussen MS, Liu X, Besnard G, Salmona J, Santander CG, He S, Zinner D, Pedrono M, Muwanika V, Masembe C, Schubert M, Kuja J, Quinn L, Garcia-Erill G, Stæger FF, Rakotoarivony R, Henrique M, Lin L, Wang X, Heaton MP, Smith TPL, Hanghøj K, Sinding MHS, Atickem A, Chikhi L, Roos C, Gaubert P, Siegismund HR, Moltke I, Albrechtsen A, Heller R. African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival. Nat Commun 2024; 15:172. [PMID: 38172616 PMCID: PMC10764920 DOI: 10.1038/s41467-023-44105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.
Collapse
Affiliation(s)
- Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Jordi Salmona
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shixu He
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dietmar Zinner
- Cognitive Ecology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077, Göttingen, Germany
| | - Miguel Pedrono
- UMR ASTRE, CIRAD, Campus International de Baillarguet, Montpellier, France
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Mikkel Schubert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lounès Chikhi
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Yan C, Xie HB, Adeola AC, Fu Y, Liu X, Zhao S, Han J, Peng MS, Zhang YP. Inference of ancestral alleles in the pig reference genome. Anim Genet 2023; 54:649-651. [PMID: 37329125 DOI: 10.1111/age.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Chen Yan
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jianlin Han
- International Livestock Research Institute, Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
9
|
An Updated Review of Ornithodoros Ticks as Reservoirs of African Swine Fever in Sub-Saharan Africa and Madagascar. Pathogens 2023; 12:pathogens12030469. [PMID: 36986391 PMCID: PMC10059854 DOI: 10.3390/pathogens12030469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
This updated review provides an overview of the available information on Ornithodoros ticks as reservoirs and biological vectors of the ASF virus in Africa and Indian Ocean islands in order to update the current knowledge in this field, inclusive of an overview of available methods to investigate the presence of ticks in the natural environment and in domestic pig premises. In addition, it highlights the major areas of research that require attention in order to guide future investigations and fill knowledge gaps. The available information suggests that current knowledge is clearly insufficient to develop risk-based control and prevention strategies, which should be based on a sound understanding of genotype distribution and the potential for spillover from the source population. Studies on tick biology in the natural and domestic cycle, including genetics and systematics, represent another important knowledge gap. Considering the rapidly changing dynamics affecting the African continent (demographic growth, agricultural expansion, habitat transformation), anthropogenic factors influencing tick population distribution and ASF virus (ASFV) evolution in Africa are anticipated and have been recorded in southern Africa. This dynamic context, together with the current global trends of ASFV dissemination, highlights the need to prioritize further investigation on the acarological aspects linked with ASF ecology and evolution.
Collapse
|
10
|
VanderWerf EA, Taylor PE, Rohrer JL, Dittmar E, Burt MD. Improved status of the conservation reliant Oahu Elepaio through effective management and natural adaptation. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | - Philip E. Taylor
- U.S. Army Garrison, Environmental Division Directorate of Public Works Schofield Barracks Hawaii USA
| | - Jobriath L. Rohrer
- U.S. Army Garrison, Environmental Division Directorate of Public Works Schofield Barracks Hawaii USA
| | | | - Matthew D. Burt
- U.S. Army Garrison, Environmental Division Directorate of Public Works Schofield Barracks Hawaii USA
- 36 Civil Engineering Squadron Environmental Flight, Unit 14007, Andersen Air Force Base Guam
| |
Collapse
|
11
|
Xie HB, Yan C, Adeola AC, Wang K, Huang CP, Xu MM, Qiu Q, Yin X, Fan CY, Ma YF, Yin TT, Gao Y, Deng JK, Okeyoyin AO, Oluwole OO, Omotosho O, Okoro VMO, Omitogun OG, Dawuda PM, Olaogun SC, Nneji LM, Ayoola AO, Sanke OJ, Luka PD, Okoth E, Lekolool I, Mijele D, Bishop RP, Han J, Wang W, Peng MS, Zhang YP. African Suid Genomes Provide Insights into the Local Adaptation to Diverse African Environments. Mol Biol Evol 2022; 39:6840307. [PMID: 36413509 PMCID: PMC9733430 DOI: 10.1093/molbev/msac256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
African wild suids consist of several endemic species that represent ancient members of the family Suidae and have colonized diverse habitats on the African continent. However, limited genomic resources for African wild suids hinder our understanding of their evolution and genetic diversity. In this study, we assembled high-quality genomes of a common warthog (Phacochoerus africanus), a red river hog (Potamochoerus porcus), as well as an East Asian Diannan small-ear pig (Sus scrofa). Phylogenetic analysis showed that common warthog and red river hog diverged from their common ancestor around the Miocene/Pliocene boundary, putatively predating their entry into Africa. We detected species-specific selective signals associated with sensory perception and interferon signaling pathways in common warthog and red river hog, respectively, which contributed to their local adaptation to savannah and tropical rainforest environments, respectively. The structural variation and evolving signals in genes involved in T-cell immunity, viral infection, and lymphoid development were identified in their ancestral lineage. Our results provide new insights into the evolutionary histories and divergent genetic adaptations of African suids.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xue Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chen-Yu Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yun-Fei Ma
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jia-Kun Deng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Agboola O Okeyoyin
- National Park Service Headquarter, Federal Capital Territory, Abuja 900108, Nigeria
| | - Olufunke O Oluwole
- Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria
| | - Oladipo Omotosho
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Victor M O Okoro
- Department of Animal Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Ofelia G Omitogun
- Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Philip M Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi 970001, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Adeola O Ayoola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo 660213, Nigeria
| | - Pam D Luka
- National Veterinary Research Institute, Vom 930103, Nigeria
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | | | - Richard P Bishop
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | - Wen Wang
- Corresponding authors: E-mails: ; ; ;
| | | | | |
Collapse
|
12
|
Biogeography and conservation of desert warthog Phacochoerus aethiopicus and common warthog Phacochoerus africanus (Artiodactyla: Suidae) in the Horn of Africa. MAMMALIA 2022. [DOI: 10.1515/mammalia-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Two species of warthog are currently widely recognised, the poorly known desert warthog Phacochoerus aethiopicus and the widely distributed common warthog Phacochoerus africanus. Spatial data for both species were collected during field surveys and from the literature, museums, colleagues, naturalists, local experts, and online resources to assess their biogeography in the Horn of Africa (HoA). Their distributions were overlaid with ArcGIS datasets for altitude, rainfall, temperature, and ecoregions. Phacochoerus aethiopicus appears to be restricted to Ethiopia, Kenya, and Somalia, with no records west of the Eastern Rift Valley (ERV). The estimated current geographic distribution of P. aethiopicus is 1,109,000 km2. Phacochoerus africanus occurs in all five countries of the HoA and has an estimated current geographic distribution in the HoA of 1,213,000 km2. Phacochoerus africanus appears to be the more adaptable species although P. aethiopicus is able to live where mean annual rainfall is more variable. Although both species are allopatric over vast regions, they are sympatric in central east Ethiopia, north Somalia, central Kenya, north coast of Kenya, and southeast Kenya. Both suids remain locally common, their populations are, however, in decline due to the negative impacts on the environment by the rapidly growing human populations in all five countries.
Collapse
|