1
|
Genetic variation of glycophorins and infectious disease. Immunogenetics 2022; 75:201-206. [DOI: 10.1007/s00251-022-01280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
Abstract
Glycophorins are transmembrane proteins of red blood cells (RBCs), heavily glycosylated on their external-facing surface. In humans, there are four glycophorin proteins, glycophorins A, B, C and D. Glycophorins A and B are encoded by two similar genes GYPA and GYPB, and glycophorin C and glycophorin D are encoded by a single gene, GYPC. The exact function of glycophorins remains unclear. However, given their abundance on the surface of RBCs, it is likely that they serve as a substrate for glycosylation, giving the RBC a negatively charged, complex glycan “coat”. GYPB and GYPE (a closely related pseudogene) were generated from GYPA by two duplication events involving a 120-kb genomic segment between 10 and 15 million years ago. Non-allelic homologous recombination between these 120-kb repeats generates a variety of duplication alleles and deletion alleles, which have been systematically catalogued from genomic sequence data. One allele, called DUP4, encodes the Dantu NE blood type and is strongly protective against malaria as it alters the surface tension of the RBC membrane. Glycophorins interact with other infectious pathogens, including viruses, as well as the malarial parasite Plasmodium falciparum, but the role of glycophorin variation in mediating the effects of these pathogens remains underexplored.
Collapse
|
2
|
Kosinski LJ, Masel J. Readthrough Errors Purge Deleterious Cryptic Sequences, Facilitating the Birth of Coding Sequences. Mol Biol Evol 2021; 37:1761-1774. [PMID: 32101291 DOI: 10.1093/molbev/msaa046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
De novo protein-coding innovations sometimes emerge from ancestrally noncoding DNA, despite the expectation that translating random sequences is overwhelmingly likely to be deleterious. The "preadapting selection" hypothesis claims that emergence is facilitated by prior, low-level translation of noncoding sequences via molecular errors. It predicts that selection on polypeptides translated only in error is strong enough to matter and is strongest when erroneous expression is high. To test this hypothesis, we examined noncoding sequences located downstream of stop codons (i.e., those potentially translated by readthrough errors) in Saccharomyces cerevisiae genes. We identified a class of "fragile" proteins under strong selection to reduce readthrough, which are unlikely substrates for co-option. Among the remainder, sequences showing evidence of readthrough translation, as assessed by ribosome profiling, encoded C-terminal extensions with higher intrinsic structural disorder, supporting the preadapting selection hypothesis. The cryptic sequences beyond the stop codon, rather than spillover effects from the regular C-termini, are primarily responsible for the higher disorder. Results are robust to controlling for the fact that stronger selection also reduces the length of C-terminal extensions. These findings indicate that selection acts on 3' UTRs in Saccharomyces cerevisiae to purge potentially deleterious variants of cryptic polypeptides, acting more strongly in genes that experience more readthrough errors.
Collapse
Affiliation(s)
- Luke J Kosinski
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Joanna Masel
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
3
|
Brekke TD, Moore EC, Campbell-Staton SC, Callahan CM, Cheviron ZA, Good JM. X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics 2021; 218:6168998. [PMID: 33710276 DOI: 10.1093/genetics/iyab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2021] [Indexed: 11/14/2022] Open
Abstract
Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.
Collapse
Affiliation(s)
- Thomas D Brekke
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Emily C Moore
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Shane C Campbell-Staton
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,Department of Ecology and Evolutionary Biology; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Colin M Callahan
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
4
|
Ponomarenko M, Sharypova E, Drachkova I, Chadaeva I, Arkova O, Podkolodnaya O, Ponomarenko P, Kolchanov N, Savinkova L. Unannotated single nucleotide polymorphisms in the TATA box of erythropoiesis genes show in vitro positive involvements in cognitive and mental disorders. BMC MEDICAL GENETICS 2020; 21:165. [PMID: 33092544 PMCID: PMC7579878 DOI: 10.1186/s12881-020-01106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hemoglobin is a tetramer consisting of two α-chains and two β-chains of globin. Hereditary aberrations in the synthesis of one of the globin chains are at the root of thalassemia, one of the most prevalent monogenic diseases worldwide. In humans, in addition to α- and β-globins, embryonic zeta-globin and fetal γ-globin are expressed. Immediately after birth, the expression of fetal Aγ- and Gγ-globin ceases, and then adult β-globin is mostly expressed. It has been shown that in addition to erythroid cells, hemoglobin is widely expressed in nonerythroid cells including neurons of the cortex, hippocampus, and cerebellum in rodents; embryonic and adult brain neurons in mice; and mesencephalic dopaminergic brain cells in humans, mice, and rats. Lately, there is growing evidence that different forms of anemia (changes in the number and quality of blood cells) may be involved in (or may accompany) the pathogenesis of various cognitive and mental disorders, such as Alzheimer's and Parkinson's diseases, depression of various severity levels, bipolar disorders, and schizophrenia. Higher hemoglobin concentrations in the blood may lead to hyperviscosity, hypovolemia, and lung diseases, which may cause brain hypoxia and anomalies of brain function, which may also result in cognitive deficits. METHODS In this study, a search for unannotated single-nucleotide polymorphisms (SNPs) of erythroid genes was initially performed using our previously created and published SNP-TATA_Z-tester, which is a Web service for computational analysis of a given SNP for in silico estimation of its influence on the affinity of TATA-binding protein (TBP) for TATA and TATA-like sequences. The obtained predictions were finally verified in vitro by an electrophoretic mobility shift assay (EMSA). RESULTS On the basis of these experimental in vitro results and literature data, we studied TATA box SNPs influencing both human erythropoiesis and cognitive abilities. For instance, TBP-TATA affinity in the HbZ promoter decreases 6.6-fold as a result of a substitution in the TATA box (rs113180943), thereby possibly disrupting stage-dependent events of "switching" of hemoglobin genes and thus causing erythroblastosis. Therefore, rs113180943 may be a candidate marker of severe hemoglobinopathies with comorbid cognitive and mental disorders associated with cerebral blood flow disturbances. CONCLUSIONS The literature data and experimental and computations results suggest that the uncovered candidate SNP markers of erythropoiesis anomalies may also be studied in cohorts of patients with cognitive and/or mental disorders with comorbid erythropoiesis diseases in comparison to conventionally healthy volunteers. Research into the regulatory mechanisms by which the identified SNP markers contribute to the development of hemoglobinopathies and of the associated cognitive deficits will allow physicians not only to take timely and adequate measures against hemoglobinopathies but also to implement strategies preventing cognitive and mental disorders.
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 1 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga Arkova
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Held MA, Greenfest-Allen E, Jachimowicz E, Stoeckert CJ, Stokes MP, Wood AW, Wojchowski DM. Phospho-proteomic discovery of novel signal transducers including thioredoxin-interacting protein as mediators of erythropoietin-dependent human erythropoiesis. Exp Hematol 2020; 84:29-44. [PMID: 32259549 DOI: 10.1016/j.exphem.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023]
Abstract
Erythroid cell formation critically depends on signals transduced via erythropoietin (EPO)/EPO receptor (EPOR)/JAK2 complexes. This includes not only core response modules (e.g., JAK2/STAT5, RAS/MEK/ERK), but also specialized effectors (e.g., erythroferrone, ASCT2 glutamine transport, Spi2A). By using phospho-proteomics and a human erythroblastic cell model, we identify 121 new EPO target proteins, together with their EPO-modulated domains and phosphosites. Gene ontology (GO) enrichment for "Molecular Function" identified adaptor proteins as one top EPO target category. This includes a novel EPOR/JAK2-coupled network of actin assemblage modifiers, with adaptors DLG-1, DLG-3, WAS, WASL, and CD2AP as prime components. "Cellular Component" GO analysis further identified 19 new EPO-modulated cytoskeletal targets including the erythroid cytoskeletal targets spectrin A, spectrin B, adducin 2, and glycophorin C. In each, EPO-induced phosphorylation occurred at pY sites and subdomains, which suggests coordinated regulation by EPO of the erythroid cytoskeleton. GO analysis of "Biological Processes" further revealed metabolic regulators as a likewise unexpected EPO target set. Targets included aldolase A, pyruvate dehydrogenase α1, and thioredoxin-interacting protein (TXNIP), with EPO-modulated p-Y sites in each occurring within functional subdomains. In TXNIP, EPO-induced phosphorylation occurred at novel p-T349 and p-S358 sites, and was paralleled by rapid increases in TXNIP levels. In UT7epo-E and primary human stem cell (HSC)-derived erythroid progenitor cells, lentivirus-mediated short hairpin RNA knockdown studies revealed novel pro-erythropoietic roles for TXNIP. Specifically, TXNIP's knockdown sharply inhibited c-KIT expression; compromised EPO dose-dependent erythroblast proliferation and survival; and delayed late-stage erythroblast formation. Overall, new insight is provided into EPO's diverse action mechanisms and TXNIP's contributions to EPO-dependent human erythropoiesis.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | | | - Edward Jachimowicz
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME
| | | | | | | | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH.
| |
Collapse
|
6
|
Ochola-Oyier LI, Wamae K, Omedo I, Ogola C, Matharu A, Musabyimana JP, Njogu FK, Marsh K. Few Plasmodium falciparum merozoite ligand and erythrocyte receptor pairs show evidence of balancing selection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:235-245. [PMID: 30735814 PMCID: PMC6403450 DOI: 10.1016/j.meegid.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Erythrocyte surface proteins have been identified as receptors of Plasmodium falciparum merozoite proteins. The ligand-receptor interactions enable the parasite to invade human erythrocytes, initiating the clinical symptoms of malaria. These interactions are likely to have had an evolutionary impact on the genes that encode the ligand and receptor proteins. We used sequence data from Kilifi, Kenya to detect departures from neutrality in a paired analysis of P. falciparum merozoite ligands and their erythrocyte receptor genes from the same population. We genotyped parasite and human DNA obtained from 93 individuals with severe malaria. We examined six merozoite ligands EBA175, EBL1, EBA140, MSP1, Rh4 and Rh5, and their corresponding erythrocyte receptors, glycophorin (Gyp) A, GypB, GypC, band 3, complement receptor (CR) 1 and basigin, focusing on the regions involved in the ligand-receptor interactions. Positive Tajima's D values (>1) were observed only in the MSP1 C-terminal region and EBA175 region II, while negative values (<-1) were observed in EBL-1 region II, Rh4, basigin exons 3 and 5, CR1 exon 5, Gyp B exons 2, 3 and 4 and Gyp C exon 2. Additionally, ebl-1 region II and basigin exon 3 showed extreme negative values in all three tests, Tajima's D, Fu & Li D* and F*, ≤ - 2. A large majority of the erythrocyte receptor and merozoite genes have a negative Tajima's D even when compared with previously published whole genome data. Thus, highlighting EBA175 region II and MSP1-33, as outlier genes with a positive Tajima's D (>1). Both these genes contain multiple polymorphisms, which in the case of EBA175 may counteract receptor polymorphisms and/or evade host immune responses and in MSP1 the polymorphisms may primarily evade host immune responses.
Collapse
MESH Headings
- Alleles
- Child
- Child, Preschool
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Female
- Gene Frequency
- Host-Parasite Interactions
- Humans
- Infant
- Infant, Newborn
- Ligands
- Malaria, Falciparum/genetics
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Male
- Merozoites/metabolism
- Models, Molecular
- Plasmodium falciparum/classification
- Plasmodium falciparum/physiology
- Polymorphism, Genetic
- Protein Conformation
- Protozoan Proteins/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya; Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya.
| | - Kevin Wamae
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Irene Omedo
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Christabel Ogola
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Abneel Matharu
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Jean Pierre Musabyimana
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Francis K Njogu
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| |
Collapse
|
7
|
Jaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev 2018. [PMID: 29540278 DOI: 10.1016/j.tmrv.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antigens of the Gerbich blood group system are expressed on glycophorin C (GPC) and glycophorin D (GPD), minor sialoglycoproteins of human erythrocytes. GPC and GPD help maintain erythrocyte shape of and contributes to the stability of its membrane. There are six high-prevalence Gerbich antigens: Ge2, Ge3, Ge4, GEPL (GE10), GEAT (GE11), GETI (GE12) and five low-prevalence Gerbich antigens: Wb (GE5), Lsa (GE6), Ana (GE7), Dha (GE8), GEIS (GE9). Some Gerbich antigens (Ge4, Wb, Dha, GEAT) are expressed only on GPC, two (Ge2, Ana) are expressed only on GPD, while others (Ge3, Lsa, GEIS, GEPL, GETI) are expressed on both GPC and GPD. Antibodies recognizing GPC/GPD may arise naturally (so-called "naturally-occurring RBC antibodies") or as the result of alloimmunization, and some of them may be clinically relevant. Gerbich antibodies usually do not cause serious hemolytic transfusion reactions (HTR); autoantibodies of anti-Ge2- or anti-Ge3 specificity can cause autoimmune hemolytic anemia (AIHA).
Collapse
Affiliation(s)
- Ewa Jaskiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland.
| | - Thierry Peyrard
- Institut National de la Transfusion Sanguine (INTS), Département Centre National de Référence pour les Groupes Sanguins (CNRGS), Paris, France; UMR_S1134 Inserm Université Paris Diderot, Paris, France; Laboratoire d'Excellence GR-Ex, Institut Imagine, Paris, France
| | - Radoslaw Kaczmarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agata Zerka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marlena Jodlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Czerwinski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland
| |
Collapse
|
8
|
Zerka A, Kaczmarek R, Czerwinski M, Jaskiewicz E. Plasmodium reichenowi EBA-140 merozoite ligand binds to glycophorin D on chimpanzee red blood cells, shedding new light on origins of Plasmodium falciparum. Parasit Vectors 2017; 10:554. [PMID: 29115972 PMCID: PMC5678783 DOI: 10.1186/s13071-017-2507-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022] Open
Abstract
Background All symptoms of malaria are caused by the intraerythrocytic proliferation of Plasmodium merozoites. Merozoites invade erythrocytes using multiple binding ligands that recognise specific surface receptors. It has been suggested that adaptation of Plasmodium parasites to infect specific hosts is driven by changes in genes encoding Plasmodium erythrocyte-binding ligands (EBL) and reticulocyte-binding ligands (RBL). Homologs of both EBL and RBL, including the EBA-140 merozoite ligand, have been identified in P. falciparum and P. reichenowi, which infect humans and chimpanzees, respectively. The P. falciparum EBA-140 was shown to bind human glycophorin C, a minor erythrocyte sialoglycoprotein. Until now, the erythrocyte receptor for the P. reichenowi EBA-140 remained unknown. Methods The baculovirus expression vector system was used to obtain the recombinant EBA-140 Region II, and flow cytometry and immunoblotting methods were applied to characterise its specificity. Results We showed that the chimpanzee glycophorin D is the receptor for the P. reichenowi EBA-140 ligand on chimpanzee red blood cells. Conclusions We propose that the development of glycophorin C specificity is spurred by the P. falciparum lineage. We speculate that the P. falciparum EBA-140 evolved to hijack GPC on human erythrocytes during divergence from its ape ancestor.
Collapse
Affiliation(s)
- Agata Zerka
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.,Faculty of Physiotherapy and Physical Education, Opole University of Technology, 45-758, Opole, Poland
| | - Ewa Jaskiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. .,Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516, Zielona Góra, Poland.
| |
Collapse
|
9
|
Andreatta ME, Levine JA, Foy SG, Guzman LD, Kosinski LJ, Cordes MHJ, Masel J. The Recent De Novo Origin of Protein C-Termini. Genome Biol Evol 2015; 7:1686-701. [PMID: 26002864 PMCID: PMC4494051 DOI: 10.1093/gbe/evv098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein-coding sequences can arise either from duplication and divergence of existing sequences, or de novo from noncoding DNA. Unfortunately, recently evolved de novo genes can be hard to distinguish from false positives, making their study difficult. Here, we study a more tractable version of the process of conversion of noncoding sequence into coding: the co-option of short segments of noncoding sequence into the C-termini of existing proteins via the loss of a stop codon. Because we study recent additions to potentially old genes, we are able to apply a variety of stringent quality filters to our annotations of what is a true protein-coding gene, discarding the putative proteins of unknown function that are typical of recent fully de novo genes. We identify 54 examples of C-terminal extensions in Saccharomyces and 28 in Drosophila, all of them recent enough to still be polymorphic. We find one putative gene fusion that turns out, on close inspection, to be the product of replicated assembly errors, further highlighting the issue of false positives in the study of rare events. Four of the Saccharomyces C-terminal extensions (to ADH1, ARP8, TPM2, and PIS1) that survived our quality filters are predicted to lead to significant modification of a protein domain structure.
Collapse
Affiliation(s)
- Matthew E Andreatta
- Department of Ecology & Evolutionary Biology, University of Arizona Present address: Aegis Sciences, Nashville, TN
| | - Joshua A Levine
- Department of Ecology & Evolutionary Biology, University of Arizona
| | - Scott G Foy
- Department of Ecology & Evolutionary Biology, University of Arizona
| | - Lynette D Guzman
- Department of Ecology & Evolutionary Biology, University of Arizona Present address: Program in Mathematics Education, Michigan State University, MI
| | - Luke J Kosinski
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona
| | | | - Joanna Masel
- Department of Ecology & Evolutionary Biology, University of Arizona
| |
Collapse
|
10
|
Pathogen-driven selection in the human genome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:204240. [PMID: 23533945 PMCID: PMC3603197 DOI: 10.1155/2013/204240] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Collapse
|
11
|
Wilson BA, Masel J. Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol Evol 2011; 3:1245-52. [PMID: 21948395 PMCID: PMC3209793 DOI: 10.1093/gbe/evr099] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There have been recent surprising reports that whole genes can evolve de novo from noncoding sequences. This would be extraordinary if the noncoding sequences were random with respect to amino acid identity. However, if the noncoding sequences were previously translated at low rates, with the most strongly deleterious cryptic polypeptides purged by selection, then de novo gene origination would be more plausible. Here we analyze Saccharomyces cerevisiae data on noncoding transcripts found in association with ribosomes. We find many such transcripts. Although their average ribosomal densities are lower than those of protein-coding genes, a significant proportion of noncoding transcripts nevertheless have ribosomal densities comparable to those of coding genes. Most show increased ribosomal association in response to starvation, as has been previously reported for other noncoding sequences such as untranslated regions and introns. In rich media, ribosomal association is correlated with start codons but is not usually consistent and contiguous beyond that, suggesting that translation occurs only at low rates. One transcript contains a 28-codon open reading frame, which we name RDT1, which shows evidence of translation, and may be a new protein-coding gene that originated de novo from noncoding sequence. But the bulk of the ribosomal association cannot be attributed to unannotated protein-coding genes. Our primary finding of extensive ribosome association shows that a necessary precondition for selective purging is met, making de novo gene evolution more plausible. Our analysis is also proof of principle of the utility of ribosomal profiling data for the purpose of gene annotation.
Collapse
Affiliation(s)
- Benjamin A Wilson
- Department of Ecology and Evolutionary Biology, University of Arizona, USA
| | | |
Collapse
|
12
|
Casto AM, Feldman MW. Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? PLoS Genet 2011; 7:e1001266. [PMID: 21253569 PMCID: PMC3017115 DOI: 10.1371/journal.pgen.1001266] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 12/02/2010] [Indexed: 01/11/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 2,000 trait-SNP associations, and the number continues to increase. GWAS have focused on traits with potential consequences for human fitness, including many immunological, metabolic, cardiovascular, and behavioral phenotypes. Given the polygenic nature of complex traits, selection may exert its influence on them by altering allele frequencies at many associated loci, a possibility which has yet to be explored empirically. Here we use 38 different measures of allele frequency variation and 8 iHS scores to characterize over 1,300 GWAS SNPs in 53 globally distributed human populations. We apply these same techniques to evaluate SNPs grouped by trait association. We find that groups of SNPs associated with pigmentation, blood pressure, infectious disease, and autoimmune disease traits exhibit unusual allele frequency patterns and elevated iHS scores in certain geographical locations. We also find that GWAS SNPs have generally elevated scores for measures of allele frequency variation and for iHS in Eurasia and East Asia. Overall, we believe that our results provide evidence for selection on several complex traits that has caused changes in allele frequencies and/or elevated iHS scores at a number of associated loci. Since GWAS SNPs collectively exhibit elevated allele frequency measures and iHS scores, selection on complex traits may be quite widespread. Our findings are most consistent with this selection being either positive or negative, although the relative contributions of the two are difficult to discern. Our results also suggest that trait-SNP associations identified in Eurasian samples may not be present in Africa, Oceania, and the Americas, possibly due to differences in linkage disequilibrium patterns. This observation suggests that non-Eurasian and non-East Asian sample populations should be included in future GWAS.
Collapse
Affiliation(s)
- Amanda M Casto
- Department of Genetics, Stanford University, Stanford, California, United States of America.
| | | |
Collapse
|
13
|
Vakhrusheva AA, Kazanov MD, Mironov AA, Bazykin GA. Evolution of prokaryotic genes by shift of stop codons. J Mol Evol 2010; 72:138-46. [PMID: 21082168 DOI: 10.1007/s00239-010-9408-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/29/2010] [Indexed: 11/30/2022]
Abstract
De novo origin of coding sequence remains an obscure issue in molecular evolution. One of the possible paths for addition (subtraction) of DNA segments to (from) a gene is stop codon shift. Single nucleotide substitutions can destroy the existing stop codon, leading to uninterrupted translation up to the next stop codon in the gene's reading frame, or create a premature stop codon via a nonsense mutation. Furthermore, short indels-caused frameshifts near gene's end may lead to premature stop codons or to translation past the existing stop codon. Here, we describe the evolution of the length of coding sequence of prokaryotic genes by change of positions of stop codons. We observed cases of addition of regions of 3'UTR to genes due to mutations at the existing stop codon, and cases of subtraction of C-terminal coding segments due to nonsense mutations upstream of the stop codon. Many of the observed stop codon shifts cannot be attributed to sequencing errors or rare deleterious variants segregating within bacterial populations. The additions of regions of 3'UTR tend to occur in those genes in which they are facilitated by nearby downstream in-frame triplets which may serve as new stop codons. Conversely, subtractions of coding sequence often give rise to in-frame stop codons located nearby. The amino acid composition of the added region is significantly biased, compared to the overall amino acid composition of the genes. Our results show that in prokaryotes, shift of stop codon is an underappreciated contributor to functional evolution of gene length.
Collapse
Affiliation(s)
- Anna A Vakhrusheva
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorbyevy Gory 1-73, Moscow 119992, Russia
| | | | | | | |
Collapse
|
14
|
Bazykin GA, Kochetov AV. Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Res 2010; 39:567-77. [PMID: 20864444 PMCID: PMC3025576 DOI: 10.1093/nar/gkq806] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternative start AUG codons within a single transcript can contribute to diversity of the proteome; however, their functional significance remains controversial. Here, we provide comparative genomics evidence that alternative start codons are under negative selection in vertebrates, insects and yeast. In genes where the annotated start codon (sAUG) resides within the suboptimal nucleotide context, the downstream in-frame AUG codons (dAUG) among the first ∼30 codon sites are significantly more conserved between species than in genes where the sAUG resides within the optimal context. Proteomics data show that this difference is not an annotation artifact and that dAUGs are in fact under selection as alternative start sites. The key optimal, and sometimes suboptimal, context-determining nucleotides of both the sAUG and dAUGs are conserved. Selection for secondary start sites is stronger in genes with the weak primary start site. Genes with multiple conserved start sites are enriched for transcription factors, and tend to have longer 5'UTRs and higher degree of alternative splicing. Together, these results imply that the use of alternative start sites by means of leaky mRNA scanning is a functional mechanism under selection for increased efficiency of translation and/or for translation of different N-terminal protein variants.
Collapse
Affiliation(s)
- Georgii A Bazykin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia.
| | | |
Collapse
|
15
|
Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 2009; 11:17-30. [PMID: 19953080 DOI: 10.1038/nrg2698] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pathogens have always been a major cause of human mortality, so they impose strong selective pressure on the human genome. Data from population genetic studies, including genome-wide scans for selection, are providing important insights into how natural selection has shaped immunity and host defence genes in specific human populations and in the human species as a whole. These findings are helping to delineate genes that are important for host defence and to increase our understanding of how past selection has had an impact on disease susceptibility in modern populations. A tighter integration between population genetic studies and immunological phenotype studies is now necessary to reveal the mechanisms that have been crucial for our past and present survival against infection.
Collapse
Affiliation(s)
- Luis B Barreiro
- Human Evolutionary Genetics, Institut Pasteur, Centre National de la Recherche Scientifique URA3012, Paris 75015, France
| | | |
Collapse
|