1
|
Elguweidi A, Crease T. Copy number and sequence variation in rDNA of Daphnia pulex from natural populations: insights from whole-genome sequencing. G3 (BETHESDA, MD.) 2024; 14:jkae105. [PMID: 38771699 PMCID: PMC11228840 DOI: 10.1093/g3journal/jkae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 02/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Ribosomal DNA (rDNA) has a vital role in ribosome biogenesis as it contains the genes that encode ribosomal RNA (rRNA) separated by intergenic spacers (IGSs). The rRNA genes occur in hundreds to tens of thousands of copies per haploid genome in eukaryotes and are generally highly conserved with low variation within species. Due to the repetitive nature and large size of rDNA arrays, detecting intraindividual variation can be difficult. In this study, we use whole-genome sequences of 169 Daphnia pulex individuals from 10 natural populations to measure the copy number and sequence variation in rDNA. This revealed that variation in rDNA copy number between individuals spans an order of magnitude. We further observed a substantial level of sequence variation within individual genomes. As expected, single-nucleotide polymorphisms occurred in regions of lower functional constraint such as the IGS and expansion segments of the rRNA genes. The presence of strong linkage disequilibrium among variants facilitated identification of haplotypes within each population. Although there was evidence of recombination among haplotypes from different populations, it is insufficient to eliminate linkage disequilibrium within populations. Estimating copy number and haplotype diversity within individuals revealed that the level of intraindividual sequence variation is not strongly correlated with copy number. The observed patterns of variation highlight a complex evolutionary history of rDNA in D. pulex. Future research should explore the functional implications of rDNA copy number and sequence variation on organismal phenotypes.
Collapse
Affiliation(s)
- Abir Elguweidi
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Teresa Crease
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
2
|
Sultanov D, Hochwagen A. Varying strength of selection contributes to the intragenomic diversity of rRNA genes. Nat Commun 2022; 13:7245. [PMID: 36434003 PMCID: PMC9700816 DOI: 10.1038/s41467-022-34989-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Ribosome biogenesis in eukaryotes is supported by hundreds of ribosomal RNA (rRNA) gene copies that are encoded in the ribosomal DNA (rDNA). The multiple copies of rRNA genes are thought to have low sequence diversity within one species. Here, we present species-wide rDNA sequence analysis in Saccharomyces cerevisiae that challenges this view. We show that rDNA copies in this yeast are heterogeneous, both among and within isolates, and that many variants avoided fixation or elimination over evolutionary time. The sequence diversity landscape across the rDNA shows clear functional stratification, suggesting different copy-number thresholds for selection that contribute to rDNA diversity. Notably, nucleotide variants in the most conserved rDNA regions are sufficiently deleterious to exhibit signatures of purifying selection even when present in only a small fraction of rRNA gene copies. Our results portray a complex evolutionary landscape that shapes rDNA sequence diversity within a single species and reveal unexpectedly strong purifying selection of multi-copy genes.
Collapse
Affiliation(s)
- Daniel Sultanov
- grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| | - Andreas Hochwagen
- grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| |
Collapse
|
3
|
Wang W, Zhang K, Deng D, Zhang YN, Peng S, Xu X. Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River. PLoS One 2016; 11:e0152436. [PMID: 27015539 PMCID: PMC4807850 DOI: 10.1371/journal.pone.0152436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI), and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6%) was significantly higher than the G+C content (34.6%, 41.6% and 45.4%). This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%-0.8% for 16S rDNA and 0%-1.5% for COI gene). However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%-10.5%, thereby indicating that D. pulex may have evolved into different subspecies.
Collapse
Affiliation(s)
- Wenping Wang
- School of Life Science, Huaibei Normal University, Anhui Key Laboratory of Resource and Plant Biology, Huaibei, 235000, China
| | - Kun Zhang
- School of Life Science, Huaibei Normal University, Anhui Key Laboratory of Resource and Plant Biology, Huaibei, 235000, China
| | - Daogui Deng
- School of Life Science, Huaibei Normal University, Anhui Key Laboratory of Resource and Plant Biology, Huaibei, 235000, China
| | - Ya-Nan Zhang
- School of Life Science, Huaibei Normal University, Anhui Key Laboratory of Resource and Plant Biology, Huaibei, 235000, China
| | - Shuixiu Peng
- School of Life Science, Huaibei Normal University, Anhui Key Laboratory of Resource and Plant Biology, Huaibei, 235000, China
| | - Xiaoxue Xu
- School of Life Science, Huaibei Normal University, Anhui Key Laboratory of Resource and Plant Biology, Huaibei, 235000, China
| |
Collapse
|
4
|
Mohrbeck I, Raupach MJ, Martínez Arbizu P, Knebelsberger T, Laakmann S. High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? PLoS One 2015; 10:e0140342. [PMID: 26479071 PMCID: PMC4610693 DOI: 10.1371/journal.pone.0140342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/24/2015] [Indexed: 02/03/2023] Open
Abstract
The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of the V1-V2 region was used to analyze two pooled samples of DNA, one comprising 118 and the other 37 morphologically identified species, and one natural sample taken directly from a North Sea zooplankton community. A DNA reference library comprising all species represented in the pooled samples was created by Sanger sequencing, and this was then used to determine the optimal similarity threshold for species delineation. The optimal threshold was found at 99% species similarity, with 85% identification success. Pyrosequencing was able to identify between fewer species: 67% and 78% of the species in the two pooled samples. Also, a large number of sequences for three species that were not included in the pooled samples were amplified by pyrosequencing, suggesting preferential amplification of some genotypes and the sensitivity of this approach to even low levels of contamination. Conversely, metagenetic analysis of the natural zooplankton sample identified many more species (particularly gelatinous zooplankton and meroplankton) than morphological analysis of a formalin-fixed sample from the same sampling site, suggesting an increased level of taxonomic resolution with pyrosequencing. The study demonstrated that, based on the V1-V2 region, 454 sequencing does not provide accurate species differentiation and reliable taxonomic classification, as it is required in most biodiversity monitoring. The analysis of artificially prepared samples indicated that species detection in pyrosequencing datasets is complicated by potential PCR-based biases and that the V1-V2 marker is poorly resolved for some taxa.
Collapse
Affiliation(s)
- Inga Mohrbeck
- Department German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Michael J Raupach
- Department German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Pedro Martínez Arbizu
- Department German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Thomas Knebelsberger
- Department German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Silke Laakmann
- Department German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| |
Collapse
|
5
|
Brown EA, Chain FJJ, Crease TJ, MacIsaac HJ, Cristescu ME. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? Ecol Evol 2015; 5:2234-51. [PMID: 26078859 PMCID: PMC4461424 DOI: 10.1002/ece3.1485] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022] Open
Abstract
DNA metabarcoding is a promising method for describing communities and estimating biodiversity. This approach uses high-throughput sequencing of targeted markers to identify species in a complex sample. By convention, sequences are clustered at a predefined sequence divergence threshold (often 3%) into operational taxonomic units (OTUs) that serve as a proxy for species. However, variable levels of interspecific marker variation across taxonomic groups make clustering sequences from a phylogenetically diverse dataset into OTUs at a uniform threshold problematic. In this study, we use mock zooplankton communities to evaluate the accuracy of species richness estimates when following conventional protocols to cluster hypervariable sequences of the V4 region of the small subunit ribosomal RNA gene (18S) into OTUs. By including individually tagged single specimens and "populations" of various species in our communities, we examine the impact of intra- and interspecific diversity on OTU clustering. Communities consisting of single individuals per species generated a correspondence of 59-84% between OTU number and species richness at a 3% divergence threshold. However, when multiple individuals per species were included, the correspondence between OTU number and species richness dropped to 31-63%. Our results suggest that intraspecific variation in this marker can often exceed 3%, such that a single species does not always correspond to one OTU. We advocate the need to apply group-specific divergence thresholds when analyzing complex and taxonomically diverse communities, but also encourage the development of additional filtering steps that allow identification of artifactual rRNA gene sequences or pseudogenes that may generate spurious OTUs.
Collapse
Affiliation(s)
- Emily A Brown
- Department of Biology, McGill University1205 Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
- Great Lakes Institute for Environmental Research, University of WindsorWindsor, Ontario, Canada, N9B 3P4
| | - Frédéric J J Chain
- Department of Biology, McGill University1205 Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| | - Teresa J Crease
- Department of Integrative Biology, University of Guelph50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of WindsorWindsor, Ontario, Canada, N9B 3P4
| | - Melania E Cristescu
- Department of Biology, McGill University1205 Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
6
|
Flynn JM, Brown EA, Chain FJJ, MacIsaac HJ, Cristescu ME. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol Evol 2015; 5:2252-66. [PMID: 26078860 PMCID: PMC4461425 DOI: 10.1002/ece3.1497] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 11/05/2022] Open
Abstract
Metabarcoding has the potential to become a rapid, sensitive, and effective approach for identifying species in complex environmental samples. Accurate molecular identification of species depends on the ability to generate operational taxonomic units (OTUs) that correspond to biological species. Due to the sometimes enormous estimates of biodiversity using this method, there is a great need to test the efficacy of data analysis methods used to derive OTUs. Here, we evaluate the performance of various methods for clustering length variable 18S amplicons from complex samples into OTUs using a mock community and a natural community of zooplankton species. We compare analytic procedures consisting of a combination of (1) stringent and relaxed data filtering, (2) singleton sequences included and removed, (3) three commonly used clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods of treating alignment gaps when calculating sequence divergence. Depending on the combination of methods used, the number of OTUs varied by nearly two orders of magnitude for the mock community (60–5068 OTUs) and three orders of magnitude for the natural community (22–22191 OTUs). The use of relaxed filtering and the inclusion of singletons greatly inflated OTU numbers without increasing the ability to recover species. Our results also suggest that the method used to treat gaps when calculating sequence divergence can have a great impact on the number of OTUs. Our findings are particularly relevant to studies that cover taxonomically diverse species and employ markers such as rRNA genes in which length variation is extensive.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1
| | - Emily A Brown
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1 ; Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, Canada
| | - Frédéric J J Chain
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University 1205 Docteur Penfield, Stewart Biology Building, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
7
|
Intra-genomic ribosomal RNA polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in foraminifera. PLoS One 2012; 7:e32373. [PMID: 22393402 PMCID: PMC3290570 DOI: 10.1371/journal.pone.0032373] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/28/2012] [Indexed: 11/19/2022] Open
Abstract
Elphidium macellum is a benthic foraminifer commonly found in the Patagonian fjords. To test whether its highly variable morphotypes are ecophenotypes or different genotypes, we analysed 70 sequences of the SSU rRNA gene from 25 specimens. Unexpectedly, we identified 11 distinct ribotypes, with up to 5 ribotypes co-occurring within the same specimen. The ribotypes differ by varying blocks of sequence located at the end of stem-loop motifs in the three expansion segments specific to foraminifera. These changes, distinct from typical SNPs and indels, directly affect the structure of the expansion segments. Their mosaic distribution suggests that ribotypes originated by recombination of two or more clusters of ribosomal genes. We propose that this expansion segment polymorphism (ESP) could originate from hybridization of morphologically different populations of Patagonian Elphidium. We speculate that the complex geological history of Patagonia enhanced divergence of coastal foraminiferal species and contributed to increasing genetic and morphological variation.
Collapse
|
8
|
Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY, Wägele JW. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Front Zool 2010; 7:26. [PMID: 20836845 PMCID: PMC2945340 DOI: 10.1186/1742-9994-7-26] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. RESULTS We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. CONCLUSION Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.
Collapse
Affiliation(s)
- Michael J Raupach
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160-162, 53113 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
McTaggart SJ, Crease TJ. Length variation in 18S rRNA expansion segment 43/e4 of Daphnia obtusa: ancient or recurring polymorphism? J Mol Evol 2009; 69:142-9. [PMID: 19582497 DOI: 10.1007/s00239-009-9257-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/21/2009] [Accepted: 06/02/2009] [Indexed: 11/28/2022]
Abstract
Expansion segments in ribosomal DNA (rDNA) can show length variation at the level of the individual, yet our understanding of the evolutionary forces shaping this variation is incomplete. Previous studies of expansion segment 43/e4 of the 18S rRNA gene in Daphnia obtusa have examined this variation in six individuals; however, it is not known if the variation documented at this locus is representative of variation across the species' geographic range. Furthermore, it is unclear whether length variants found in multiple individuals share common ancestry, or were generated de novo through recombination. We quantified expansion segment length variant frequencies in 134 individual D. obtusa from 33 populations at 15 sites across the species range in the US, and used a phylogeographic approach to determine whether recombination continues to add to the standing crop of variation at this locus. We identified seven length variants across the sampling range, which spans almost 3000 km. Based on the phylogeographic distribution of length variants in the expansion segment, we conclude that they are shared ancient polymorphisms that have persisted despite the operation of molecular mechanisms that cause the concerted evolution of multigene families such as rDNA.
Collapse
|
10
|
Glass SK, Moszczynska A, Crease TJ. The effect of transposon Pokey insertions on sequence variation in the 28S rRNA gene of Daphnia pulex. Genome 2009; 51:988-1000. [PMID: 19088812 DOI: 10.1139/g08-092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to determine the impact of breeding system and the presence of the transposon Pokey on intraindividual variation in 28S rRNA genes. We PCR-amplified, cloned, and sequenced 1000 nucleotides downstream of the Pokey insertion site in genes with and without insertions from 10 obligately and 10 cyclically parthenogenetic isolates of Daphnia pulex. Variation among genes with Pokey insertions was higher than variation among genes without insertions in both cyclic and obligate isolates. Although the differences were not quite significant (p = 0.06 in both cases), the results suggest that Pokey insertions are likely to inhibit the homogenization of their host genes to some extent. We also observed that the complement of 28S rRNA alleles differed between genes with and without inserts in some isolates, suggesting that a particular inserted gene can persist for substantial periods of time and even spread within the rDNA array, despite the fact that insertions are deleterious. This apparently contradictory pattern can be explained if homogenization of rRNA genes occurs primarily by gene conversion, but copies with Pokey inserts can occasionally increase in frequency within arrays owing to unequal crossing over events that do not originate in the inserted genes themselves.
Collapse
Affiliation(s)
- Shiona K Glass
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1 Canada
| | | | | |
Collapse
|
11
|
Comparative analysis of sequences and secondary structures of the rRNA internal transcribed spacer 2 (ITS2) in pollen beetles of the subfamily Meligethinae (Coleoptera, Nitidulidae): potential use of slippage-derived sequences in molecular systematics. Mol Phylogenet Evol 2008; 51:215-26. [PMID: 19059352 DOI: 10.1016/j.ympev.2008.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/21/2022]
Abstract
A comparative analysis of ITS2 sequences and secondary structures in 89 species of pollen beetles of the subfamily Meligethinae (Coleoptera, Nitidulidae) was performed. The ITS2 folding pattern was highly conserved and comparable with the general model proposed for eukaryotes. Simple sequence repeats (SSRs) were responsible for most of the observed nucleotide variability (approximately 1-3%) and length variation (359-459bp). When plotted on secondary structures, SSRs mapped in expansion segments positioned at the apices of three ITS2 helices ('A', 'B' and 'D1') and appeared to have evolved under mechanisms of compensatory slippage. Homologies among SSRs nucleotides could not be unambiguously assigned, and thus were not useful to resolve phylogeny. However, slippage-derived motifs provided some preliminary genetic support for newly proposed taxonomic arrangements of several genera and subgenera of Meligethinae, corroborating existing morphological and ecological datasets.
Collapse
|
12
|
Gultyaev AP, Roussis A. Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants. Nucleic Acids Res 2007; 35:3144-52. [PMID: 17452360 PMCID: PMC1888808 DOI: 10.1093/nar/gkm173] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/05/2007] [Accepted: 03/06/2007] [Indexed: 11/22/2022] Open
Abstract
enod40 is a plant gene that participates in the regulation of symbiotic interaction between leguminous plants and bacteria or fungi. Furthermore, it has been suggested to play a general role in non-symbiotic plant development. Although enod40 seems to have multiple functions, being present in many land plants, the molecular mechanisms of its activity are unclear; they may be determined though, by short peptides and/or RNA structures encoded in the enod40 genes. We utilized conserved RNA structures in enod40 sequences to search nucleotide sequence databases and identified a number of new enod40 homologues in plant species that belong to known, but also, to yet unknown enod40-containing plant families. RNA secondary structure predictions and comparative sequence analysis of enod40 RNAs allowed us to determine the most conserved structural features, present in all known enod40 genes. Remarkably, the topology and evolution of one of the conserved structural domains are similar to those of the expansion segments found in structural RNAs such as rRNAs, RNase P and SRP RNAs. Surprisingly, the enod40 RNA structural elements are much more stronger conserved than the encoded peptides. This finding suggests that some general functions of enod40 gene could be determined by the encoded RNA structure, whereas short peptides may be responsible for more diverse functions found only in certain plant families.
Collapse
Affiliation(s)
- Alexander P. Gultyaev
- Leiden Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands and Agricultural University of Athens, Department of Agricultural Biology and Biotechnology, Iera Odos 75, 118 55 Votanikos, Athens, Greece
| | - Andreas Roussis
- Leiden Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands and Agricultural University of Athens, Department of Agricultural Biology and Biotechnology, Iera Odos 75, 118 55 Votanikos, Athens, Greece
| |
Collapse
|
13
|
McTaggart SJ, Dudycha JL, Omilian A, Crease TJ. Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics 2006; 175:311-20. [PMID: 17110499 PMCID: PMC1775004 DOI: 10.1534/genetics.105.050229] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomal (r)DNA undergoes concerted evolution, the mechanisms of which are unequal crossing over and gene conversion. Despite the fundamental importance of these mechanisms to the evolution of rDNA, their rates have been estimated only in a few model species. We estimated recombination rate in rDNA by quantifying the relative frequency of intraindividual length variants in an expansion segment of the 18S rRNA gene of the cladoceran crustacean, Daphnia obtusa, in four apomictically propagated lines. We also used quantitative PCR to estimate rDNA copy number. The apomictic lines were sampled every 5 generations for 90 generations, and we considered each significant change in the frequency distribution of length variants between time intervals to be the result of a recombination event. Using this method, we calculated the recombination rate for this region to be 0.02-0.06 events/generation on the basis of three different estimates of rDNA copy number. In addition, we observed substantial changes in rDNA copy number within and between lines. Estimates of haploid copy number varied from 53 to 233, with a mean of 150. We also measured the relative frequency of length variants in 30 lines at generations 5, 50, and 90. Although length variant frequencies changed significantly within and between lines, the overall average frequency of each length variant did not change significantly between the three generations sampled, suggesting that there is little or no bias in the direction of change due to recombination.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
14
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|