1
|
Lupo V, Roomans C, Royen E, Ongena L, Jacquemin O, Mullender C, Kerff F, Baurain D. Identification and characterization of archaeal pseudomurein biosynthesis genes through pangenomics. mSystems 2025:e0140124. [PMID: 39936904 DOI: 10.1128/msystems.01401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
The peptidoglycan (PG, or murein) is a mesh-like structure, which is made of glycan polymers connected by short peptides and surrounds the cell membrane of nearly all bacterial species. In contrast, there is no PG counterpart that would be universally found in Archaea but rather various polymers that are specific to some lineages. Methanopyrales and Methanobacteriales are two orders of Euryarchaeota that harbor pseudomurein (PM), a structural analog of the bacterial PG. Owing to the differences between PG and PM biosynthesis, some have argued that the origin of both polymers is not connected. However, recent studies have revealed that the genomes of PM-containing Archaea encode homologs of the bacterial genes involved in PG biosynthesis, even though neither their specific functions nor the relationships within the corresponding inter-domain phylogenies have been investigated so far. In this work, we devised a pangenomic bioinformatic pipeline to identify proteins for PM biosynthesis in Archaea without prior genetic knowledge. The taxonomic distribution and evolutionary relationships of the candidate proteins were studied in detail in Archaea and Bacteria through HMM sequence mining and phylogenetic inference of the Mur domain-containing family, the ATP-grasp superfamily, and the MraY-like family. Our results show that archaeal muramyl ligases are of bacterial origin but diversified through a mixture of horizontal gene transfers and gene duplications. However, in the ATP-grasp and MraY-like families, the archaeal members were not found to originate from Bacteria. Our pangenomic approach further identified five new genes potentially involved in PM synthesis and that would deserve functional characterization.IMPORTANCEMethanobrevibacter smithii is an archaea commonly found in the human gut, but its presence alongside pathogenic bacteria during infections has led some researchers to consider it as an opportunistic pathogen. Fortunately, endoisopeptidases isolated from phages, such as PeiW and PeiP, can cleave the cell walls of M. smithii and other pseudomurein-containing archaea. However, additional research is required to identify effective anti-archaeal agents to combat these opportunistic microorganisms. A better understanding of the pseudomurein cell wall and its biosynthesis is necessary to achieve this goal. Our study sheds light on the origin of cell wall structures in those microorganisms, showing that the archaeal muramyl ligases responsible for its formation have bacterial origins. This discovery challenges the conventional view of the cell-wall architecture in the last archaeal common ancestor and shows that the distinction between "common origin" and "convergent evolution" can be blurred in some cases.
Collapse
Affiliation(s)
- Valérian Lupo
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Célyne Roomans
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Edmée Royen
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Loïc Ongena
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Olivier Jacquemin
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Coralie Mullender
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Garric S, Ratin M, Gallet B, Decelle J, Probert I, Rodriguez F, Six C. Photophysiology of the haploid form of the cryptophyte Teleaulax amphioxeia. JOURNAL OF PHYCOLOGY 2024; 60:1220-1236. [PMID: 39292829 DOI: 10.1111/jpy.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 09/20/2024]
Abstract
Cryptophytes are abundant and ubiquitous microalgae that constitute a major plastid source for kleptoplastidic ciliates and dinoflagellates. Despite their ecological significance, the understanding of their light preferences and photophysiology remains limited. Here, we provide a comprehensive study of the response of the haploid strain Teleaulax amphioxeia (Cr10EHU) to varying light irradiance. This strain is capable of growing under a wide range of irradiance levels, notably by finely tuning the different pigments bound to the membrane light-harvesting proteins. Analysis of the luminal phycoerythrin content revealed remarkable flexibility, with phycoerythrin emerging as a pivotal protein facilitating acclimation to varying light levels. Detailed ultrastructure examinations unveiled that this adaptability was supported by the synthesis of large thylakoidal vesicles, likely enhancing the capture of green photons efficiently under low light, a phenomenon previously undocumented. Teleaulax amphioxeia Cr10EHU effectively regulated light utilization by using a cryptophyte state transition-like process, with a larger amplitude observed under high growth irradiance. Furthermore, our results revealed the establishment of growth irradiance-dependent non-photochemical quenching of fluorescence, likely inducing the dissipation of excess light. This study underscores the particularities and the significant photoadaptability of the plastid of the haploid form of T. amphioxeia. It constitutes a comprehensive photophysiological characterization of the Cr10EHU strain that paves the way for future studies of the kleptoplastidy process.
Collapse
Affiliation(s)
- Sarah Garric
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 « Adaptation et Diversité en Milieu Marin », Group « Ecology of Marine Plankton », Station Biologique de Roscoff, Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 « Adaptation et Diversité en Milieu Marin », Group « Ecology of Marine Plankton », Station Biologique de Roscoff, Roscoff, France
| | - Benoit Gallet
- CEA, CNRS, Institut de Biologie Structurale (IBS) UMR 5075, Université Grenoble Alpes, Grenoble Cedex 9, France
| | - Johan Decelle
- Centre National de la Recherche Scientifique, UMR5168 Laboratoire de Physiologie Cellulaire & Végétale, Centre National de la Recherche Scientifique, Grenoble Cedex 9, France
| | - Ian Probert
- Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble cedex 9, France
| | | | - Christophe Six
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 « Adaptation et Diversité en Milieu Marin », Group « Ecology of Marine Plankton », Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
3
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
4
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
5
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Yang P, Guo K, Yang Y, Lyu M, Liu J, Li X, Feng Y. Phylogeny and genetic variations of the three genome compartments in haptophytes shed light on the rapid evolution of coccolithophores. Gene 2023; 887:147716. [PMID: 37604324 DOI: 10.1016/j.gene.2023.147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Haptophyte algae, including coccolithophores, play key roles in global carbon cycling and ecosystem. They exhibit exceptional morphological and functional diversity. However, their phylogeny is mostly based on short markers and genome researches are always limited to few species, hindering a better understanding about their evolution and diversification. In this study, by assembling 69 new plastid genomes, 65 new mitochondrial genomes, and 55 nuclear drafts, we systematically analyzed their genome variations and built the most comprehensive phylogenies in haptophytes and Noelaerhabdaceae, with the latter is the family of the model coccolithophore Emiliania huxleyi. The haptophyte genomes vary significantly in size, gene content, and structure. We detected phylogenetic incongruence of Prymnesiales between genome compartments. In Noelaerhabdaceae, by including Reticulofenestra sessilis and a proper outgroup, we found R. sessilis was not the basal taxon of this family. Noelaerhabdaceae strains have very similar genomic features and conserved sequences, but different gene content and dynamic structure. We speculate that was caused by DNA double-strand break repairs. Our results provide valuable genetic resources and new insights into the evolution of haptophytes, especially coccolithophores.
Collapse
Affiliation(s)
- Penghao Yang
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kangning Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuqing Yang
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
7
|
Jiang Y, Cao T, Yang Y, Zhang H, Zhang J, Li X. A chlorophyll c synthase widely co-opted by phytoplankton. Science 2023; 382:92-98. [PMID: 37797009 DOI: 10.1126/science.adg7921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl a: Chl b for green plants versus Chl c for most eukaryotic phytoplankton. The enzymes that mediate Chl c biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom Phaeodactylum tricornutum as the Chl c synthase. The chlc mutants lacked Chl c, instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl c, thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl c synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis.
Collapse
Affiliation(s)
- Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jingyu Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
8
|
Gololobova MA, Belyakova GA. Position of Algae on the Tree of Life. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:312-326. [PMID: 36781528 DOI: 10.1134/s0012496622060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/15/2023]
Abstract
Issues related to evolution of algal chloroplasts are considered. The position of algae on the Tree of Life is discussed. Algae are now included in five of the monophyletic eukaryotic supergroups: Archaeplastida (Glaucocystophyta, Rhodophyta, Prasinodermophyta, Chlorophyta, and Charophyta), TSAR (Ochrophyta; Dinophyta; Chlorarachniophyta; and photosynthetic species of the genera Chromera, Vetrella, and Paulinella), Haptista (Prymnesiophyta and Rappemonads), Cryptista (Cryptophyta), and Discoba (Euglenophyta). The algal divisions and the respective supergroups are characterized in brief.
Collapse
Affiliation(s)
- M A Gololobova
- Biological Faculty, Moscow State University, Moscow, Russia.
| | - G A Belyakova
- Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing. FRONTIERS IN PLANT SCIENCE 2022; 13:918543. [PMID: 35898209 PMCID: PMC9309888 DOI: 10.3389/fpls.2022.918543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Dinoflagellates possess plastids that are diverse in both pigmentation and evolutionary background. One of the plastid types found in dinoflagellates is pigmented with chlorophylls a and b (Chl a + b) and originated from the endosymbionts belonging to a small group of green algae, Pedinophyceae. The Chl a + b-containing plastids have been found in three distantly related dinoflagellates Lepidodinium spp., strain MGD, and strain TGD, and were proposed to be derived from separate partnerships between a dinoflagellate (host) and a pedinophycean green alga (endosymbiont). Prior to this study, a plastid genome sequence was only available for L. chlorophorum, which was reported to bear the features that were not found in that of the pedinophycean green alga Pedinomonas minor, a putative close relative of the endosymbiont that gave rise to the current Chl a + b-containing plastid. In this study, we sequenced the plastid genomes of strains MGD and TGD to compare with those of L. chlorophorum as well as pedinophycean green algae. The mapping of the RNA-seq reads on the corresponding plastid genome identified RNA editing on plastid gene transcripts in the three dinoflagellates. Further, the comparative plastid genomics revealed that the plastid genomes of the three dinoflagellates achieved several features, which are not found in or much less obvious than the pedinophycean plastid genomes determined to date, in parallel.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kounosuke Morita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takuro Nakayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Chihiro Sarai
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Kazuya Takahashi
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041924] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, microalgae and cyanobacteria have become a promising and sustainable source of useful products, thanks to their richness in bioactive metabolites of high value (antibiotics, toxins, pharmaceutically active compounds, plant growth regulators, and others). These photoautotroph microorganisms generate biomass using photosynthesis. This review, which distinguishes microalgae and Cyanobacteria, often called blue-green microalgae, aims to present their classification and taxonomic diversity as the ecological niches occupied by them. In addition, the usages of open ponds and photobioreactors to produce various microalgae and Cyanobacteria strains and the high-value bioactive compounds from these microorganisms are summarized. Finally, the numerous commercial applications of these phytoplanktons in different fields, such as food, dietary supplements, feed, cosmetic, and biofuel applications, are reviewed.
Collapse
|
11
|
Abstract
Non-random usage of synonymous codons, known as “codon bias”, has been described in many organisms, from bacteria to Drosophila, but little is known about it in phytoplankton. This phenomenon is thought to be driven by selection for translational efficiency. As the efficacy of selection is proportional to the effective population size, species with large population sizes, such as phytoplankton, are expected to have strong codon bias. To test this, we measured codon bias in 215 strains from Haptophyta, Chlorophyta, Ochrophyta (except diatoms that were studied previously), Dinophyta, Cryptophyta, Ciliophora, unicellular Rhodophyta and Chlorarachniophyta. Codon bias is modest in most groups, despite the astronomically large population sizes of marine phytoplankton. The strength of the codon bias, measured with the effective number of codons, is the strongest in Haptophyta and the weakest in Chlorarachniophyta. The optimal codons are GC-ending in most cases, but several shifts to AT-ending codons were observed (mainly in Ochrophyta and Ciliophora). As it takes a long time to reach a new equilibrium after such shifts, species having AT-ending codons show a lower frequency of optimal codons compared to other species. Genetic diversity, calculated for species with more than three strains sequenced, is modest, indicating that the effective population sizes are many orders of magnitude lower than the astronomically large census population sizes, which helps to explain the modest codon bias in marine phytoplankton. This study represents the first comparative analysis of codon bias across multiple major phytoplankton groups.
Collapse
|
12
|
Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. Lower statistical support with larger datasets: insights from the Ochrophyta radiation. Mol Biol Evol 2021; 39:6409865. [PMID: 34694402 PMCID: PMC8763130 DOI: 10.1093/molbev/msab300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.
Collapse
Affiliation(s)
- Arnaud Di Franco
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Unité de Phylogénomique des Eucaryotes, Université de Liège, Liège, Belgium
| | - Gernot Glöckner
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | - Michael Melkonian
- Max Planck Institute for Plant Breeding Research, Integrative Bioinformatics, Cologne, Germany
| | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Emergent RNA-RNA interactions can promote stability in a facultative phototrophic endosymbiosis. Proc Natl Acad Sci U S A 2021; 118:2108874118. [PMID: 34521754 PMCID: PMC8463893 DOI: 10.1073/pnas.2108874118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Stable endosymbiosis between eukaryotic microbes has driven the evolution of further cellular complexity. Yet the mechanisms that can act to stabilize an emergent eukaryote–eukaryote endosymbiosis are unclear. Using the model facultative endosymbiotic system, Paramecium bursaria, we demonstrate that endosymbiont–host RNA–RNA interactions can drive a cost to host growth upon endosymbiont digestion. These RNA–RNA interactions are facilitated by the host RNA-interference system. For endosymbiont messenger RNA sharing a high level of sequence identity with host transcripts, this process can result in host gene knockdown. We propose that these endosymbiont–host RNA–RNA interactions—“RNA-interference collisions”—represent an emergent mechanism to sanction the host for breakdown of the endosymbiosis, promoting the stability of the facultative endosymbiotic interaction. Eukaryote–eukaryote endosymbiosis was responsible for the spread of chloroplast (plastid) organelles. Stability is required for the metabolic and genetic integration that drives the establishment of new organelles, yet the mechanisms that act to stabilize emergent endosymbioses—between two fundamentally selfish biological organisms—are unclear. Theory suggests that enforcement mechanisms, which punish misbehavior, may act to stabilize such interactions by resolving conflict. However, how such mechanisms can emerge in a facultative endosymbiosis has yet to be explored. Here, we propose that endosymbiont–host RNA–RNA interactions, arising from digestion of the endosymbiont population, can result in a cost to host growth for breakdown of the endosymbiosis. Using the model facultative endosymbiosis between Paramecium bursaria and Chlorella spp., we demonstrate that this mechanism is dependent on the host RNA-interference (RNAi) system. We reveal through small RNA (sRNA) sequencing that endosymbiont-derived messenger RNA (mRNA) released upon endosymbiont digestion can be processed by the host RNAi system into 23-nt sRNA. We predict multiple regions of shared sequence identity between endosymbiont and host mRNA, and demonstrate through delivery of synthetic endosymbiont sRNA that exposure to these regions can knock down expression of complementary host genes, resulting in a cost to host growth. This process of host gene knockdown in response to endosymbiont-derived RNA processing by host RNAi factors, which we term “RNAi collisions,” represents a mechanism that can promote stability in a facultative eukaryote–eukaryote endosymbiosis. Specifically, by imposing a cost for breakdown of the endosymbiosis, endosymbiont–host RNA–RNA interactions may drive maintenance of the symbiosis across fluctuating ecological conditions.
Collapse
|
14
|
Paudel YP, Hu Z, Khatiwada JR, Fan L, Pradhan S, Liu B, Qin W. Chloroplast genome analysis of Chrysotila dentata. Gene 2021; 804:145871. [PMID: 34363887 DOI: 10.1016/j.gene.2021.145871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Chrysotila dentata is an ecologically important marine alga contributing to the coccolith formation. In this study, a complete chloroplast (cp DNA) genome of Chrysotila dentata was sequenced by using Illumina Hiseq and was analyzed with the help of a bioinformatics tool CPGAVAS2. The circular chloroplast genome of Chrysotila dentata has a size of 109,017 bp with two inverted repeats (IRs) regions (4513 bp each) which is a common feature in most land plants and algal species. The Chrysotila dentata cp genome consists of 61 identified protein-coding genes, 30 tRNA genes and 6 rRNAs with 21 microsatellites. The phylogenetic relationship with other select algal species revealed a close phylogeny of Chrysotila dentata with Phaeocystis antarctica. This is the first report of the cp genome analysis of genus Chrysotila and the results from this study will be helpful for understanding the genetic structure and function of chloroplast in other species of Chrysotila.
Collapse
Affiliation(s)
- Yagya Prasad Paudel
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Zixuan Hu
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Janak Raj Khatiwada
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Lu Fan
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Shreeti Pradhan
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Benwen Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
15
|
Irisarri I, Strassert JFH, Burki F. Phylogenomic Insights into the Origin of Primary Plastids. Syst Biol 2021; 71:105-120. [PMID: 33988690 DOI: 10.1093/sysbio/syab036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The origin of plastids was a major evolutionary event that paved the way for an astonishing diversification of photosynthetic eukaryotes. Plastids originated by endosymbiosis between a heterotrophic eukaryotic host and cyanobacteria, presumably in a common ancestor of the primary photosynthetic eukaryotes (Archaeplastida). A single origin of primary plastids is well supported by plastid evidence but not by nuclear phylogenomic analyses, which have consistently failed to recover the monophyly of Archaeplastida hosts. Importantly, plastid monophyly and non-monophyletic hosts could be explained under scenarios of independent or serial eukaryote-to-eukaryote endosymbioses. Here, we assessed the strength of the signal for the monophyly of Archaeplastida hosts in four available phylogenomic datasets. The effect of phylogenetic methodology, data quality, alignment trimming strategy, gene and taxon sampling, and the presence of outlier genes were investigated. Our analyses revealed a lack of support for host monophyly in the shorter individual datasets. However, when analyzed together under rigorous data curation and complex mixture models, the combined nuclear datasets supported the monophyly of primary photosynthetic eukaryotes (Archaeplastida) and revealed a putative association with plastid-lacking Picozoa. This study represents an important step towards better understanding deep eukaryotic evolution and the origin of plastids.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jürgen F H Strassert
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Science For Life Laboratory, Uppsala University, 75236 Sweden
| |
Collapse
|
16
|
Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun 2021; 12:1879. [PMID: 33767194 PMCID: PMC7994803 DOI: 10.1038/s41467-021-22044-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Iker Irisarri
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, and Campus Institute Data Science (CIDAS), Göttingen, Germany
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, UK
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Chabi M, Leleu M, Fermont L, Colpaert M, Colleoni C, Ball SG, Cenci U. Retracing Storage Polysaccharide Evolution in Stramenopila. FRONTIERS IN PLANT SCIENCE 2021; 12:629045. [PMID: 33747010 PMCID: PMC7965971 DOI: 10.3389/fpls.2021.629045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 05/10/2023]
Abstract
Eukaryotes most often synthesize storage polysaccharides in the cytosol or vacuoles in the form of either alpha (glycogen/starch)- or beta-glucosidic (chrysolaminarins and paramylon) linked glucan polymers. In both cases, the glucose can be packed either in water-soluble (glycogen and chrysolaminarins) or solid crystalline (starch and paramylon) forms with different impacts, respectively, on the osmotic pressure, the glucose accessibility, and the amounts stored. Glycogen or starch accumulation appears universal in all free-living unikonts (metazoa, fungi, amoebozoa, etc.), as well as Archaeplastida and alveolata, while other lineages offer a more complex picture featuring both alpha- and beta-glucan accumulators. We now infer the distribution of these polymers in stramenopiles through the bioinformatic detection of their suspected metabolic pathways. Detailed phylogenetic analysis of key enzymes of these pathways correlated to the phylogeny of Stramenopila enables us to retrace the evolution of storage polysaccharide metabolism in this diverse group of organisms. The possible ancestral nature of glycogen metabolism in eukaryotes and the underlying source of its replacement by beta-glucans are discussed.
Collapse
Affiliation(s)
- Malika Chabi
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marie Leleu
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Léa Fermont
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Matthieu Colpaert
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Colleoni
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Steven G. Ball
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ugo Cenci
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Ugo Cenci,
| |
Collapse
|
18
|
Kechasov D, de Grahl I, Endries P, Reumann S. Evolutionary Maintenance of the PTS2 Protein Import Pathway in the Stramenopile Alga Nannochloropsis. Front Cell Dev Biol 2020; 8:593922. [PMID: 33330478 PMCID: PMC7710942 DOI: 10.3389/fcell.2020.593922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The stramenopile alga Nannochloropsis evolved by secondary endosymbiosis of a red alga by a heterotrophic host cell and emerged as a promising organism for biotechnological applications, such as the production of polyunsaturated fatty acids and biodiesel. Peroxisomes play major roles in fatty acid metabolism but experimental analyses of peroxisome biogenesis and metabolism in Nannochloropsis are not reported yet. In fungi, animals, and land plants, soluble proteins of peroxisomes are targeted to the matrix by one of two peroxisome targeting signals (type 1, PTS1, or type 2, PTS2), which are generally conserved across kingdoms and allow the prediction of peroxisomal matrix proteins from nuclear genome sequences. Because diatoms lost the PTS2 pathway secondarily, we investigated its presence in the stramenopile sister group of diatoms, the Eustigmatophyceae, represented by Nannochloropsis. We detected a full-length gene of a putative PEX7 ortholog coding for the cytosolic receptor of PTS2 proteins and demonstrated its expression in Nannochloropsis gaditana. The search for predicted PTS2 cargo proteins in N. gaditana yielded several candidates. In vivo subcellular targeting analyses of representative fusion proteins in different plant expression systems demonstrated that two predicted PTS2 domains were indeed functional and sufficient to direct a reporter protein to peroxisomes. Peroxisome targeting of the predicted PTS2 cargo proteins was further confirmed in Nannochloropsis oceanica by confocal and transmission electron microscopy. Taken together, the results demonstrate for the first time that one group of stramenopile algae maintained the import pathway for PTS2 cargo proteins. To comprehensively map and model the metabolic capabilities of Nannochloropsis peroxisomes, in silico predictions needs to encompass both the PTS1 and the PTS2 matrix proteome.
Collapse
Affiliation(s)
- Dmitry Kechasov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Pierre Endries
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Liu J, Luthuli S, Yang Y, Cheng Y, Zhang Y, Wu M, Choi J, Tong H. Therapeutic and nutraceutical potentials of a brown seaweed Sargassum fusiforme. Food Sci Nutr 2020; 8:5195-5205. [PMID: 33133523 PMCID: PMC7590327 DOI: 10.1002/fsn3.1835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Sargassum fusiforme, also known as Yangqicai () in Chinese and Hijiki in Japanese, is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries such as Japan, Korea, and China. The first use of S. fusiforme as a traditional Chinese medicinal plant was recorded in the Shennong Bencao Jing, dated 200 AD. It was referred to as Haizao (seaweed), renowned for treating Yinglu (tumor-like induration), dysuria, and edema. Currently, it is commonly used in traditional cuisine as it is rich in dietary fiber and minerals such as calcium, iron, and magnesium. Owing to its health benefits, S. fusiforme remains popular in China, Korea, and Japan, as well as in the UK and in North America. Currently, there is a lack of research on S. fusiforme; thus, we review the therapeutic effects of S. fusiforme, such as anticancer, antiangiogenic, and antiviral effects, in vitro and in vivo as reported during the past two decades. This review may promote further research on the therapeutic uses of S. fusiforme. Furthermore, we discuss the processes and considerations involved in using drugs produced from marine sources.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea
| | - Sibusiso Luthuli
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yue Yang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yang Cheng
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Ya Zhang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Mingjiang Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jong‐il Choi
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuKorea
| | - Haibin Tong
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| |
Collapse
|
20
|
Fang J, Lin A, Yuan X, Chen Y, He W, Huang J, Zhang X, Lin G, Zhang J, Xue T. The complete chloroplast genome of Isochrysis galbana and comparison with related haptophyte species. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Abstract
Developing a detailed understanding of how all known forms of life are related to one another in the tree of life has been a major preoccupation of biology since the idea of tree-like evolution first took hold. Since most life is microbial, our intuitive use of morphological comparisons to infer relatedness only goes so far, and molecular sequence data, most recently from genomes and transcriptomes, has been the primary means to infer these relationships. For prokaryotes this presented new challenges, since the degree of horizontal gene transfer led some to question the tree-like depiction of evolution altogether. Most eukaryotes are also microbial, but in contrast to prokaryotic life, the application of large-scale molecular data to the tree of eukaryotes has largely been a constructive process, leading to a small number of very diverse lineages, or 'supergroups'. The tree is not completely resolved, and contentious problems remain, but many well-established supergroups now encompass much more diversity than the traditional kingdoms. Some of the most exciting recent developments come from the discovery of branches in the tree that we previously had no inkling even existed, many of which are of great ecological or evolutionary interest. These new branches highlight the need for more exploration, by high-throughput molecular surveys, but also more traditional means of observations and cultivation.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Hulatt CJ, Wijffels RH, Viswanath K, Posewitz MC. The complete mitogenome and plastome of the haptophyte Pavlova lutheri NIVA-4/92. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:2748-2749. [PMID: 33457933 PMCID: PMC7782304 DOI: 10.1080/23802359.2020.1788436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The complete mitochondrial and plastid genomes of the microalga Pavlova lutheri strain NIVA-4/92 are reported. The circular-mapping mitogenome is 36,202 bp in length, contains 22 protein-coding genes, 24 tRNAs, and has a GC content of 37.5%. Like other haptophytes the mitogenome contains a single large, complex repeat region of approximately 5.4 kbp. The plastome is 95,281 bp in length and has a GC content of 35.6%. It contains 111 protein-coding genes and 27 tRNAs.
Collapse
Affiliation(s)
- Chris J Hulatt
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, Bodø, Norway.,Department of Chemistry, Colorado School of Mines, Golden, CO, USA
| | - René H Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, Bodø, Norway.,Bioprocess Engineering, AlgaePARC, Wageningen University and Research, Wageningen, The Netherlands
| | - Kiron Viswanath
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, Bodø, Norway
| | | |
Collapse
|
23
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
24
|
Ponce-Toledo RI, Moreira D, López-García P, Deschamps P. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry. Mol Biol Evol 2020; 35:2198-2204. [PMID: 29924337 DOI: 10.1093/molbev/msy121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endosymbiosis has been common all along eukaryotic evolution, providing opportunities for genomic and organellar innovation. Plastids are a prominent example. After the primary endosymbiosis of the cyanobacterial plastid ancestor, photosynthesis spread in many eukaryotic lineages via secondary endosymbioses involving red or green algal endosymbionts and diverse heterotrophic hosts. However, the number of secondary endosymbioses and how they occurred remain poorly understood. In particular, contrasting patterns of endosymbiotic gene transfer have been detected and subjected to various interpretations. In this context, accurate detection of endosymbiotic gene transfers is essential to avoid wrong evolutionary conclusions. We have assembled a strictly selected set of markers that provides robust phylogenomic evidence suggesting that nuclear genes involved in the function and maintenance of green secondary plastids in chlorarachniophytes and euglenids have unexpected mixed red and green algal origins. This mixed ancestry contrasts with the clear red algal origin of most nuclear genes carrying similar functions in secondary algae with red plastids.
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
25
|
Bhattacharya D, Price DC. The Algal Tree of Life from a Genomics Perspective. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Gruber A, Haferkamp I. Nucleotide Transport and Metabolism in Diatoms. Biomolecules 2019; 9:E761. [PMID: 31766535 PMCID: PMC6995639 DOI: 10.3390/biom9120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Collapse
Affiliation(s)
- Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
27
|
Ponce-Toledo RI, López-García P, Moreira D. Horizontal and endosymbiotic gene transfer in early plastid evolution. THE NEW PHYTOLOGIST 2019; 224:618-624. [PMID: 31135958 PMCID: PMC6759420 DOI: 10.1111/nph.15965] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered into a number of secondary endosymbioses with diverse eukaryotic hosts. These events had major consequences on the evolution and diversification of life on Earth. Although almost all plastid diversity derives from a single endosymbiotic event, the analysis of nuclear genomes of plastid-bearing lineages has revealed a mosaic origin of plastid-related genes. In addition to cyanobacterial genes, plastids recruited for their functioning eukaryotic proteins encoded by the host nucleus and also bacterial proteins of noncyanobacterial origin. Therefore, plastid proteins and plastid-localised metabolic pathways evolved by tinkering and using gene toolkits from different sources. This mixed heritage seems especially complex in secondary algae containing green plastids, the acquisition of which appears to have been facilitated by many previous acquisitions of red algal genes (the 'red carpet hypothesis').
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
28
|
Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS. Dictyochophyceae Plastid Genomes Reveal Unusual Variability in Their Organization. JOURNAL OF PHYCOLOGY 2019; 55:1166-1180. [PMID: 31325913 DOI: 10.1111/jpy.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Dictyochophyceae (silicoflagellates) are unicellular freshwater and marine algae (Heterokontophyta, stramenopiles). Despite their abundance in global oceans and potential ecological significance, discovered in recent years, neither nuclear nor organellar genomes of representatives of this group were sequenced until now. Here, we present the first complete plastid genome sequences of Dictyochophyceae, obtained from four species: Dictyocha speculum, Rhizochromulina marina, Florenciella parvula and Pseudopedinella elastica. Despite their comparable size and genetic content, these four plastid genomes exhibit variability in their organization: plastid genomes of F. parvula and P. elastica possess conventional quadripartite structure with a pair of inverted repeats, R. marina instead possesses two direct repeats with the same orientation and D. speculum possesses no repeats at all. We also observed a number of unusual traits in the plastid genome of D. speculum, including expansion of the intergenic regions, presence of an intron in the otherwise non-intron-bearing psaA gene, and an additional copy of the large subunit of RuBisCO gene (rbcL), the last of which has never been observed in any plastid genome. We conclude that despite noticeable gene content similarities between the plastid genomes of Dictyochophyceae and their relatives (pelagophytes, diatoms), the number of distinctive features observed in this lineage strongly suggests that additional taxa require further investigation.
Collapse
Affiliation(s)
- Kwi Young Han
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kacper Maciszewski
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Louis Graf
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Ji Hyun Yang
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, 98250, USA
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Hwan Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
29
|
Gavelis GS, Gile GH. How did cyanobacteria first embark on the path to becoming plastids?: lessons from protist symbioses. FEMS Microbiol Lett 2019; 365:5079637. [PMID: 30165400 DOI: 10.1093/femsle/fny209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Symbioses between phototrophs and heterotrophs (a.k.a 'photosymbioses') are extremely common, and range from loose and temporary associations to obligate and highly specialized forms. In the history of life, the most transformative was the 'primary endosymbiosis,' wherein a cyanobacterium was engulfed by a eukaryote and became genetically integrated as a heritable photosynthetic organelle, or plastid. By allowing the rise of algae and plants, this event dramatically altered the biosphere, but its remote origin over one billion years ago has obscured the sequence of events leading to its establishment. Here, we review the genetic, physiological and developmental hurdles involved in early primary endosymbiosis. Since we cannot travel back in time to witness these evolutionary junctures, we will draw on examples of unicellular eukaryotes (protists) spanning diverse modes of photosymbiosis. We also review experimental approaches that could be used to recreate aspects of early primary endosymbiosis on a human timescale.
Collapse
Affiliation(s)
- Gregory S Gavelis
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
30
|
Jirsová D, Füssy Z, Richtová J, Gruber A, Oborník M. Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Cafileria marina Gen. et sp. nov. Microorganisms 2019; 7:microorganisms7080240. [PMID: 31387253 PMCID: PMC6723347 DOI: 10.3390/microorganisms7080240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
31
|
Moreira D, López-García P. Evolution: King-Size Plastid Genomes in a New Red Algal Clade. Curr Biol 2019; 27:R651-R653. [PMID: 28697364 DOI: 10.1016/j.cub.2017.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Plastids, the photosynthetic organelles of eukaryotes, exhibit remarkably stable genome architecture. However, a recent study of microscopic red algae has found new record-sized plastid genomes with unusual architectures. These species form a new branch in the tree of red algae.
Collapse
Affiliation(s)
- David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
32
|
Bollmann SR, Press CM, Tyler BM, Grünwald NJ. Expansion and Divergence of Argonaute Genes in the Oomycete Genus Phytophthora. Front Microbiol 2018; 9:2841. [PMID: 30555430 PMCID: PMC6284064 DOI: 10.3389/fmicb.2018.02841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 01/17/2023] Open
Abstract
Modulation of gene expression through RNA interference is well conserved in eukaryotes and is involved in many cellular processes. In the oomycete Phytophthora, research on the small RNA machinery and function has started to reveal potential roles in the pathogen, but much is still unknown. We examined Argonaute (AGO) homologs within oomycete genome sequences, especially among Phytophthora species, to gain a clearer understanding of the evolution of this well-conserved protein family. We identified AGO homologs across many representative oomycete and stramenopile species, and annotated representative homologs in P. sojae. Furthermore, we demonstrate variable transcript levels of all identified AGO homologs in comparison to previously identified Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) homologs. Our phylogenetic analysis further refines the relationship of the AGO homologs in oomycetes and identifies a conserved tandem duplication of AGO homologs in a subset of Phytophthora species.
Collapse
Affiliation(s)
- Stephanie R Bollmann
- Horticultural Crop Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| | - Caroline M Press
- Horticultural Crop Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| |
Collapse
|
33
|
Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, Roger AJ, Kim E, Archibald JM. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol 2018; 16:137. [PMID: 30482201 PMCID: PMC6260743 DOI: 10.1186/s12915-018-0593-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea—the first for any goniomonad—to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. Results We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. Conclusion We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic “rewiring” that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae. Electronic supplementary material The online version of this article (10.1186/s12915-018-0593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Present address: Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Present address: Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France.,INRA, USC 1408 AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38000, Grenoble, France
| | - Malika Chabi
- Present address: UMR 8576 - Unité de glycobiologie structurale et fonctionnelle, Université Lille 1, 59650, Villeneuve d'Ascq, France
| | - Christophe Djemiel
- Present address: UMR 8576 - Unité de glycobiologie structurale et fonctionnelle, Université Lille 1, 59650, Villeneuve d'Ascq, France
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology & Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79 Street, New York, NY, 10024, USA
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Mix AK, Cenci U, Heimerl T, Marter P, Wirkner ML, Moog D. Identification and Localization of Peroxisomal Biogenesis Proteins Indicates the Presence of Peroxisomes in the Cryptophyte Guillardia theta and Other "Chromalveolates". Genome Biol Evol 2018; 10:2834-2852. [PMID: 30247558 PMCID: PMC6203080 DOI: 10.1093/gbe/evy214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes are single-membrane-bound organelles with a huge metabolic versatility, including the degradation of fatty acids (β-oxidation) and the detoxification of reactive oxygen species as most conserved functions. Although peroxisomes seem to be present in the majority of investigated eukaryotes, where they are responsible for many eclectic and important spatially separated metabolic reactions, knowledge about their existence in the plethora of protists (eukaryotic microorganisms) is scarce. Here, we investigated genomic data of organisms containing complex plastids with red algal ancestry (so-called “chromalveolates”) for the presence of genes encoding peroxins—factors specific for the biogenesis, maintenance, and division of peroxisomes in eukaryotic cells. Our focus was on the cryptophyte Guillardia theta, a marine microalga, which possesses two phylogenetically different nuclei of host and endosymbiont origin, respectively, thus being of enormous evolutionary significance. Besides the identification of a complete set of peroxins in G. theta, we heterologously localized selected factors as GFP fusion proteins via confocal and electron microscopy in the model diatom Phaeodactylum tricornutum. Furthermore, we show that peroxins, and thus most likely peroxisomes, are present in haptophytes as well as eustigmatophytes, brown algae, and alveolates including dinoflagellates, chromerids, and noncoccidian apicomplexans. Our results indicate that diatoms are not the only “chromalveolate” group devoid of the PTS2 receptor Pex7, and thus a PTS2-dependent peroxisomal import pathway, which seems to be absent in haptophytes (Emiliania huxleyi) as well. Moreover, important aspects of peroxisomal biosynthesis and protein import in “chromalveolates”are highlighted.
Collapse
Affiliation(s)
- Ann-Kathrin Mix
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Germany
| | - Pia Marter
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | | | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| |
Collapse
|
35
|
Río Bártulos C, Rogers MB, Williams TA, Gentekaki E, Brinkmann H, Cerff R, Liaud MF, Hehl AB, Yarlett NR, Gruber A, Kroth PG, van der Giezen M. Mitochondrial Glycolysis in a Major Lineage of Eukaryotes. Genome Biol Evol 2018; 10:2310-2325. [PMID: 30060189 PMCID: PMC6198282 DOI: 10.1093/gbe/evy164] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/21/2022] Open
Abstract
The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host’s metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
Collapse
Affiliation(s)
- Carolina Río Bártulos
- Institut für Genetik, Technische Universität Braunschweig.,Fachbereich Biologie, Universität Konstanz, Germany
| | - Matthew B Rogers
- Biosciences, University of Exeter, United Kingdom.,Rangos Research Center, University of Pittsburgh, Children's Hospital, Pittsburgh, PA
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, United Kingdom
| | - Eleni Gentekaki
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai, Thailand
| | - Henner Brinkmann
- Département de Biochimie, Université de Montréal C.P. 6128, Montréal, Quebec, Canada.,Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Rüdiger Cerff
- Institut für Genetik, Technische Universität Braunschweig
| | | | - Adrian B Hehl
- Institute of Parasitology, University of Zürich, Switzerland
| | - Nigel R Yarlett
- Department of Chemistry and Physical Sciences, Pace University
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, Germany.,Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | | |
Collapse
|
36
|
Minter EJA, Lowe CD, Sørensen MES, Wood AJ, Cameron DD, Brockhurst MA. Variation and asymmetry in host-symbiont dependence in a microbial symbiosis. BMC Evol Biol 2018; 18:108. [PMID: 29986646 PMCID: PMC6038246 DOI: 10.1186/s12862-018-1227-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Symbiosis is a major source of evolutionary innovation and, by allowing species to exploit new ecological niches, underpins the functioning of ecosystems. The transition from free-living to obligate symbiosis requires the alignment of the partners' fitness interests and the evolution of mutual dependence. While symbiotic taxa are known to vary widely in the extent of host-symbiont dependence, rather less is known about variation within symbiotic associations. RESULTS Using experiments with the microbial symbiosis between the protist Paramecium bursaria and the alga Chlorella, we show variation between pairings in host-symbiont dependence, encompassing facultative associations, mutual dependence and host dependence upon the symbiont. Facultative associations, that is where both the host and the symbiont were capable of free-living growth, displayed higher symbiotic growth rates and higher per host symbiont loads than those with greater degrees of dependence. CONCLUSIONS These data show that the Paramecium-Chlorella interaction exists at the boundary between facultative and obligate symbiosis, and further suggest that the host is more likely to evolve dependence than the algal symbiont.
Collapse
Affiliation(s)
- Ewan J A Minter
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Chris D Lowe
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Megan E S Sørensen
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - A Jamie Wood
- Department of Biology, University of York, York, YO10 5DD, UK.,Department of Mathematics, University of York, York, YO10 5DD, UK
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
37
|
González A, Sáez CA, Morales B, Moenne A. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of antioxidant enzymes in Ectocarpus siliculosus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:106-116. [PMID: 29518656 DOI: 10.1016/j.plaphy.2018.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2023]
Abstract
The existence of functional Transient Receptor Potential (TRP) channels was analyzed in Ectocarpus siliculosus using agonists of human TRPs and specific antagonists of TRPA1, TRPC5, TRPM8 and TRPV; intracellular calcium was detected for 60 min. Increases in intracellular calcium were observed at 13, 29, 39 and 50-52 min, which appeared to be mediated by the activation of TRPM8/V1 at 13 min, TRPV1 at 29 min, TRPA1/V1 at 39 min and TRPA1/C5 at 50-52 min. In addition, intracellular calcium increases appear to be due to extracellular calcium entry, not requiring protein kinase activation. On the other hand, 2.5 μM copper exposure induced increased intracellular calcium at 13, 29, 39 and 51 min, likely due to the activation of a TRPA1/V1 at 13 min, TRPA1/C5/M8 at 29 min, TRPC5/M8 at 39 min, and a TRPC5/V1 at 51 min. The increases in intracellular calcium induced by copper were due to extracellular calcium entry and required protein kinase activation. Furthermore, from 3 to 24 h, copper exposure induced an increase in the level of transcripts encoding antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and peroxiredoxin. The described upregulation decreased with inhibitors of CaMK, PKA, PKC, PKG and CBLPK, as well as with a mixture of TRP inhibitors. Thus, copper induces the activation of TRP channels allowing extracellular calcium entry as well as the activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of genes encoding antioxidant enzymes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Claudio A Sáez
- Laboratory of Coastal Environmental Research, Center of Advanced Studies, University of Playa Ancha, Viña del mar, Chile
| | - Bernardo Morales
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| |
Collapse
|
38
|
Kim JI, Yoon HS, Yi G, Shin W, Archibald JM. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements. BMC Genomics 2018; 19:275. [PMID: 29678149 PMCID: PMC5910586 DOI: 10.1186/s12864-018-4626-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptophytes are an ecologically important group of algae comprised of phototrophic, heterotrophic and osmotrophic species. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin. Cryptophytes have a clear phylogenetic affinity to heterotrophic eukaryotes and possess four genomes: host-derived nuclear and mitochondrial genomes, and plastid and nucleomorph genomes of endosymbiotic origin. RESULTS To gain insight into cryptophyte mitochondrial genome evolution, we sequenced the mitochondrial DNAs of five species and performed a comparative analysis of seven genomes from the following cryptophyte genera: Chroomonas, Cryptomonas, Hemiselmis, Proteomonas, Rhodomonas, Storeatula and Teleaulax. The mitochondrial genomes were similar in terms of their general architecture, gene content and presence of a large repeat region. However, gene order was poorly conserved. Characteristic features of cryptophyte mtDNAs included large syntenic clusters resembling α-proteobacterial operons that encode bacteria-like rRNAs, tRNAs, and ribosomal protein genes. The cryptophyte mitochondrial genomes retain almost all genes found in many other eukaryotes including the nad, sdh, cox, cob, and atp genes, with the exception of sdh2 and atp3. In addition, gene cluster analysis showed that cryptophytes possess a gene order closely resembling the jakobid flagellates Jakoba and Reclinomonas. Interestingly, the cox1 gene of R. salina, T. amphioxeia, and Storeatula species was found to contain group II introns encoding a reverse transcriptase protein, as did the cob gene of Storeatula species CCMP1868. CONCLUSIONS These newly sequenced genomes increase the breadth of data available from algae and will aid in the identification of general trends in mitochondrial genome evolution. While most of the genomes were highly conserved, extensive gene arrangements have shuffled gene order, perhaps due to genome rearrangements associated with hairpin-containing mobile genetic elements, tRNAs with palindromic sequences, and tandem repeat sequences. The cox1 and cob gene sequences suggest that introns have recently been acquired during cryptophyte evolution. Comparison of phylogenetic trees based on plastid and mitochondrial genome data sets underscore the different evolutionary histories of the host and endosymbiont components of present-day cryptophytes.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Gangman Yi
- Department of Multimedia Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
39
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
40
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events. Methods Mol Biol 2018; 1829:17-35. [PMID: 29987712 DOI: 10.1007/978-1-4939-8654-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.
Collapse
Affiliation(s)
- Zoltán Füssy
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
41
|
Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Genome Biol Evol 2017; 9:1859-1872. [PMID: 28854597 PMCID: PMC5534331 DOI: 10.1093/gbe/evx123] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cryptophytes are an ecologically important group of largely photosynthetic unicellular eukaryotes. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin and the host cell retains four different genomes (host nuclear, mitochondrial, plastid, and red algal nucleomorph). Here, we report a comparative analysis of plastid genomes from six representative cryptophyte genera. Four newly sequenced cryptophyte plastid genomes of Chroomonas mesostigmatica, Ch. placoidea, Cryptomonas curvata, and Storeatula sp. CCMP1868 share a number of features including synteny and gene content with the previously sequenced genomes of Cryptomonas paramecium, Rhodomonas salina, Teleaulax amphioxeia, and Guillardia theta. Our analysis of these plastid genomes reveals examples of gene loss and intron insertion. In particular, the chlB/chlL/chlN genes, which encode light-independent (dark active) protochlorophyllide oxidoreductase (LIPOR) proteins have undergone recent gene loss and pseudogenization in cryptophytes. Comparison of phylogenetic trees based on plastid and nuclear genome data sets show the introduction, via secondary endosymbiosis, of a red algal derived plastid in a lineage of chlorophyll-c containing algae. This event was followed by additional rounds of eukaryotic endosymbioses that spread the red lineage plastid to diverse groups such as haptophytes and stramenopiles.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Christa E Moore
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Gangman Yi
- Department of Multimedia Engineering, Dongkuk University, Seoul, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
42
|
Liu F, Jin Z, Wang Y, Bi Y, Melton JT. Plastid Genome of Dictyopteris divaricata (Dictyotales, Phaeophyceae): Understanding the Evolution of Plastid Genomes in Brown Algae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:627-637. [PMID: 29164355 DOI: 10.1007/s10126-017-9781-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Dictyotophycidae is a subclass of brown algae containing 395 species that are distributed worldwide. A complete plastid (chloroplast) genome (ptDNA or cpDNA) had not previously been sequenced from this group. In this study, the complete plastid genome of Dictyopteris divaricata (Okamura) Okamura (Dictyotales, Phaeophyceae) was characterized and compared to other brown algal ptDNAs. This plastid genome was 126,099 bp in size with two inverted repeats (IRs) of 6026 bp. The D. divaricata IRs contained rpl21, making its IRs larger than representatives from the orders Fucales and Laminariales, but was smaller than that from Ectocarpales. The G + C content of D. divaricata (31.19%) was the highest of the known ptDNAs of brown algae (28.94-31.05%). Two protein-coding genes, rbcR and rpl32, were present in ptDNAs of Laminariales, Ectocarpales (Ectocarpus siliculosus), and Fucales (LEF) but were absent in D. divaricata. Reduced intergenic space (13.11%) and eight pairs of overlapping genes in D. divaricata ptDNA made it the most compact plastid genome in brown algae so far. The architecture of D. divaricata ptDNA showed higher similarity to that of Laminariales compared with Fucales and Ectocarpales. The difference in general features, gene content, and architecture among the ptDNAs of D. divaricata and LEF clade revealed the diversity and evolutionary trends of plastid genomes in brown algae.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, People's Republic of China.
| | - Zhe Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China
- College of Life Science, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Yu Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China
- School of Life Sciences, Shandong University, Jinan, Shandong, 250100, People's Republic of China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, People's Republic of China
| | - James T Melton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487-0345, USA
| |
Collapse
|
43
|
Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 2017; 7:13214. [PMID: 29038514 PMCID: PMC5643376 DOI: 10.1038/s41598-017-13575-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
Collapse
|
44
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
45
|
Are Thraustochytrids algae? Fungal Biol 2017; 121:835-840. [DOI: 10.1016/j.funbio.2017.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
|
46
|
Gruber A, Kroth PG. Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160402. [PMID: 28717012 PMCID: PMC5516111 DOI: 10.1098/rstb.2016.0402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 11/12/2022] Open
Abstract
Diatoms are important primary producers in the oceans and can also dominate other aquatic habitats. One reason for the success of this phylogenetically relatively young group of unicellular organisms could be the impressive redundancy and diversity of metabolic isoenzymes in diatoms. This redundancy is a result of the evolutionary origin of diatom plastids by a eukaryote-eukaryote endosymbiosis, a process that implies temporary redundancy of functionally complete eukaryotic genomes. During the establishment of the plastids, this redundancy was partially reduced via gene losses, and was partially retained via gene transfer to the nucleus of the respective host cell. These gene transfers required re-assignment of intracellular targeting signals, a process that simultaneously altered the intracellular distribution of metabolic enzymes compared with the ancestral cells. Genome annotation, the correct assignment of the gene products and the prediction of putative function, strongly depends on the correct prediction of the intracellular targeting of a gene product. Here again diatoms are very peculiar, because the targeting systems for organelle import are partially different to those in land plants. In this review, we describe methods of predicting intracellular enzyme locations, highlight findings of metabolic peculiarities in diatoms and present genome-enabled approaches to study their metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
47
|
Raven JA, Giordano M. Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160400. [PMID: 28717026 PMCID: PMC5516109 DOI: 10.1098/rstb.2016.0400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
The acquisition and assimilation of inorganic C have been investigated in several of the 15 clades of the Ochrophyta other than diatoms, with biochemical, physiological and genomic data indicating significant mechanistic variation. Form ID Rubiscos in the Ochrophyta are characterized by a broad range of kinetics values. In spite of relatively high K0.5CO2 and low CO2 : O2 selectivity, diffusive entry of CO2 occurs in the Chrysophyceae and Synurophyceae. Eustigmatophyceae and Phaeophyceae, on the contrary, have CO2 concentrating mechanisms, usually involving the direct or indirect use of [Formula: see text] This variability is possibly due to the ecological contexts of the organism. In brown algae, C fixation generally takes place through a classical C3 metabolism, but there are some hints of the occurrence of C4 metabolism and low amplitude CAM in a few members of the Fucales. Genomic data show the presence of a number of potential C4 and CAM genes in Ochrophyta other than diatoms, but the other core functions of many of these genes give a very limited diagnostic value to their presence and are insufficient to conclude that C4 photosynthesis is present in these algae.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Trěboň 37901, Czech Republic
| |
Collapse
|
48
|
Price DC, Bhattacharya D. Robust Dinoflagellata phylogeny inferred from public transcriptome databases. JOURNAL OF PHYCOLOGY 2017; 53:725-729. [PMID: 28273342 DOI: 10.1111/jpy.12529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/24/2017] [Indexed: 05/13/2023]
Abstract
Dinoflagellates are dominant members of the plankton and play key roles in ocean ecosystems as primary producers, predators, parasites, coral photobionts, and causative agents of algal blooms that produce toxins harmful to humans and commercial fisheries. These unicellular protists exhibit remarkable trophic and morphological diversity and include species with some of the largest reported nuclear genomes. Despite their high ecological and economic importance, comprehensive genome (or transcriptome) based dinoflagellate trees of life are few in number. To address this issue, we used recently generated public sequencing data, including from the Moore Microbial Eukaryote Transcriptome Sequencing Project, to identify dinoflagellate-specific ortholog groups. These orthologs were combined to create a broadly sampled and highly resolved phylogeny of dinoflagellates. Our results emphasize the scope and utility of public sequencing databases in creating broad and robust phylogenies for large and complex taxonomic lineages, while also providing unique insights into the evolution of thecate dinoflagellates.
Collapse
Affiliation(s)
- Dana C Price
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
49
|
Raven JA, Beardall J, Sánchez-Baracaldo P. The possible evolution and future of CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3701-3716. [PMID: 28505361 DOI: 10.1093/jxb/erx110] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Building 18, Clayton Campus, Vic 3800, Australia
| | | |
Collapse
|
50
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|