1
|
Moescheid MF, Puckelwaldt O, Beutler M, Haeberlein S, Grevelding CG. Defining an optimal control for RNAi experiments with adult Schistosoma mansoni. Sci Rep 2023; 13:9766. [PMID: 37328492 PMCID: PMC10276032 DOI: 10.1038/s41598-023-36826-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023] Open
Abstract
In parasites such as Schistosoma mansoni, gene knockdown by RNA interference (RNAi) has become an indispensable tool for functional gene characterization. To distinguish target-specific RNAi effects versus off-target effects, controls are essential. To date, however, there is still no general agreement about suitable RNAi controls, which limits the comparability between studies. To address this point, we investigated three selected dsRNAs for their suitability as RNAi controls in experiments with adult S. mansoni in vitro. Two dsRNAs were of bacterial origin, the neomycin resistance gene (neoR) and the ampicillin resistance gene (ampR). The third one, the green fluorescent protein gene (gfp), originated from jellyfish. Following dsRNA application, we analyzed physiological parameters like pairing stability, motility, and egg production as well as morphological integrity. Furthermore, using RT-qPCR we evaluated the potential of the used dsRNAs to influence transcript patterns of off-target genes, which had been predicted by si-Fi (siRNA-Finder). At the physiological and morphological levels, we observed no obvious changes in the dsRNA treatment groups compared to an untreated control. However, we detected remarkable differences at the transcript level of gene expression. Amongst the three tested candidates, we suggest dsRNA of the E. coli ampR gene as the most suitable RNAi control.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Mandy Beutler
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Baker EA, Woollard A. How Weird is The Worm? Evolution of the Developmental Gene Toolkit in Caenorhabditis elegans. J Dev Biol 2019; 7:E19. [PMID: 31569401 PMCID: PMC6956190 DOI: 10.3390/jdb7040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/14/2023] Open
Abstract
Comparative developmental biology and comparative genomics are the cornerstones of evolutionary developmental biology. Decades of fruitful research using nematodes have produced detailed accounts of the developmental and genomic variation in the nematode phylum. Evolutionary developmental biologists are now utilising these data as a tool with which to interrogate the evolutionary basis for the similarities and differences observed in Nematoda. Nematodes have often seemed atypical compared to the rest of the animal kingdom-from their totally lineage-dependent mode of embryogenesis to their abandonment of key toolkit genes usually deployed by bilaterians for proper development-worms are notorious rule breakers of the bilaterian handbook. However, exploring the nature of these deviations is providing answers to some of the biggest questions about the evolution of animal development. For example, why is the evolvability of each embryonic stage not the same? Why can evolution sometimes tolerate the loss of genes involved in key developmental events? Lastly, why does natural selection act to radically diverge toolkit genes in number and sequence in certain taxa? In answering these questions, insight is not only being provided about the evolution of nematodes, but of all metazoans.
Collapse
Affiliation(s)
- Emily A Baker
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.
| |
Collapse
|
3
|
Darbellay F, Duboule D. Topological Domains, Metagenes, and the Emergence of Pleiotropic Regulations at Hox Loci. Curr Top Dev Biol 2017; 116:299-314. [PMID: 26970625 DOI: 10.1016/bs.ctdb.2015.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hox gene clusters of jaw vertebrates display a tight genomic organization, which has no equivalent in any other bilateria genomes sequenced thus far. It was previously argued that such a topological consolidation toward a condensed, metagenic structure was due to the accumulation of long-range regulations flanking Hox loci, a phenomenon made possible by the successive genome duplications that occurred at the root of the vertebrate lineage, similar to gene neofunctionalization but applied to a coordinated multigenic system. Here, we propose that the emergence of such large vertebrate regulatory landscapes containing a range of global enhancers was greatly facilitated by the presence of topologically associating domains (TADs). These chromatin domains, mostly constitutive, may have been used as genomic niches where novel regulations could evolve due to both the preexistence of a structural backbone poised to integrate novel regulatory inputs, and a highly adaptive transcriptional readout. We propose a scenario for the coevolution of such TADs and the emergence of pleiotropy at ancestral vertebrate Hox loci.
Collapse
Affiliation(s)
- Fabrice Darbellay
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland
| | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland; Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans. Nat Commun 2017; 8:9. [PMID: 28377584 PMCID: PMC5431905 DOI: 10.1038/s41467-017-00020-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
The phylum Rotifera consists of minuscule, nonsegmented animals with a unique body plan and an unresolved phylogenetic position. The presence of pharyngeal articulated jaws supports an inclusion in Gnathifera nested in the Spiralia. Comparison of Hox genes, involved in animal body plan patterning, can be used to infer phylogenetic relationships. Here, we report the expression of five Hox genes during embryogenesis of the rotifer Brachionus manjavacas and show how these genes define different functional components of the nervous system and not the usual bilaterian staggered expression along the anteroposterior axis. Sequence analysis revealed that the lox5-parapeptide, a key signature in lophotrochozoan and platyhelminthean Hox6/lox5 genes, is absent and replaced by different signatures in Rotifera and Chaetognatha, and that the MedPost gene, until now unique to Chaetognatha, is also present in rotifers. Collectively, our results support an inclusion of chaetognaths in gnathiferans and Gnathifera as sister group to the remaining spiralians. Rotifers are microscopic animals with an unusual, nonsegmented body plan consisting of a head, trunk and foot. Here, Fröbius and Funch investigate the role of Hox genes—which are widely used in animal body plan patterning—in rotifer embryogenesis and find non-canonical expression in the nervous system.
Collapse
|
5
|
Barucca M, Canapa A, Biscotti MA. An Overview of Hox Genes in Lophotrochozoa: Evolution and Functionality. J Dev Biol 2016; 4:jdb4010012. [PMID: 29615580 PMCID: PMC5831810 DOI: 10.3390/jdb4010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/02/2016] [Accepted: 03/12/2016] [Indexed: 11/29/2022] Open
Abstract
Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several phyla which show a wide morphological diversity. Despite that the works summarized in this review emphasize the fragmentary nature of the data available regarding the presence and expression of Hox genes, they also offer interesting insight into the evolution of the Hox cluster and the role played by Hox genes in several phyla. However, the number of genes involved in the cluster of the lophotrochozoan ancestor is still a question of debate. The data presented here suggest that at least nine genes were present while two other genes, Lox4 and Post-2, may either have been present in the ancestor or may have arisen as a result of duplication in the Brachiopoda-Mollusca-Annelida lineage. Spatial and temporal collinearity is a feature of Hox gene expression which was probably present in the ancestor of deuterostomes and protostomes. However, in Lophotrochozoa, it has been detected in only a few species belonging to Annelida and Mollusca.
Collapse
Affiliation(s)
- Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
6
|
Biscotti MA, Canapa A, Forconi M, Barucca M. HoxandParaHoxgenes: A review on molluscs. Genesis 2014; 52:935-45. [DOI: 10.1002/dvg.22839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| |
Collapse
|
7
|
Olson PD, Zarowiecki M, Kiss F, Brehm K. Cestode genomics - progress and prospects for advancing basic and applied aspects of flatworm biology. Parasite Immunol 2012; 34:130-50. [PMID: 21793855 DOI: 10.1111/j.1365-3024.2011.01319.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Characterization of the first tapeworm genome, Echinococcus multilocularis, is now nearly complete, and genome assemblies of E. granulosus, Taenia solium and Hymenolepis microstoma are in advanced draft versions. These initiatives herald the beginning of a genomic era in cestodology and underpin a diverse set of research agendas targeting both basic and applied aspects of tapeworm biology. We discuss the progress in the genomics of these species, provide insights into the presence and composition of immunologically relevant gene families, including the antigen B- and EG95/45W families, and discuss chemogenomic approaches toward the development of novel chemotherapeutics against cestode diseases. In addition, we discuss the evolution of tapeworm parasites and introduce the research programmes linked to genome initiatives that are aimed at understanding signalling systems involved in basic host-parasite interactions and morphogenesis.
Collapse
Affiliation(s)
- P D Olson
- Department of Zoology, The Natural History Museum, London, UK
| | | | | | | |
Collapse
|
8
|
Abstract
The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force-mutation or selection-and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype-phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, United Kingdom
| | - Scott William Roy
- Department of Biology, Stanford University
- Department of Biology, San Francisco State University
| | - Manuel Irimia
- Department of Biology, Stanford University
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Canada
| |
Collapse
|
9
|
Tschopp P, Duboule D. A genetic approach to the transcriptional regulation of Hox gene clusters. Annu Rev Genet 2012; 45:145-66. [PMID: 22060042 DOI: 10.1146/annurev-genet-102209-163429] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of vertebrate genomes was accompanied by an astounding increase in the complexity of their regulatory modalities. Genetic redundancy resulting from large-scale genome duplications at the base of the chordate tree was repeatedly exploited by the functional redeployment of paralogous genes via innovations in their regulatory circuits. As a paradigm of such regulatory evolution, we have extensively studied those control mechanisms at work in-cis over vertebrate Hox gene clusters. Here, we review the portfolio of genetic strategies that have been developed to tackle the intricate relationship between genomic topography and the transcriptional activities in this gene family, and we describe some of the mechanistic insights we gained by using the HoxD cluster as an example. We discuss the high heuristic value of this system in our general understanding of how changes in transcriptional regulation can diversify gene function and thereby fuel morphological evolution.
Collapse
Affiliation(s)
- Patrick Tschopp
- National Center of Competence in Research, Frontiers in Genetics, Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
10
|
Cho SJ, Vallès Y, Kim KM, Ji SC, Han SJ, Park SC. Additional duplicated Hox genes in the earthworm: Perionyx excavatus Hox genes consist of eleven paralog groups. Gene 2012; 493:260-6. [DOI: 10.1016/j.gene.2011.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
11
|
Gu JL, Chen SX, Dou TH, Xu MJ, Xu JX, Zhang L, Hu W, Wang SY, Zhou Y. Hox genes from the parasitic flatworm Schistosoma japonicum. Genomics 2012; 99:59-65. [DOI: 10.1016/j.ygeno.2011.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 10/26/2011] [Accepted: 10/29/2011] [Indexed: 11/17/2022]
|
12
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
13
|
Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics 2011; 98:96-111. [PMID: 21640815 DOI: 10.1016/j.ygeno.2011.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/06/2011] [Accepted: 05/17/2011] [Indexed: 11/22/2022]
Abstract
Mature microRNAs (miRNAs) are small, non-coding regulatory RNAs which can elicit post-transcriptional repression of mRNA levels of target genes. Here, we report the identification of 67 mature and 42 precursor miRNAs in the Schistosoma mansoni parasite. The evolutionarily conserved S. mansoni miRNAs consisted of 26 precursor miRNAs and 35 mature miRNAs, while we identified 16 precursor miRNAs and 32 mature miRNAs that displayed no conservation. These S. mansoni miRNAs are located on seven autosomal chromosomes and a sex (W) chromosome. miRNA expansion through gene duplication was suggested for at least two miRNA families miR-71 and mir-2. miRNA target finding analysis identified 389 predicted mRNA targets for the identified miRNAs and suggests that the sma-mir-71 may be involved in female sexual maturation. Given the important roles of miRNAs in animals, the identification and characterization of miRNAs in S. mansoni will facilitate novel approaches towards prevention and treatment of Schistosomiasis.
Collapse
|
14
|
Ferrier DEK. Evolution of Hox complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:91-100. [PMID: 20795324 DOI: 10.1007/978-1-4419-6673-5_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Recent years have seen a plethora of ideas and hypotheses, and lots of debate, about the origin and evolution of the Hox gene cluster. Here I will attempt to summarize these hypotheses, identify their strengths and weaknesses and highlight the types of new data that may lead to further resolution of the competing ideas. The major theme is that Hox genes originated very early in animal evolution and extensive independent duplications occurred in major lineages. Duplications however have not been the only route to change in the composition and structure of the Hox cluster, as extensive gene losses have occurred as well. Indeed it is gene loss that is one of the main obstacles in our understanding of the origin and evolution of Hox clusters. Matters should be improved with wider taxon sampling along with a clearer understanding of how duplicated genes evolve.
Collapse
Affiliation(s)
- David E K Ferrier
- The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
15
|
Badets M, Mitta G, Galinier R, Verneau O. Expression patterns of Abd-A/Lox4 in a monogenean parasite with alternative developmental paths. Mol Biochem Parasitol 2010; 173:154-7. [PMID: 20546802 DOI: 10.1016/j.molbiopara.2010.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 05/14/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
Abstract
A key issue in Evolutionary Developmental Biology is to assess the roles of homeotic genes in order to uncover the origins of animal diversity. Within parasitic platyhelminths which show a large diversity of developmental strategies, only one study related to the expression of Hox genes has so far been conducted involving a digenean species with a complex life cycle. In the present study, we considered the expression levels of the Pg-Lox4 gene within Polystoma gallieni of the Monogenea which displays alternative phenotypes throughout its direct life cycle, depending on the physiological stage of its amphibian host Hyla meridionalis upon which free swimming larvae attach. Dissimilar expression patterns were found along the two morphogenetic routes revealing a putative role of Pg-Lox4 in the process of developmental plasticity. Pg-Lox4 was also shown to be upregulated in both reproducing parasite phenotypes indicating its apparent involvement in tissue differentiation of the reproductive organs.
Collapse
Affiliation(s)
- Mathieu Badets
- UMR 5244 CNRS-UPVD, Biologie et Ecologie Tropicale et Méditerranéenne, Parasitologie Fonctionnelle et Evolutive, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | | | | | | |
Collapse
|
16
|
Mouse and zebrafish Hoxa3 orthologues have nonequivalent in vivo protein function. Proc Natl Acad Sci U S A 2010; 107:10555-60. [PMID: 20498049 DOI: 10.1073/pnas.1005129107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes play evolutionarily conserved roles in specifying axial position during embryogenesis. A prevailing paradigm is that changes in Hox gene expression drive evolution of metazoan body plans. Conservation of Hox function across species, and among paralogous Hox genes within a species, supports a model of functional equivalence. In this report, we demonstrate that zebrafish hoxa3a (zfhoxa3a) expressed from the mouse Hoxa3 locus can substitute for mouse Hoxa3 in some tissues, but has distinct or null phenotypes in others. We further show, by using an allele encoding a chimeric protein, that this difference maps primarily to the zfhoxa3a C-terminal domain. Our data imply that the mouse and zebrafish proteins have diverged considerably since their last common ancestor, and that the major difference between them resides in the C-terminal domain. Our data further show that Hox protein function can evolve independently in different cell types or for specific functions. The inability of zfhoxa3a to perform all of the normal roles of mouse Hoxa3 illustrates that Hox orthologues are not always functionally interchangeable.
Collapse
|
17
|
Hox genes from the Polystomatidae (Platyhelminthes, Monogenea). Int J Parasitol 2009; 39:1517-23. [DOI: 10.1016/j.ijpara.2009.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/17/2022]
|
18
|
Criscione CD, Valentim CLL, Hirai H, LoVerde PT, Anderson TJC. Genomic linkage map of the human blood fluke Schistosoma mansoni. Genome Biol 2009; 10:R71. [PMID: 19566921 PMCID: PMC2718505 DOI: 10.1186/gb-2009-10-6-r71] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/07/2009] [Accepted: 06/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosoma mansoni is a blood fluke that infects approximately 90 million people. The complete life cycle of this parasite can be maintained in the laboratory, making this one of the few experimentally tractable human helminth infections, and a rich literature reveals heritable variation in important biomedical traits such as virulence, host-specificity, transmission and drug resistance. However, there is a current lack of tools needed to study S. mansoni's molecular, quantitative, and population genetics. Our goal was to construct a genetic linkage map for S. mansoni, and thus provide a new resource that will help stimulate research on this neglected pathogen. RESULTS We genotyped grandparents, parents and 88 progeny to construct a 5.6 cM linkage map containing 243 microsatellites positioned on 203 of the largest scaffolds in the genome sequence. The map allows 70% of the estimated 300 Mb genome to be ordered on chromosomes, and highlights where scaffolds have been incorrectly assembled. The markers fall into eight main linkage groups, consistent with seven pairs of autosomes and one pair of sex chromosomes, and we were able to anchor linkage groups to chromosomes using fluorescent in situ hybridization. The genome measures 1,228.6 cM. Marker segregation reveals higher female recombination, confirms ZW inheritance patterns, and identifies recombination hotspots and regions of segregation distortion. CONCLUSIONS The genetic linkage map presented here is the first for S. mansoni and the first for a species in the phylum Platyhelminthes. The map provides the critical tool necessary for quantitative genetic analysis, aids genome assembly, and furnishes a framework for comparative flatworm genomics and field-based molecular epidemiological studies.
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
19
|
Bleidorn C, Lanterbecq D, Eeckhaut I, Tiedemann R. A PCR survey of Hox genes in the myzostomid Myzostoma cirriferum. Dev Genes Evol 2009; 219:211-6. [PMID: 19319567 DOI: 10.1007/s00427-009-0282-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
Abstract
Using degenerate primers, we were able to identify seven Hox genes for the myzostomid Myzostoma cirriferum. The recovered fragments belong to anterior class (Mci_lab, Mci_pb), central class (Mci_Dfd, Mci_Lox5, Mci_Antp, Mci_Lox4), and posterior class (Mci_Post2) paralog groups. Orthology assignment was verified by phylogenetic analyses and presence of diagnostic regions in the homeodomain as well as flanking regions. The presence of Lox5, Lox4, and Post2 supports the inclusion of Myzostomida within Lophotrochozoa. We found signature residues within flanking regions of Lox5, which are also found in annelids, but not in Platyhelminthes. As such the available Hox genes data of myzostomids support an annelid relationship.
Collapse
Affiliation(s)
- Christoph Bleidorn
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
20
|
Koziol U, Lalanne AI, Castillo E. Hox Genes in the Parasitic Platyhelminthes Mesocestoides corti, Echinococcus multilocularis, and Schistosoma mansoni: Evidence for a Reduced Hox Complement. Biochem Genet 2009; 47:100-16. [DOI: 10.1007/s10528-008-9210-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
|
21
|
Fröbius AC, Matus DQ, Seaver EC. Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS One 2008; 3:e4004. [PMID: 19104667 PMCID: PMC2603591 DOI: 10.1371/journal.pone.0004004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/21/2008] [Indexed: 11/29/2022] Open
Abstract
Hox genes define regional identities along the anterior–posterior axis in many animals. In a number of species, Hox genes are clustered in the genome, and the relative order of genes corresponds with position of expression in the body. Previous Hox gene studies in lophotrochozoans have reported expression for only a subset of the Hox gene complement and/or lack detailed genomic organization information, limiting interpretations of spatial and temporal colinearity in this diverse animal clade. We studied expression and genomic organization of the single Hox gene complement in the segmented polychaete annelid Capitella sp. I. Total genome searches identified 11 Hox genes in Capitella, representing 11 distinct paralog groups thought to represent the ancestral lophotrochozoan complement. At least 8 of the 11 Capitella Hox genes are genomically linked in a single cluster, have the same transcriptional orientation, and lack interspersed non-Hox genes. Studying their expression by situ hybridization, we find that the 11 Capitella Hox genes generally exhibit spatial and temporal colinearity. With the exception of CapI-Post1, Capitella Hox genes are all expressed in broad ectodermal domains during larval development, consistent with providing positional information along the anterior–posterior axis. The anterior genes CapI-lab, CapI-pb, and CapI-Hox3 initiate expression prior to the appearance of segments, while more posterior genes appear at or soon after segments appear. Many of the Capitella Hox genes have either an anterior or posterior expression boundary coinciding with the thoracic–abdomen transition, a major body tagma boundary. Following metamorphosis, several expression patterns change, including appearance of distinct posterior boundaries and restriction to the central nervous system. Capitella Hox genes have maintained a clustered organization, are expressed in the canonical anterior–posterior order found in other metazoans, and exhibit spatial and temporal colinearity, reflecting Hox gene characteristics that likely existed in the protostome–deuterostome ancestor.
Collapse
Affiliation(s)
- Andreas C. Fröbius
- Kewalo Marine Lab, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - David Q. Matus
- Kewalo Marine Lab, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Elaine C. Seaver
- Kewalo Marine Lab, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hox genes and the parasitic flatworms: New opportunities, challenges and lessons from the free-living. Parasitol Int 2008; 57:8-17. [DOI: 10.1016/j.parint.2007.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 09/18/2007] [Accepted: 09/24/2007] [Indexed: 11/20/2022]
|
23
|
Ludolf F, Bahia D, Andrade LF, Cousin A, Capron M, Dissous C, Pierce RJ, Oliveira G. Molecular analysis of SmFes, a tyrosine kinase of Schistosoma mansoni orthologous to the members of the Fes/Fps/Fer family. Biochem Biophys Res Commun 2007; 360:163-72. [PMID: 17588535 DOI: 10.1016/j.bbrc.2007.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 11/30/2022]
Abstract
A novel protein tyrosine kinase (PTK) was identified in Schistosoma mansoni and designated SmFes. SmFes exhibits the characteristic features of Fes/Fps/Fer (fes, feline sarcoma; fps, Fujinami poultry sarcoma; fer, fes related) PTKs, containing three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. SmFes is the first gene from the Fes/Fps/Fer family identified in S. mansoni, and is a single copy gene. Phylogenetic analyses revealed that SmFes is most closely related to its invertebrate orthologues. The assembly of the SmFes cDNA and genomic sequences indicated the presence of 18 introns in SmFes. Comparison of its genomic structure with those of human Fps/Fes and Drosophila Fps indicates that intron positions are conserved within the region encoding the kinase domain. Analysis of partial cDNA clones showed the presence of a 9 bp insertion at the 3' end of exon 10, producing two different cDNA populations, pointed as an alternative splicing event. In addition, an allele of SmFes containing a 15 bp insertion was observed in the genomic sequence. Quantitative RT-PCR indicated that the overall transcription level of SmFes is rather low in all parasite developmental stages. Moreover, SmFes mRNA levels decrease progressively after cercarial transformation, consistent with a role for the corresponding protein in the early stages of infection.
Collapse
Affiliation(s)
- Fernanda Ludolf
- Centro de Pesquisas René Rachou-FIOCRUZ, Av. Augusto de Lima 1715, Belo Horizonte, MG 30190-002, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.
Collapse
Affiliation(s)
- Denis Duboule
- National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Sciences III, Switzerland.
| |
Collapse
|
25
|
Williams DL, Sayed AA, Bernier J, Birkeland SR, Cipriano MJ, Papa AR, McArthur AG, Taft A, Vermeire JJ, Yoshino TP. Profiling Schistosoma mansoni development using serial analysis of gene expression (SAGE). Exp Parasitol 2007; 117:246-58. [PMID: 17577588 PMCID: PMC2121609 DOI: 10.1016/j.exppara.2007.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 01/11/2023]
Abstract
Despite the widespread use of chemotherapy and other control strategies over the past 50years, transmission rates for schistosomiasis have changed little. Regardless of the approach used, future control efforts will require a more complete understanding of fundamental parasite biology. Schistosomes undergo complex development involving an alteration of parasite generations within a mammalian and freshwater molluscan host in the completion of its lifecycle. Little is known about factors controlling schistosome development, but understanding these processes may facilitate the discovery of new control methods. Therefore, our goal in this study is to determine global developmentally regulated and stage-specific gene expression in Schistosoma mansoni using serial analysis of gene expression (SAGE). We present a preliminary analysis of genes expressed during development and sexual differentiation in the mammalian host and during early larval development in the snail host. A number of novel, differentially expressed genes have been identified, both within and between the different developmental stages found in the mammalian and snail hosts.
Collapse
Affiliation(s)
- David L Williams
- Department of Biological Sciences, Illinois State University, Normal, IL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128:735-45. [PMID: 17320510 DOI: 10.1016/j.cell.2007.02.009] [Citation(s) in RCA: 1043] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
27
|
Kim KH, Lee YS, Jeon HK, Park JK, Kim CB, Eom KS. Hox Genes from the Tapeworm Taenia asiatica (Platyhelminthes: Cestoda). Biochem Genet 2007; 45:335-43. [PMID: 17265186 DOI: 10.1007/s10528-007-9078-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hox genes are important in forming the anterior-posterior body axis pattern in the early developmental stage of animals. The conserved nature of the genomic organization of Hox genes is well known in diverse metazoans. To understand the Hox gene architecture in human-infecting Taenia tapeworms, we conducted a genomic survey of the Hox gene using degenerative polymerase chain reaction primers in Taenia asiatica. Six Hox gene orthologs from 276 clones were identified. Comparative analysis revealed that T. asiatica has six Hox orthologs, including two lab/Hox1, two Hox3, one Dfd/Hox4, and one Lox2/Lox4. The results suggest that Taenia Hox genes may have undergone independent gene duplication in two Hox paralogs. The failure to detect Post1/2 orthologs in T. asiatica may suggest that sequence divergence or the secondary loss of the posterior genes has occurred in the lineage leading to the cestode and trematode.
Collapse
Affiliation(s)
- Kyu-Heon Kim
- Department of Parasitology and Medical Research Institute, Chungbuk National University College of Medicine, Chongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | |
Collapse
|
28
|
Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2007; 2:e153. [PMID: 17252055 PMCID: PMC1779807 DOI: 10.1371/journal.pone.0000153] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/30/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no "true" Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in "dorsoventral" patterning. CONCLUSIONS/SIGNIFICANCE A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today.
Collapse
Affiliation(s)
- Joseph F. Ryan
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maureen E. Mazza
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - David Q. Matus
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, Hawaii, United States of America
| | - John R. Finnerty
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Lu C, Wu W, Niles EG, LoVerde PT. Identification and characterization of a novel fushi tarazu factor 1 (FTZ-F1) nuclear receptor in Schistosoma mansoni. Mol Biochem Parasitol 2006; 150:25-36. [PMID: 16870276 DOI: 10.1016/j.molbiopara.2006.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 11/15/2022]
Abstract
Fushi-tarazu factor-1 (FTZ-F1) is an orphan nuclear receptor involved in gene regulation of various developmental processes and physiological activities. We identified a new member of ftz-f1 gene in Schistosoma mansoni, termed Smftz-f1alpha. The Smftz-f1alpha gene has a complex structure with 15 exons interrupted by 14 introns. It encodes an unusually long SmFTZ-F1alpha protein of 1892 amino acids containing all the modular domains found in nuclear receptors. The DNA-binding domain (DBD) of SmFTZ-F1alpha is conserved and most similar to those of human and mouse FTZ-F1 orthologues, exhibiting a 76% identity. The ligand-binding domain (LBD) is less conserved than the DBD; it shares more diverse identity scores in different regions ranging from 23% to 42% in region II and 28% to 72% in region III. A conserved activation function-2 (AF-2) sequence is present in the SmFTZ-F1alpha LBD. This protein also contains a long hinge region (1027 aa) and an F region (220 aa) at the carboxyl end. Phylogenetic analysis suggests that SmFTZ-F1alpha is the orthologue of Drosophila FTZ-F1alpha and vertebrate NR5 members. Western blot analysis of a schistosome extract identified two proteins, one with a size (206 kDa) predicted by the SmFTZ-F1alpha cDNA sequence and a smaller component of 120 kDa. Smftz-f1alpha is expressed throughout the schistosome life cycle with the highest expression in the egg stage. SmFTZ-F1alpha mRNA is widely distributed in adult worms but does not appear in vitelline cells of female worms. SmFTZ-F1alpha localizes to a variety of tissues but is most abundant in the testis of the male and the ovary of female worms. Our results suggest that SmFTZ-F1alpha plays a role in regulating schistosome development and sexual differentiation similar to other FTZ-F1 family members.
Collapse
Affiliation(s)
- Changxue Lu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Research, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The family of Hox genes, which number 4 to 48 per genome depending on the animal, control morphologies on the main body axis of nearly all metazoans. The conventional wisdom is that Hox genes are arranged in chromosomal clusters in colinear order with their expression patterns on the body axis. However, recent evidence has shown that Hox gene clusters are fragmented, reduced, or expanded in many animals-findings that correlate with interesting morphological changes in evolution. Hox gene clusters also contain many noncoding RNAs, such as intergenic regulatory transcripts and evolutionarily conserved microRNAs, some of whose developmental functions have recently been explored.
Collapse
Affiliation(s)
- Derek Lemons
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
31
|
Monteiro AS, Ferrier DEK. Hox genes are not always Colinear. Int J Biol Sci 2006; 2:95-103. [PMID: 16763668 PMCID: PMC1458434 DOI: 10.7150/ijbs.2.95] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/15/2006] [Indexed: 11/05/2022] Open
Abstract
The deuterostomes are the clade of animals for which we have the most detailed understanding of Hox cluster organisation. With the Hox cluster of amphioxus (Branchiostoma floridae) we have the best prototypical, least derived Hox cluster for the group, whilst the urochordates present us with some of the most highly derived and disintegrated clusters. Combined with the detailed mechanistic understanding of vertebrate Hox regulation, the deuterostomes provide much of the most useful data for understanding Hox cluster evolution. Considering both the prototypical and derived deuterostome Hox clusters leads us to hypothesize that Temporal Colinearity is the main constraining force on Hox cluster organisation, but until we have a much deeper understanding of the mechanistic basis for this phenomenon, and know how widespread across the Bilateria the mechanism(s) is/are, then we cannot know how the Hox cluster of the last common bilaterian operated and what have been the major evolutionary forces operating upon the Hox gene cluster.
Collapse
|