1
|
Daakour S, Nelson DR, Fu W, Jaiswal A, Dohai B, Alzahmi AS, Koussa J, Huang X, Shen Y, Twizere JC, Salehi-Ashtiani K. Adaptive Evolution Signatures in Prochlorococcus: Open Reading Frame (ORF)eome Resources and Insights from Comparative Genomics. Microorganisms 2024; 12:1720. [PMID: 39203562 PMCID: PMC11357015 DOI: 10.3390/microorganisms12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Prochlorococcus, a cyanobacteria genus of the smallest and most abundant oceanic phototrophs, encompasses ecotype strains adapted to high-light (HL) and low-light (LL) niches. To elucidate the adaptive evolution of this genus, we analyzed 40 Prochlorococcus marinus ORFeomes, including two cornerstone strains, MED4 and NATL1A. Employing deep learning with robust statistical methods, we detected new protein family distributions in the strains and identified key genes differentiating the HL and LL strains. The HL strains harbor genes (ABC-2 transporters) related to stress resistance, such as DNA repair and RNA processing, while the LL strains exhibit unique chlorophyll adaptations (ion transport proteins, HEAT repeats). Additionally, we report the finding of variable, depth-dependent endogenous viral elements in the 40 strains. To generate biological resources to experimentally study the HL and LL adaptations, we constructed the ORFeomes of two representative strains, MED4 and NATL1A synthetically, covering 99% of the annotated protein-coding sequences of the two species, totaling 3976 cloned, sequence-verified open reading frames (ORFs). These comparative genomic analyses, paired with MED4 and NATL1A ORFeomes, will facilitate future genotype-to-phenotype mappings and the systems biology exploration of Prochlorococcus ecology.
Collapse
Affiliation(s)
- Sarah Daakour
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - David R. Nelson
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Weiqi Fu
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ashish Jaiswal
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Bushra Dohai
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Helmholtz Center Munich, Institute of Network Biology (INET), German Research Center for Environmental Health, 85764 Munich, Germany
| | - Amnah Salem Alzahmi
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular & Computational Biology, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Joseph Koussa
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Department of Biology, New York University, New York, NY 10012, USA
- Department of Chemical and Biological Sciences, Montgomery College, Germantown, MD 20850, USA
| | - Xiaoluo Huang
- Genome Synthesis and Editing Platform, China National GeneBank (CNGB), BGI-Research, Shenzhen 518120, China; (X.H.); (Y.S.)
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Beijing 100045, China
| | - Yue Shen
- Genome Synthesis and Editing Platform, China National GeneBank (CNGB), BGI-Research, Shenzhen 518120, China; (X.H.); (Y.S.)
| | - Jean-Claude Twizere
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular & Computational Biology, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
2
|
Li HJ, Zhang HH, Lu JB, Zhang CX. Threonyl-tRNA synthetase gene, a potential target for RNAi-based control of three rice planthoppers. PEST MANAGEMENT SCIENCE 2022; 78:4589-4598. [PMID: 35831262 DOI: 10.1002/ps.7078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND RNA interference (RNAi) has potential as a new strategy for pest control. However, the current overemphasis on the control of a single pest increased control costs. The aim of this study was to find a green method of controlling several pests without affecting the natural enemies with a single target gene. One possible RNAi target is the threonyl-tRNA synthetase (ThrRS), which is conserved and plays a significant role in protein biosynthesis. RESULTS In this study, one threonyl-tRNA synthetase gene (NlthrS) was identified from the brown planthopper (Nilaparvata lugens). Spatio-temporal expression pattern analysis showed that NlthrS was highly expressed in the ovary, late embryogenesis, nymphs and female adults. In addition, RNAi-mediated knockdown of NlthrS caused 85.6% nymph mortality, 100% female infertility, molting disorder, extended nymph duration and shortened adult longevity. Target-specific results were obtained when dsNlthrS was used to interfere with the whiteback planthopper (Sogatella furcifera), small brown planthopper (Laodelphax striatellus), zig-zag winged leafhopper (Inazuma dorsalis) and their natural enemy (green mirid bug, Cyrtorhinus lividipennis). In addition, dsNlthrS could cause high mortalities of three species of planthoppers (85.6-100%), while only dsNlthrS-1 led to the death (97.3%) of I. dorsalis that was not affected by dsNlthrS-2. Furthermore, neither dsNlthrS-1 nor dsNlthrS-2 could influence the survival of C. lividipennis. CONCLUSION The results reveal the biological functions of ThrRS in N. lugens in addtion to its protein synthesis, deepening our understanding of tRNA synthase in insects and providing a new method for the control of several rice pests via one dsRNA design. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Duncan A, Barry K, Daum C, Eloe-Fadrosh E, Roux S, Schmidt K, Tringe SG, Valentin KU, Varghese N, Salamov A, Grigoriev IV, Leggett RM, Moulton V, Mock T. Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans. MICROBIOME 2022; 10:67. [PMID: 35484634 PMCID: PMC9047304 DOI: 10.1186/s40168-022-01254-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phytoplankton communities significantly contribute to global biogeochemical cycles of elements and underpin marine food webs. Although their uncultured genomic diversity has been estimated by planetary-scale metagenome sequencing and subsequent reconstruction of metagenome-assembled genomes (MAGs), this approach has yet to be applied for complex phytoplankton microbiomes from polar and non-polar oceans consisting of microbial eukaryotes and their associated prokaryotes. RESULTS Here, we have assembled MAGs from chlorophyll a maximum layers in the surface of the Arctic and Atlantic Oceans enriched for species associations (microbiomes) with a focus on pico- and nanophytoplankton and their associated heterotrophic prokaryotes. From 679 Gbp and estimated 50 million genes in total, we recovered 143 MAGs of medium to high quality. Although there was a strict demarcation between Arctic and Atlantic MAGs, adjacent sampling stations in each ocean had 51-88% MAGs in common with most species associations between Prasinophytes and Proteobacteria. Phylogenetic placement revealed eukaryotic MAGs to be more diverse in the Arctic whereas prokaryotic MAGs were more diverse in the Atlantic Ocean. Approximately 70% of protein families were shared between Arctic and Atlantic MAGs for both prokaryotes and eukaryotes. However, eukaryotic MAGs had more protein families unique to the Arctic whereas prokaryotic MAGs had more families unique to the Atlantic. CONCLUSION Our study provides a genomic context to complex phytoplankton microbiomes to reveal that their community structure was likely driven by significant differences in environmental conditions between the polar Arctic and warm surface waters of the tropical and subtropical Atlantic Ocean. Video Abstract.
Collapse
Affiliation(s)
- Anthony Duncan
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Chris Daum
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Emiley Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Simon Roux
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Katrin Schmidt
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK
| | - Susannah G Tringe
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Klaus U Valentin
- Alfred-Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Neha Varghese
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | | | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK.
| |
Collapse
|
4
|
Igloi GL. The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms. J Mol Evol 2021; 89:484-493. [PMID: 34254168 PMCID: PMC8318970 DOI: 10.1007/s00239-021-10019-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
During the endosymbiotic evolution of mitochondria, the genes for aminoacyl-tRNA synthetases were transferred to the ancestral nucleus. A further reduction of mitochondrial function resulted in mitochondrion-related organisms (MRO) with a loss of the organelle genome. The fate of the now redundant ancestral mitochondrial aminoacyl-tRNA synthetase genes is uncertain. The derived protein sequence for arginyl-tRNA synthetase from thirty mitosomal organisms have been classified as originating from the ancestral nuclear or mitochondrial gene and compared to the identity element at position 20 of the cognate tRNA that distinguishes the two enzyme forms. The evolutionary choice between loss and retention of the ancestral mitochondrial gene for arginyl-tRNA synthetase reflects the coevolution of arginyl-tRNA synthetase and tRNA identity elements.
Collapse
Affiliation(s)
- Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
|
6
|
Lawrence TJ, Amrine KCH, Swingley WD, Ardell DH. tRNA functional signatures classify plastids as late-branching cyanobacteria. BMC Evol Biol 2019; 19:224. [PMID: 31818253 PMCID: PMC6902448 DOI: 10.1186/s12862-019-1552-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Eukaryotes acquired the trait of oxygenic photosynthesis through endosymbiosis of the cyanobacterial progenitor of plastid organelles. Despite recent advances in the phylogenomics of Cyanobacteria, the phylogenetic root of plastids remains controversial. Although a single origin of plastids by endosymbiosis is broadly supported, recent phylogenomic studies are contradictory on whether plastids branch early or late within Cyanobacteria. One underlying cause may be poor fit of evolutionary models to complex phylogenomic data. RESULTS Using Posterior Predictive Analysis, we show that recently applied evolutionary models poorly fit three phylogenomic datasets curated from cyanobacteria and plastid genomes because of heterogeneities in both substitution processes across sites and of compositions across lineages. To circumvent these sources of bias, we developed CYANO-MLP, a machine learning algorithm that consistently and accurately phylogenetically classifies ("phyloclassifies") cyanobacterial genomes to their clade of origin based on bioinformatically predicted function-informative features in tRNA gene complements. Classification of cyanobacterial genomes with CYANO-MLP is accurate and robust to deletion of clades, unbalanced sampling, and compositional heterogeneity in input tRNA data. CYANO-MLP consistently classifies plastid genomes into a late-branching cyanobacterial sub-clade containing single-cell, starch-producing, nitrogen-fixing ecotypes, consistent with metabolic and gene transfer data. CONCLUSIONS Phylogenomic data of cyanobacteria and plastids exhibit both site-process heterogeneities and compositional heterogeneities across lineages. These aspects of the data require careful modeling to avoid bias in phylogenomic estimation. Furthermore, we show that amino acid recoding strategies may be insufficient to mitigate bias from compositional heterogeneities. However, the combination of our novel tRNA-specific strategy with machine learning in CYANO-MLP appears robust to these sources of bias with high accuracy in phyloclassification of cyanobacterial genomes. CYANO-MLP consistently classifies plastids as late-branching Cyanobacteria, consistent with independent evidence from signature-based approaches and some previous phylogenetic studies.
Collapse
Affiliation(s)
- Travis J Lawrence
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831 USA
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| | - Katherine CH Amrine
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Insight Data Science, 500 3rd St., San Francisco, CA, 94107 USA
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, 1425 Lincoln Hwy., DeKalb, IL, 60115 USA
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| |
Collapse
|
7
|
Igloi GL. Molecular evidence for the evolution of the eukaryotic mitochondrial arginyl-tRNA synthetase from the prokaryotic suborder Cystobacterineae. FEBS Lett 2019; 594:951-957. [PMID: 31705651 DOI: 10.1002/1873-3468.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/01/2023]
Abstract
The evolutionary origin of the family of eukaryotic aminoacyl-tRNA synthetases that are essential to all living organisms is a matter of debate. In order to shed molecular light on the ancient source of arginyl-tRNA synthetase, a total of 1347 eukaryotic arginyl-tRNA synthetase sequences were mined from databases and analyzed. Their multiple sequence alignment reveals a signature sequence that is characteristic of the nuclear-encoded enzyme, which is imported into mitochondria. Using this molecular beacon, the origins of this gene can be traced to modern prokaryotes. In this way, a previous phylogenetic analysis linking Myxococcus to the emergence of the eukaryotic mitochondrial arginyl-tRNA synthetase is supported by the unique existence of the molecular signature within the suborder Cystobacterineae that includes Myxococcus.
Collapse
Affiliation(s)
- Gabor L Igloi
- Institute of Biology, University of Freiburg, Germany
| |
Collapse
|
8
|
Liao Y, Jiang Y, Xu J, Hu C, Quan C, Zhou J, Xu Z, Gao X, Li L, Zhu J, Jia X, Chen R. Overexpression of a thylakoid membrane protein geneOsTMP14improves indica rice cold tolerance. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1334590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Yongrong Liao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunyun Jiang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinghong Xu
- Crop Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, China
| | - Changqiong Hu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Changqian Quan
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingmin Zhou
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengjun Xu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Gao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lihua Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaomei Jia
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rongjun Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Santamaría-Gómez J, Ochoa de Alda JAG, Olmedo-Verd E, Bru-Martínez R, Luque I. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase. Front Microbiol 2016; 7:857. [PMID: 27375579 PMCID: PMC4893482 DOI: 10.3389/fmicb.2016.00857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.
Collapse
Affiliation(s)
- Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | | | - Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of AlicanteAlicante, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| |
Collapse
|
10
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
11
|
Rubio MÁ, Napolitano M, Ochoa de Alda JAG, Santamaría-Gómez J, Patterson CJ, Foster AW, Bru-Martínez R, Robinson NJ, Luque I. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress. Nucleic Acids Res 2015; 43:9905-17. [PMID: 26464444 PMCID: PMC4787780 DOI: 10.1093/nar/gkv1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.
Collapse
Affiliation(s)
- Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Mauro Napolitano
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Jesús A G Ochoa de Alda
- Facultad de Formación del Profesorado. Universidad de Extremadura, Avda de la Universidad s/n. E-10003, Cáceres, Spain
| | - Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, E-03080, Spain
| | | | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| |
Collapse
|
12
|
Ochoa de Alda JAG, Esteban R, Diago ML, Houmard J. The plastid ancestor originated among one of the major cyanobacterial lineages. Nat Commun 2014; 5:4937. [PMID: 25222494 DOI: 10.1038/ncomms5937] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/08/2014] [Indexed: 12/15/2022] Open
Abstract
The primary endosymbiotic origin of chloroplasts is now well established but the identification of the present cyanobacteria most closely related to the plastid ancestor remains debated. We analyse the evolutionary trajectory of a subset of highly conserved cyanobacterial proteins (core) along the plastid lineage, those which were not lost after the endosymbiosis. We concatenate the sequences of 33 cyanobacterial core proteins that share a congruent evolutionary history, with their eukaryotic counterparts to reconstruct their phylogeny using sophisticated evolutionary models. We perform an independent reconstruction using concatenated 16S and 23S rRNA sequences. These complementary approaches converge to a plastid origin occurring during the divergence of one of the major cyanobacterial lineages that include N2-fixing filamentous cyanobacteria and species able to differentiate heterocysts.
Collapse
Affiliation(s)
- Jesús A G Ochoa de Alda
- 1] Grupo Hortofruenol, INTAEX-CICYTEX, Avenida Adolfo Suárez, s/n, 06071 Badajoz, Spain [2] School of Biology, IE University, Cardenal Zúñiga 12, 40003 Segovia, Spain [3]
| | - Rocío Esteban
- School of Biology, IE University, Cardenal Zúñiga 12, 40003 Segovia, Spain
| | - María Luz Diago
- School of Biology, IE University, Cardenal Zúñiga 12, 40003 Segovia, Spain
| | | |
Collapse
|
13
|
Dasgupta S, Basu G. Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera? BMC Evol Biol 2014; 14:26. [PMID: 24521160 PMCID: PMC3927822 DOI: 10.1186/1471-2148-14-26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
Background Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood. Results A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum. Conclusions Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.
Collapse
Affiliation(s)
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
14
|
Luque I, Ochoa de Alda JAG. CURT1,CAAD-containing aaRSs, thylakoid curvature and gene translation. TRENDS IN PLANT SCIENCE 2014; 19:63-6. [PMID: 24388270 DOI: 10.1016/j.tplants.2013.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 05/21/2023]
Abstract
CURT1 proteins induce membrane curvature to grana margins in Arabidopsis (Arabidopsis thaliana) thylakoids. A domain sharing sequence and structural features with CURT1 is found in some cyanobacterial aminoacyl-tRNA synthetases (aaRSs) that show an unusual localization to the thylakoid membranes. Evolutionary scenarios and functional implications are discussed in this article.
Collapse
Affiliation(s)
- Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Spain.
| | | |
Collapse
|
15
|
Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean. Proc Natl Acad Sci U S A 2013; 110:8597-602. [PMID: 23569224 DOI: 10.1073/pnas.1221775110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5-2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose.
Collapse
|
16
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
17
|
Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales. BMC Evol Biol 2012; 12:85. [PMID: 22694720 PMCID: PMC3436685 DOI: 10.1186/1471-2148-12-85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/27/2012] [Indexed: 02/01/2023] Open
Abstract
Background Horizontal gene transfer (HGT) has greatly impacted the genealogical history of many lineages, particularly for prokaryotes, with genes frequently moving in and out of a line of descent. Many genes that were acquired by a lineage in the past likely originated from ancestral relatives that have since gone extinct. During the course of evolution, HGT has played an essential role in the origin and dissemination of genetic and metabolic novelty. Results Three divergent forms of leucyl-tRNA synthetase (LeuRS) exist in the archaeal order Halobacteriales, commonly known as haloarchaea. Few haloarchaeal genomes have the typical archaeal form of this enzyme and phylogenetic analysis indicates it clusters within the Euryarchaeota as expected. The majority of sequenced halobacterial genomes possess a bacterial form of LeuRS. Phylogenetic reconstruction puts this larger group of haloarchaea at the base of the bacterial domain. The most parsimonious explanation is that an ancient transfer of LeuRS took place from an organism related to the ancestor of the bacterial domain to the haloarchaea. The bacterial form of LeuRS further underwent gene duplications and/or gene transfers within the haloarchaea, with some genomes possessing two distinct types of bacterial LeuRS. The cognate tRNALeu also reveals two distinct clusters for the haloarchaea; however, these tRNALeu clusters do not coincide with the groupings found in the LeuRS tree, revealing that LeuRS evolved independently of its cognate tRNA. Conclusions The study of leucyl-tRNA synthetase in haloarchaea illustrates the importance of gene transfer originating in lineages that went extinct since the transfer occurred. The haloarchaeal LeuRS and tRNALeu did not co-evolve.
Collapse
|
18
|
Olmedo-Verd E, Santamaría-Gómez J, Ochoa de Alda JAG, Ribas de Pouplana L, Luque I. Membrane anchoring of aminoacyl-tRNA synthetases by convergent acquisition of a novel protein domain. J Biol Chem 2011; 286:41057-68. [PMID: 21965654 DOI: 10.1074/jbc.m111.242461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four distinct aminoacyl-tRNA synthetases (aaRSs) found in some cyanobacterial species contain a novel protein domain that bears two putative transmembrane helices. This CAAD domain is present in glutamyl-, isoleucyl-, leucyl-, and valyl-tRNA synthetases, the latter of which has probably recruited the domain more than once during evolution. Deleting the CAAD domain from the valyl-tRNA synthetase of Anabaena sp. PCC 7120 did not significantly modify the catalytic properties of this enzyme, suggesting that it does not participate in its canonical tRNA-charging function. Multiple lines of evidence suggest that the function of the CAAD domain is structural, mediating the membrane anchorage of the enzyme, although membrane localization of aaRSs has not previously been described in any living organism. Synthetases containing the CAAD domain were localized in the intracytoplasmic thylakoid membranes of cyanobacteria and were largely absent from the plasma membrane. The CAAD domain was necessary and apparently sufficient for protein targeting to membranes. Moreover, localization of aaRSs in thylakoids was important under nitrogen limiting conditions. In Anabaena, a multicellular filamentous cyanobacterium often used as a model for prokaryotic cell differentiation, valyl-tRNA synthetase underwent subcellular relocation at the cell poles during heterocyst differentiation, a process also dependent on the CAAD domain.
Collapse
Affiliation(s)
- Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | | | | |
Collapse
|
19
|
Andam CP, Fournier GP, Gogarten JP. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol Rev 2011; 35:756-67. [DOI: 10.1111/j.1574-6976.2011.00274.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Chan YW, Mohr R, Millard AD, Holmes AB, Larkum AW, Whitworth AL, Mann NH, Scanlan DJ, Hess WR, Clokie MRJ. Discovery of Cyanophage Genomes Which Contain Mitochondrial DNA Polymerase. Mol Biol Evol 2011; 28:2269-74. [DOI: 10.1093/molbev/msr041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
22
|
Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP. Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol Evol 2009; 1:325-39. [PMID: 20333202 PMCID: PMC2817427 DOI: 10.1093/gbe/evp032] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2009] [Indexed: 02/04/2023] Open
Abstract
Prochlorococcus is a genus of marine cyanobacteria characterized by small cell and genome size, an evolutionary trend toward low GC content, the possession of chlorophyll b, and the absence of phycobilisomes. Whereas many shared derived characters define Prochlorococcus as a clade, many genome-based analyses recover them as paraphyletic, with some low-light adapted Prochlorococcus spp. grouping with marine Synechococcus. Here, we use 18 Prochlorococcus and marine Synechococcus genomes to analyze gene flow within and between these taxa. We introduce embedded quartet scatter plots as a tool to screen for genes whose phylogeny agrees or conflicts with the plurality phylogenetic signal, with accepted taxonomy and naming, with GC content, and with the ecological adaptation to high and low light intensities. We find that most gene families support high-light adapted Prochlorococcus spp. as a monophyletic clade and low-light adapted Prochlorococcus sp. as a paraphyletic group. But we also detect 16 gene families that were transferred between high-light adapted and low-light adapted Prochlorococcus sp. and 495 gene families, including 19 ribosomal proteins, that do not cluster designated Prochlorococcus and Synechococcus strains in the expected manner. To explain the observed data, we propose that frequent gene transfer between marine Synechococcus spp. and low-light adapted Prochlorococcus spp. has created a “highway of gene sharing” (Beiko RG, Harlow TJ, Ragan MA. 2005. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA. 102:14332–14337) that tends to erode genus boundaries without erasing the Prochlorococcus-specific ecological adaptations.
Collapse
Affiliation(s)
- Olga Zhaxybayeva
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|