1
|
Freville A, Stewart LB, Tetteh KKA, Treeck M, Cortes A, Voss TS, Tarr SJ, Baker DA, Conway DJ. Expression of the MSPDBL2 antigen in a discrete subset of Plasmodium falciparum schizonts is regulated by GDV1 but may not be linked to sexual commitment. mBio 2024; 15:e0314023. [PMID: 38530030 PMCID: PMC11077968 DOI: 10.1128/mbio.03140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
The Plasmodium falciparum merozoite surface protein MSPDBL2 is a polymorphic antigen targeted by acquired immune responses, and normally expressed in only a minority of mature schizonts. The potential relationship of MSPDBL2 to sexual commitment is examined, as variable mspdbl2 transcript levels and proportions of MSPDBL2-positive mature schizonts in clinical isolates have previously correlated with levels of many sexual stage parasite gene transcripts, although not with the master regulator ap2-g. It is demonstrated that conditional overexpression of the gametocyte development protein GDV1, which promotes sexual commitment, also substantially increases the proportion of MSPDBL2-positive schizonts in culture. Conversely, truncation of the gdv1 gene is shown to prevent any expression of MSPDBL2. However, across diverse P. falciparum cultured lines, the variable proportions of MSPDBL2 positivity in schizonts do not correlate significantly with variable gametocyte conversion rates, indicating it is not involved in sexual commitment. Confirming this, examining a line with endogenous hemagglutinin-tagged AP2-G showed that the individual schizonts expressing MSPDBL2 are mostly different from those expressing AP2-G. Using a selection-linked integration system, modified P. falciparum lines were engineered to express an intact or disrupted version of MSPDBL2, showing the protein is not required for sexual commitment or early gametocyte development. Asexual parasite multiplication rates were also not affected by expression of either intact or disrupted MSPDBL2 in a majority of schizonts. Occurring alongside sexual commitment, the role of the discrete MSPDBL2-positive schizont subpopulation requires further investigation in natural infections where it is under immune selection. IMPORTANCE Malaria parasites in the blood are remarkably variable, able to switch antigenic targets so they may survive within humans who have already developed specific immune responses. This is one of the challenges in developing vaccines against malaria. MSPDBL2 is a target of naturally acquired immunity expressed in minority proportions of schizonts, the end stages of each 2-day replication cycle in red blood cells which contain merozoites prepared to invade new red blood cells. Results show that the proportion of schizonts expressing MSPDBL2 is positively controlled by the expression of the regulatory gametocyte development protein GDV1. It was previously known that expression of GDV1 leads to increased expression of AP2-G which causes parasites to switch to sexual development, so a surprising finding here is that MSPDBL2-positive parasites are mostly distinct from those that express AP2-G. This discrete antigenic subpopulation of mostly asexual parasites is regulated alongside sexually committed parasites, potentially enabling survival under stress conditions.
Collapse
Affiliation(s)
- Aline Freville
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Alfred Cortes
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah J. Tarr
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A. Baker
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David J. Conway
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Letcher B, Maciuca S, Iqbal Z. Role for gene conversion in the evolution of cell-surface antigens of the malaria parasite Plasmodium falciparum. PLoS Biol 2024; 22:e3002507. [PMID: 38451924 PMCID: PMC10919680 DOI: 10.1371/journal.pbio.3002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
While the malaria parasite Plasmodium falciparum has low average genome-wide diversity levels, likely due to its recent introduction from a gorilla-infecting ancestor (approximately 10,000 to 50,000 years ago), some genes display extremely high diversity levels. In particular, certain proteins expressed on the surface of human red blood cell-infecting merozoites (merozoite surface proteins (MSPs)) possess exactly 2 deeply diverged lineages that have seemingly not recombined. While of considerable interest, the evolutionary origin of this phenomenon remains unknown. In this study, we analysed the genetic diversity of 2 of the most variable MSPs, DBLMSP and DBLMSP2, which are paralogs (descended from an ancestral duplication). Despite thousands of available Illumina WGS datasets from malaria-endemic countries, diversity in these genes has been hard to characterise as reads containing highly diverged alleles completely fail to align to the reference genome. To solve this, we developed a pipeline leveraging genome graphs, enabling us to genotype them at high accuracy and completeness. Using our newly- resolved sequences, we found that both genes exhibit 2 deeply diverged lineages in a specific protein domain (DBL) and that one of the 2 lineages is shared across the genes. We identified clear evidence of nonallelic gene conversion between the 2 genes as the likely mechanism behind sharing, leading us to propose that gene conversion between diverged paralogs, and not recombination suppression, can generate this surprising genealogy; a model that is furthermore consistent with high diversity levels in these 2 genes despite the strong historical P. falciparum transmission bottleneck.
Collapse
Affiliation(s)
- Brice Letcher
- EMBL-EBI, Hinxton, United Kingdom
- Laboratory of Biology and Modelling of the Cell, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | |
Collapse
|
3
|
Konopiński MK, Fijarczyk AM, Biedrzycka A. Complex patterns shape immune genes diversity during invasion of common raccoon in Europe - Selection in action despite genetic drift. Evol Appl 2023; 16:134-151. [PMID: 36699132 PMCID: PMC9850017 DOI: 10.1111/eva.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Rapid adaptation is common in invasive populations and is crucial to their long-term success. The primary target of selection in the invasive species' new range is standing genetic variation. Therefore, genetic drift and natural selection acting on existing variation are key evolutionary processes through which invaders will evolve over a short timescale. In this study, we used the case of the raccoon Procyon lotor invasion in Europe to identify the forces shaping the diversity of immune genes during invasion. The genes involved in the defence against infection should be under intense selection pressure in the invasive range where novel pathogens are expected to occur. To disentangle the selective and demographic processes shaping the adaptive immune diversity of its invasive and expanding populations, we have developed species-specific single-nucleotide polymorphism markers located in the coding regions of targeted immune-related genes. We characterised the genetic diversity of 110 functionally important immune genes in two invasive and one native raccoon genetic clusters, each presenting a different demographic history. Despite the strong effect of demographic processes in the invasive clusters, we detected a subset of genes exhibiting the diversity pattern suggestive of selection. The most likely process shaping the variation in those genes was balancing selection. The selected genes belong to toll-like receptors and cytokine-related genes. Our results suggest that the prevalence of selection depends on the level of diversity, that is - less genetically diverse invasive population from the Czech Republic displayed fewer signs of selection. Our results highlight the role of standing genetic variation in adapting to new environment. Understanding the evolutionary mechanisms behind invasion success would enable predicting how populations may respond to environmental change.
Collapse
Affiliation(s)
| | - Anna M. Fijarczyk
- Laval University Département de BiologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
4
|
Highly Variable Expression of Merozoite Surface Protein MSPDBL2 in Diverse Plasmodium falciparum Clinical Isolates and Transcriptome Scans for Correlating Genes. mBio 2022; 13:e0194822. [PMID: 35950755 PMCID: PMC9426457 DOI: 10.1128/mbio.01948-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The merozoite surface protein MSPDBL2 of Plasmodium falciparum is under strong balancing selection and is a target of naturally acquired antibodies. Remarkably, MSPDBL2 is expressed in only a minority of mature schizonts of any cultured parasite line, and mspdbl2 gene transcription increases in response to overexpression of the gametocyte development inducer GDV1, so it is important to understand its natural expression. Here, MSPDBL2 in mature schizonts was analyzed in the first ex vivo culture cycle of 96 clinical isolates from 4 populations with various levels of infection endemicity in different West African countries, by immunofluorescence microscopy with antibodies against a conserved region of the protein. In most isolates, less than 1% of mature schizonts were positive for MSPDBL2, but the frequency distribution was highly skewed, as nine isolates had more than 3% schizonts positive and one had 73% positive. To investigate whether the expression of other gene loci correlated with MSPDBL2 expression, whole-transcriptome sequencing was performed on schizont-enriched material from 17 of the isolates with a wide range of proportions of schizonts positive. Transcripts of particular genes were highly significantly positively correlated with MSPDBL2 positivity in schizonts as well as with mspdbl2 gene transcript levels, showing overrepresentation of genes implicated previously as involved in gametocytogenesis but not including the gametocytogenesis master regulator ap2-g. Single-cell transcriptome analysis of a laboratory-adapted clone showed that most individual parasites expressing mspdbl2 did not express ap2-g, consistent with MSPDBL2 marking a developmental subpopulation that is distinct but likely to co-occur alongside sexual commitment. IMPORTANCE These findings contribute to understanding malaria parasite antigenic and developmental variation, focusing on the merozoite surface protein encoded by the single locus under strongest balancing selection. Analyzing the initial ex vivo generation of parasites grown from a wide sample of clinical infections, we show a unique and highly skewed pattern of natural expression frequencies of MSPDBL2, distinct from that of any other antigen. Bulk transcriptome analysis of a range of clinical isolates showed significant overrepresentation of sexual development genes among those positively correlated with MSPDBL2 protein and mspdbl2 gene expression, indicating the MSPDBL2-positive subpopulation to be often coincident with parasites developing sexually in preparation for transmission. Single-cell transcriptome data confirm the absence of a direct correlation with the ap2-g master regulator of sexual development, indicating that the MSPDBL2-positive subpopulation has a separate function in asexual survival and replication under conditions that promote terminal sexual differentiation.
Collapse
|
5
|
Letcher B, Hunt M, Iqbal Z. Gramtools enables multiscale variation analysis with genome graphs. Genome Biol 2021; 22:259. [PMID: 34488837 PMCID: PMC8420074 DOI: 10.1186/s13059-021-02474-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Genome graphs allow very general representations of genetic variation; depending on the model and implementation, variation at different length-scales (single nucleotide polymorphisms (SNPs), structural variants) and on different sequence backgrounds can be incorporated with different levels of transparency. We implement a model which handles this multiscale variation and develop a JSON extension of VCF (jVCF) allowing for variant calls on multiple references, both implemented in our software gramtools. We find gramtools outperforms existing methods for genotyping SNPs overlapping large deletions in M. tuberculosis and is able to genotype on multiple alternate backgrounds in P. falciparum, revealing previously hidden recombination.
Collapse
Affiliation(s)
| | - Martin Hunt
- EMBL-EBI, Hinxton, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Whitlock AOB, Juliano JJ, Mideo N. Immune selection suppresses the emergence of drug resistance in malaria parasites but facilitates its spread. PLoS Comput Biol 2021; 17:e1008577. [PMID: 34280179 PMCID: PMC8321109 DOI: 10.1371/journal.pcbi.1008577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/29/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Although drug resistance in Plasmodium falciparum typically evolves in regions of low transmission, resistance spreads readily following introduction to regions with a heavier disease burden. This suggests that the origin and the spread of resistance are governed by different processes, and that high transmission intensity specifically impedes the origin. Factors associated with high transmission, such as highly immune hosts and competition within genetically diverse infections, are associated with suppression of resistant lineages within hosts. However, interactions between these factors have rarely been investigated and the specific relationship between adaptive immunity and selection for resistance has not been explored. Here, we developed a multiscale, agent-based model of Plasmodium parasites, hosts, and vectors to examine how host and parasite dynamics shape the evolution of resistance in populations with different transmission intensities. We found that selection for antigenic novelty (“immune selection”) suppressed the evolution of resistance in high transmission settings. We show that high levels of population immunity increased the strength of immune selection relative to selection for resistance. As a result, immune selection delayed the evolution of resistance in high transmission populations by allowing novel, sensitive lineages to remain in circulation at the expense of the spread of a resistant lineage. In contrast, in low transmission settings, we observed that resistant strains were able to sweep to high population prevalence without interference. Additionally, we found that the relationship between immune selection and resistance changed when resistance was widespread. Once resistance was common enough to be found on many antigenic backgrounds, immune selection stably maintained resistant parasites in the population by allowing them to proliferate, even in untreated hosts, when resistance was linked to a novel epitope. Our results suggest that immune selection plays a role in the global pattern of resistance evolution. Drug resistance in the malaria parasite, Plasmodium falciparum, presents an ongoing public health challenge, but aspects of its evolution are poorly understood. Although antimalarial resistance is common worldwide, it can typically be traced to just a handful of evolutionary origins. Counterintuitively, although Sub Saharan Africa bears 90% of the global malaria burden, resistance typically originates in regions where transmission intensity is low. In high transmission regions, infections are genetically diverse, and hosts have significant standing adaptive immunity, both of which are known to suppress the frequency of resistance within infections. However, interactions between immune-driven selection, transmission intensity, and resistance have not been investigated. Using a multiscale, agent-based model, we found that high transmission intensity slowed the evolution of resistance via its effect on host population immunity. High host immunity strengthened selection for antigenic novelty, interfering with selection for resistance and allowing sensitive lineages to suppress resistant lineages in untreated hosts. However, once resistance was common in the circulating parasite population, immune selection maintained it in the population at a high prevalence. Our findings provide a novel explanation for observations about the origin of resistance and suggest that adaptive immunity is a critical component of selection.
Collapse
Affiliation(s)
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Andras JP, Fields PD, Du Pasquier L, Fredericksen M, Ebert D. Genome-Wide Association Analysis Identifies a Genetic Basis of Infectivity in a Model Bacterial Pathogen. Mol Biol Evol 2021; 37:3439-3452. [PMID: 32658956 PMCID: PMC7743900 DOI: 10.1093/molbev/msaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Knowledge of the genetic architecture of pathogen infectivity and host resistance is essential for a mechanistic understanding of coevolutionary processes, yet the genetic basis of these interacting traits remains unknown for most host-pathogen systems. We used a comparative genomic approach to explore the genetic basis of infectivity in Pasteuria ramosa, a Gram-positive bacterial pathogen of planktonic crustaceans that has been established as a model for studies of Red Queen host-pathogen coevolution. We sequenced the genomes of a geographically, phenotypically, and genetically diverse collection of P. ramosa strains and performed a genome-wide association study to identify genetic correlates of infection phenotype. We found multiple polymorphisms within a single gene, Pcl7, that correlate perfectly with one common and widespread infection phenotype. We then confirmed this perfect association via Sanger sequencing in a large and diverse sample set of P. ramosa clones. Pcl7 codes for a collagen-like protein, a class of adhesion proteins known or suspected to be involved in the infection mechanisms of a number of important bacterial pathogens. Consistent with expectations under Red Queen coevolution, sequence variation of Pcl7 shows evidence of balancing selection, including extraordinarily high diversity and absence of geographic structure. Based on structural homology with a collagen-like protein of Bacillus anthracis, we propose a hypothesis for the structure of Pcl7 and the physical location of the phenotype-associated polymorphisms. Our results offer strong evidence for a gene governing infectivity and provide a molecular basis for further study of Red Queen dynamics in this model host-pathogen system.
Collapse
Affiliation(s)
- Jason P Andras
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA
| | - Peter D Fields
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Louis Du Pasquier
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Maridel Fredericksen
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Dieter Ebert
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Tandoh KZ, Amenga-Etego L, Quashie NB, Awandare G, Wilson M, Duah-Quashie NO. Plasmodium falciparum Malaria Parasites in Ghana Show Signatures of Balancing Selection at Artemisinin Resistance Predisposing Background Genes. Evol Bioinform Online 2021; 17:1176934321999640. [PMID: 33746510 PMCID: PMC7940735 DOI: 10.1177/1176934321999640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sub-Saharan Africa is courting the risk of artemisinin resistance (ARTr) emerging in Plasmodium falciparum malaria parasites. Current molecular surveillance efforts for ARTr have been built on the utility of P. falciparum kelch13 (pfk13) validated molecular markers. However, whether these molecular markers will serve the purpose of early detection of artemisinin-resistant parasites in Ghana is hinged on a pfk13 dependent evolution. Here, we tested the hypothesis that the background pfk13 genome may be present before the pfk13 ARTr-conferring variant(s) is selected and that signatures of balancing selection on these genomic loci may serve as an early warning signal of ARTr. We analyzed 12 198 single nucleotide polymorphisms (SNPs) in Ghanaian clinical isolates in the Pf3K MalariaGEN dataset that passed a stringent filtering regimen. We identified signatures of balancing selection in 2 genes (phosphatidylinositol 4-kinase and chloroquine resistance transporter) previously reported as background loci for ARTr. These genes showed statistically significant and high positive values for Tajima's D, Fu and Li's F, and Fu and Li's D. This indicates that the biodiversity required to establish a pfk13 background genome may have been primed in clinical isolates of P. falciparum from Ghana as of 2010. Despite the absence of ARTr in Ghana to date, our finding supports the current use of pfk13 for molecular surveillance of ARTr in Ghana and highlights the potential utility of monitoring malaria parasite populations for balancing selection in ARTr precursor background genes as early warning molecular signatures for the emergence of ARTr.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Neils B Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health sciences, University of Ghana, Accra, Ghana
| | - Nancy O Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
9
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Ebert D, Fields PD. Host-parasite co-evolution and its genomic signature. Nat Rev Genet 2020; 21:754-768. [PMID: 32860017 DOI: 10.1038/s41576-020-0269-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
Studies in diverse biological systems have indicated that host-parasite co-evolution is responsible for the extraordinary genetic diversity seen in some genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates and resistance genes in plants. This diversity is believed to evolve under balancing selection on hosts by parasites. However, the mechanisms that link the genomic signatures in these regions to the underlying co-evolutionary process are only slowly emerging. We still lack a clear picture of the co-evolutionary concepts and of the genetic basis of the co-evolving phenotypic traits in the interacting antagonists. Emerging genomic tools that provide new options for identifying underlying genes will contribute to a fuller understanding of the co-evolutionary process.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland. .,Wissenschaftskolleg zu Berlin, Berlin, Germany.
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Ochola-Oyier LI, Wamae K, Omedo I, Ogola C, Matharu A, Musabyimana JP, Njogu FK, Marsh K. Few Plasmodium falciparum merozoite ligand and erythrocyte receptor pairs show evidence of balancing selection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:235-245. [PMID: 30735814 PMCID: PMC6403450 DOI: 10.1016/j.meegid.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Erythrocyte surface proteins have been identified as receptors of Plasmodium falciparum merozoite proteins. The ligand-receptor interactions enable the parasite to invade human erythrocytes, initiating the clinical symptoms of malaria. These interactions are likely to have had an evolutionary impact on the genes that encode the ligand and receptor proteins. We used sequence data from Kilifi, Kenya to detect departures from neutrality in a paired analysis of P. falciparum merozoite ligands and their erythrocyte receptor genes from the same population. We genotyped parasite and human DNA obtained from 93 individuals with severe malaria. We examined six merozoite ligands EBA175, EBL1, EBA140, MSP1, Rh4 and Rh5, and their corresponding erythrocyte receptors, glycophorin (Gyp) A, GypB, GypC, band 3, complement receptor (CR) 1 and basigin, focusing on the regions involved in the ligand-receptor interactions. Positive Tajima's D values (>1) were observed only in the MSP1 C-terminal region and EBA175 region II, while negative values (<-1) were observed in EBL-1 region II, Rh4, basigin exons 3 and 5, CR1 exon 5, Gyp B exons 2, 3 and 4 and Gyp C exon 2. Additionally, ebl-1 region II and basigin exon 3 showed extreme negative values in all three tests, Tajima's D, Fu & Li D* and F*, ≤ - 2. A large majority of the erythrocyte receptor and merozoite genes have a negative Tajima's D even when compared with previously published whole genome data. Thus, highlighting EBA175 region II and MSP1-33, as outlier genes with a positive Tajima's D (>1). Both these genes contain multiple polymorphisms, which in the case of EBA175 may counteract receptor polymorphisms and/or evade host immune responses and in MSP1 the polymorphisms may primarily evade host immune responses.
Collapse
MESH Headings
- Alleles
- Child
- Child, Preschool
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Female
- Gene Frequency
- Host-Parasite Interactions
- Humans
- Infant
- Infant, Newborn
- Ligands
- Malaria, Falciparum/genetics
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Male
- Merozoites/metabolism
- Models, Molecular
- Plasmodium falciparum/classification
- Plasmodium falciparum/physiology
- Polymorphism, Genetic
- Protein Conformation
- Protozoan Proteins/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya; Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya.
| | - Kevin Wamae
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Irene Omedo
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Christabel Ogola
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Abneel Matharu
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Jean Pierre Musabyimana
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Francis K Njogu
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| |
Collapse
|
12
|
Tarr SJ, Díaz-Ingelmo O, Stewart LB, Hocking SE, Murray L, Duffy CW, Otto TD, Chappell L, Rayner JC, Awandare GA, Conway DJ. Schizont transcriptome variation among clinical isolates and laboratory-adapted clones of the malaria parasite Plasmodium falciparum. BMC Genomics 2018; 19:894. [PMID: 30526479 PMCID: PMC6288915 DOI: 10.1186/s12864-018-5257-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria parasites are genetically polymorphic and phenotypically plastic. In studying transcriptome variation among parasites from different infections, it is challenging to overcome potentially confounding technical and biological variation between samples. We investigate variation in the major human parasite Plasmodium falciparum, generating RNA-seq data on multiple independent replicate sample preparations of merozoite-containing intra-erythrocytic schizonts from a panel of clinical isolates and from long-term laboratory-adapted clones, with a goal of robustly identifying differentially expressed genes. RESULTS Analysis of biological sample replicates shows that increased numbers improve the true discovery rate of differentially expressed genes, and that six independent replicates of each parasite line allowed identification of most differences that could be detected with larger numbers. For highly expressed genes, focusing on the top quartile at schizont stages, there was more power to detect differences. Comparing cultured clinical isolates and laboratory-adapted clones, genes more highly expressed in the laboratory-adapted clones include those encoding an AP2 transcription factor (PF3D7_0420300), a ubiquitin-binding protein and two putative methyl transferases. In contrast, higher expression in clinical isolates was seen for the merozoite surface protein gene dblmsp2, proposed to be a marker of schizonts forming merozoites committed to sexual differentiation. Variable expression was extremely strongly, but not exclusively, associated with genes known to be targeted by Heterochromatin Protein 1. Clinical isolates show variable expression of several known merozoite invasion ligands, as well as other genes for which new RT-qPCR assays validate the quantitation and allow characterisation in samples with more limited material. Expression levels of these genes vary among schizont preparations of different clinical isolates in the first ex vivo cycle in patient erythrocytes, but mean levels are similar to those in continuously cultured clinical isolates. CONCLUSIONS Analysis of multiple biological sample replicates greatly improves identification of genes variably expressed between different cultured parasite lines. Clinical isolates recently established in culture show differences from long-term adapted clones in transcript levels of particular genes, and are suitable for analyses requiring biological replicates to understand parasite phenotypes and variable expression likely to be relevant in nature.
Collapse
Affiliation(s)
- Sarah J Tarr
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK.
| | - Ofelia Díaz-Ingelmo
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsay B Stewart
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Suzanne E Hocking
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland, UK.,Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Lia Chappell
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
13
|
Oboh MA, Singh US, Antony HA, Ndiaye D, Badiane AS, Ali NA, Bharti PK, Das A. Molecular epidemiology and evolution of drug-resistant genes in the malaria parasite Plasmodium falciparum in southwestern Nigeria. INFECTION GENETICS AND EVOLUTION 2018; 66:222-228. [PMID: 30316883 DOI: 10.1016/j.meegid.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/27/2022]
Abstract
Malaria is an age-old disease of human kind living in the tropical and sub-tropical regions of the globe, with Africa contributing the highest incidence of morbidity and mortality. Among many hurdles, evolution and spread of drug-resistant Plasmodium falciparum parasites constitute major challenges to malaria control and elimination. Information on molecular epidemiology and pattern of evolution of genes conferring resistance to different antimalarials are needed to track the route of the spread of resistant parasites and also to inform if the drug-resistant genes are adapted in the population following the Darwinian model of evolution. In the present study, we have followed molecular methods to detect both the known and emerging mutations in three genes (Pfcrt, Pfdhfr and Pfdhps) of P. falciparum conferring resistance to chloroquine and sulfadoxine-pyrimethamine from two different states (Edo: meso-endemic and Lagos: hypo-endemic) in southwestern Nigeria. High diversities in haplotypes and nucleotides in genes responsible for chloroquine (Pfcrt) and sulfadoxine (Pfdhps) resistance are recorded. About 96% of Pfdhfr and Pfdhps gene in both the meso- and hypo- endemic areas were mutant type, followed by 61% in Pfcrt gene. Many unique haplotypes of Pfdhps and Pfcrt were found to be segregated in these two populations. One particular mutant haplotype of Pfdhfr (AIRNI) was found to be in very high frequency in both Lagos and Edo. While the net haplotype diversity was highest in Pfdhps (0.81 in Lagos, 0.87 in Edo), followed by Pfcrt (0.69 in Lagos, 0.65 in Edo); highest number of haplotype was found in Pfdhps with 13 distinct haplotypes, followed by seven in Pfcrt and four in Pfdhfr gene. Moreover, detection of strong linkage among mutations of Pfcrt and Pfdhfr and feeble evidence for balancing selection in Pfdhps are indicative of evolutionary potential of mutation in genes responsible for drug resistance in Nigerian populations of P. falciparum.
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Upasana Shyamsunder Singh
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Hiasindh Ashmi Antony
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nazia Anwar Ali
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Praveen Kumar Bharti
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Aparup Das
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
14
|
Aspeling-Jones H, Conway DJ. An expanded global inventory of allelic variation in the most extremely polymorphic region of Plasmodium falciparum merozoite surface protein 1 provided by short read sequence data. Malar J 2018; 17:345. [PMID: 30285849 PMCID: PMC6167803 DOI: 10.1186/s12936-018-2475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background Within Plasmodium falciparum merozoite surface protein 1 (MSP1), the N-terminal block 2 region is a highly polymorphic target of naturally acquired antibody responses. The antigenic diversity is determined by complex repeat sequences as well as non-repeat sequences, grouping into three major allelic types that appear to be maintained within populations by natural selection. Within these major types, many distinct allelic sequences have been described in different studies, but the extent and significance of the diversity remains unresolved. Methods To survey the diversity more extensively, block 2 allelic sequences in the msp1 gene were characterized in 2400 P. falciparum infection isolates with whole genome short read sequence data available from the Pf3K project, and compared with the data from previous studies. Results Mapping the short read sequence data in the 2400 isolates to a reference library of msp1 block 2 allelic sequences yielded 3815 allele scores at the level of major allelic family types, with 46% of isolates containing two or more of these major types. Overall frequencies were similar to those previously reported in other samples with different methods, the K1-like allelic type being most common in Africa, MAD20-like most common in Southeast Asia, and RO33-like being the third most abundant type in each continent. The rare MR type, formed by recombination between MAD20-like and RO33-like alleles, was only seen in Africa and very rarely in the Indian subcontinent but not in Southeast Asia. A combination of mapped short read assembly approaches enabled 1522 complete msp1 block 2 sequences to be determined, among which there were 363 different allele sequences, of which 246 have not been described previously. In these data, the K1-like msp1 block 2 alleles are most diverse and encode 225 distinct amino acid sequences, compared with 123 different MAD20-like, 9 RO33-like and 6 MR type sequences. Within each of the major types, the different allelic sequences show highly skewed geographical distributions, with most of the more common sequences being detected in either Africa or Asia, but not in both. Conclusions Allelic sequences of this extremely polymorphic locus have been derived from whole genome short read sequence data by mapping to a reference library followed by assembly of mapped reads. The catalogue of sequence variation has been greatly expanded, so that there are now more than 500 different msp1 block 2 allelic sequences described. This provides an extensive reference for molecular epidemiological genotyping and sequencing studies, and potentially for design of a multi-allelic vaccine. Electronic supplementary material The online version of this article (10.1186/s12936-018-2475-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harvey Aspeling-Jones
- Pathogen Molecular Biology Department, School of Hygiene and Tropical Medicine London, Keppel St, London, WC1E 7HT, UK.
| | - David J Conway
- Pathogen Molecular Biology Department, School of Hygiene and Tropical Medicine London, Keppel St, London, WC1E 7HT, UK.
| |
Collapse
|
15
|
Quintana MDP, Ch'ng JH, Moll K, Zandian A, Nilsson P, Idris ZM, Saiwaew S, Qundos U, Wahlgren M. Antibodies in children with malaria to PfEMP1, RIFIN and SURFIN expressed at the Plasmodium falciparum parasitized red blood cell surface. Sci Rep 2018; 8:3262. [PMID: 29459776 PMCID: PMC5818650 DOI: 10.1038/s41598-018-21026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/12/2018] [Indexed: 01/21/2023] Open
Abstract
Naturally acquired antibodies to proteins expressed on the Plasmodium falciparum parasitized red blood cell (pRBC) surface steer the course of a malaria infection by reducing sequestration and stimulating phagocytosis of pRBC. Here we have studied a selection of proteins representing three different parasite gene families employing a well-characterized parasite with a severe malaria phenotype (FCR3S1.2). The presence of naturally acquired antibodies, impact on rosetting rate, surface reactivity and opsonization for phagocytosis in relation to different blood groups of the ABO system were assessed in a set of sera from children with mild or complicated malaria from an endemic area. We show that the naturally acquired immune responses, developed during malaria natural infection, have limited access to the pRBCs inside a blood group A rosette. The data also indicate that SURFIN4.2 may have a function at the pRBC surface, particularly during rosette formation, this role however needs to be further validated. Our results also indicate epitopes differentially recognized by rosette-disrupting antibodies on a peptide array. Antibodies towards parasite-derived proteins such as PfEMP1, RIFIN and SURFIN in combination with host factors, essentially the ABO blood group of a malaria patient, are suggested to determine the outcome of a malaria infection.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Jun-Hong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Zulkarnain Md Idris
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan, Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Somporn Saiwaew
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Tuju J, Kamuyu G, Murungi LM, Osier FHA. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017; 152:195-206. [PMID: 28646586 PMCID: PMC5588761 DOI: 10.1111/imm.12780] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines.
Collapse
Affiliation(s)
- James Tuju
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Department of BiochemistryPwani UniversityKilifiKenya
| | - Gathoni Kamuyu
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Linda M. Murungi
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Faith H. A. Osier
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Centre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Department of Biomedical SciencesPwani UniversityKilifiKenya
| |
Collapse
|
17
|
Omedo I, Mogeni P, Rockett K, Kamau A, Hubbart C, Jeffreys A, Ochola-Oyier LI, de Villiers EP, Gitonga CW, Noor AM, Snow RW, Kwiatkowski D, Bejon P. Geographic-genetic analysis of Plasmodium falciparum parasite populations from surveys of primary school children in Western Kenya. Wellcome Open Res 2017; 2:29. [PMID: 28944299 PMCID: PMC5527688 DOI: 10.12688/wellcomeopenres.11228.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/30/2022] Open
Abstract
Background. Malaria control, and finally malaria elimination, requires the identification and targeting of residual foci or hotspots of transmission. However, the level of parasite mixing within and between geographical locations is likely to impact the effectiveness and durability of control interventions and thus should be taken into consideration when developing control programs. Methods. In order to determine the geographic-genetic patterns of
Plasmodium falciparum parasite populations at a sub-national level in Kenya, we used the Sequenom platform to genotype 111 genome-wide distributed single nucleotide polymorphic (SNP) positions in 2486 isolates collected from children in 95 primary schools in western Kenya. We analysed these parasite genotypes for genetic structure using principal component analysis and assessed local and global clustering using statistical measures of spatial autocorrelation. We further examined the region for spatial barriers to parasite movement as well as directionality in the patterns of parasite movement. Results. We found no evidence of population structure and little evidence of spatial autocorrelation of parasite genotypes (correlation coefficients <0.03 among parasite pairs in distance classes of 1km, 2km and 5km; p value<0.01). An analysis of the geographical distribution of allele frequencies showed weak evidence of variation in distribution of alleles, with clusters representing a higher than expected number of samples with the major allele being identified for 5 SNPs. Furthermore, we found no evidence of the existence of spatial barriers to parasite movement within the region, but observed directional movement of parasites among schools in two separate sections of the region studied. Conclusions. Our findings illustrate a pattern of high parasite mixing within the study region. If this mixing is due to rapid gene flow, then “one-off” targeted interventions may not be currently effective at the sub-national scale in Western Kenya, due to the high parasite movement that is likely to lead to re-introduction of infection from surrounding regions. However repeated targeted interventions may reduce transmission in the surrounding regions.
Collapse
Affiliation(s)
- Irene Omedo
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Polycarp Mogeni
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Alice Kamau
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Anna Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | - Etienne P de Villiers
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Public Health, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ, UK
| | - Caroline W Gitonga
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Abdisalan M Noor
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ, UK.,Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Robert W Snow
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7LJ, UK.,Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Dominic Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Clinical Vaccinology and Tropical Medicine, Oxford, OX3 7LJ, UK
| |
Collapse
|
18
|
Omedo I, Mogeni P, Rockett K, Kamau A, Hubbart C, Jeffreys A, Ochola-Oyier LI, de Villiers EP, Gitonga CW, Noor AM, Snow RW, Kwiatkowski D, Bejon P. Geographic-genetic analysis of Plasmodium falciparum parasite populations from surveys of primary school children in Western Kenya. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.11228.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background. Malaria control, and finally malaria elimination, requires the identification and targeting of residual foci or hotspots of transmission. However, the level of parasite mixing within and between geographical locations is likely to impact the effectiveness and durability of control interventions and thus should be taken into consideration when developing control programs. Methods. In order to determine the geographic-genetic patterns of Plasmodium falciparum parasite populations at a sub-national level in Kenya, we used the Sequenom platform to genotype 111 genome-wide distributed single nucleotide polymorphic (SNP) positions in 2486 isolates collected from children in 95 primary schools in western Kenya. We analysed these parasite genotypes for genetic structure using principal component analysis and assessed local and global clustering using statistical measures of spatial autocorrelation. We further examined the region for spatial barriers to parasite movement as well as directionality in the patterns of parasite movement. Results. We found no evidence of population structure and little evidence of spatial autocorrelation of parasite genotypes (correlation coefficients <0.03 among parasite pairs in distance classes of 1km, 2km and 5km; p value<0.01). An analysis of the geographical distribution of allele frequencies showed weak evidence of variation in distribution of alleles, with clusters representing a higher than expected number of samples with the major allele being identified for 5 SNPs. Furthermore, we found no evidence of the existence of spatial barriers to parasite movement within the region, but observed directional movement of parasites among schools in two separate sections of the region studied. Conclusions. Our findings illustrate a pattern of high parasite mixing within the study region. If this mixing is due to rapid gene flow, then “one-off” targeted interventions may not be currently effective at the sub-national scale in Western Kenya, due to the high parasite movement that is likely to lead to re-introduction of infection from surrounding regions. However repeated targeted interventions may reduce transmission in the surrounding regions.
Collapse
|
19
|
Gitaka JN, Takeda M, Kimura M, Idris ZM, Chan CW, Kongere J, Yahata K, Muregi FW, Ichinose Y, Kaneko A, Kaneko O. Selections, frameshift mutations, and copy number variation detected on the surf 4.1 gene in the western Kenyan Plasmodium falciparum population. Malar J 2017; 16:98. [PMID: 28253868 PMCID: PMC5335827 DOI: 10.1186/s12936-017-1743-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum SURFIN4.1 is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf 4.1 sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand. RESULTS Positively significant departures from neutral expectations were detected on the surf 4.1 region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf 4.1 gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36). CONCLUSIONS The authors infer that the high polymorphism of SURFIN4.1 Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1 Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1 on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.
Collapse
Affiliation(s)
- Jesse N. Gitaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Mika Takeda
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Masatsugu Kimura
- Radioisotope Centre, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Chim W. Chan
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
| | - James Kongere
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Kazuhide Yahata
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Francis W. Muregi
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Yoshio Ichinose
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Akira Kaneko
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Osamu Kaneko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| |
Collapse
|
20
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Crosnier C, Iqbal Z, Knuepfer E, Maciuca S, Perrin AJ, Kamuyu G, Goulding D, Bustamante LY, Miles A, Moore SC, Dougan G, Holder AA, Kwiatkowski DP, Rayner JC, Pleass RJ, Wright GJ. Binding of Plasmodium falciparum Merozoite Surface Proteins DBLMSP and DBLMSP2 to Human Immunoglobulin M Is Conserved among Broadly Diverged Sequence Variants. J Biol Chem 2016; 291:14285-14299. [PMID: 27226583 PMCID: PMC4933183 DOI: 10.1074/jbc.m116.722074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 11/17/2022] Open
Abstract
Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important for parasite biology. Population-based genome sequencing of Plasmodium falciparum, the parasite responsible for the most severe form of malaria, has highlighted two related polymorphic genes called dblmsp and dblmsp2, which encode Duffy binding-like (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show that DBLMSP and DBLMSP2 directly and avidly bind human IgM via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM binding function was retained across diverse sequence representatives. Although this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system.
Collapse
Affiliation(s)
- Cécile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Ellen Knuepfer
- Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Sorina Maciuca
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Abigail J Perrin
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Gathoni Kamuyu
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - David Goulding
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Leyla Y Bustamante
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Alistair Miles
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Shona C Moore
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gordon Dougan
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Anthony A Holder
- Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Dominic P Kwiatkowski
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Richard J Pleass
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
22
|
Ochola-Oyier LI, Okombo J, Wagatua N, Ochieng J, Tetteh KK, Fegan G, Bejon P, Marsh K. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population. Malar J 2016; 15:261. [PMID: 27154310 PMCID: PMC4858837 DOI: 10.1186/s12936-016-1304-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/20/2016] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. Methods The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. Results Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. Conclusion Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1304-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - John Okombo
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Njoroge Wagatua
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Jacob Ochieng
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin K Tetteh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Greg Fegan
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| |
Collapse
|
23
|
Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, Cowman AF. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem 2016; 291:7703-15. [PMID: 26823464 DOI: 10.1074/jbc.m115.698282] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
Successful invasion of human erythrocytes byPlasmodium falciparummerozoites is required for infection of the host and parasite survival. The early stages of invasion are mediated via merozoite surface proteins that interact with human erythrocytes. The nature of these interactions are currently not well understood, but it is known that merozoite surface protein 1 (MSP1) is critical for successful erythrocyte invasion. Here we show that the peripheral merozoite surface proteins MSP3, MSP6, MSPDBL1, MSPDBL2, and MSP7 bind directly to MSP1, but independently of each other, to form multiple forms of the MSP1 complex on the parasite surface. These complexes have overlapping functions that interact directly with human erythrocytes. We also show that targeting the p83 fragment of MSP1 using inhibitory antibodies inhibits all forms of MSP1 complexes and disrupts parasite growthin vitro.
Collapse
Affiliation(s)
- Clara S Lin
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, the Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Alessandro D Uboldi
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Christian Epp
- the Department of Infectious Diseases, Parasitology, Universität Heidelberg, INF 324, 69120 Heidelberg, Germany
| | - Hermann Bujard
- the Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, and
| | - Takafumi Tsuboi
- the Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Peter E Czabotar
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, the Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Alan F Cowman
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, the Department of Medical Biology, University of Melbourne, Melbourne, Australia,
| |
Collapse
|
24
|
Winter DJ, Pacheco MA, Vallejo AF, Schwartz RS, Arevalo-Herrera M, Herrera S, Cartwright RA, Escalante AA. Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia. PLoS Negl Trop Dis 2015; 9:e0004252. [PMID: 26709695 PMCID: PMC4692395 DOI: 10.1371/journal.pntd.0004252] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.
Collapse
Affiliation(s)
- David J. Winter
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - M. Andreína Pacheco
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| | | | - Rachel S. Schwartz
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Myriam Arevalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | | | - Reed A. Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- The School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ananias A. Escalante
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
25
|
Guy AJ, Irani V, MacRaild CA, Anders RF, Norton RS, Beeson JG, Richards JS, Ramsland PA. Insights into the Immunological Properties of Intrinsically Disordered Malaria Proteins Using Proteome Scale Predictions. PLoS One 2015; 10:e0141729. [PMID: 26513658 PMCID: PMC4626106 DOI: 10.1371/journal.pone.0141729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Malaria remains a significant global health burden. The development of an effective malaria vaccine remains as a major challenge with the potential to significantly reduce morbidity and mortality. While Plasmodium spp. have been shown to contain a large number of intrinsically disordered proteins (IDPs) or disordered protein regions, the relationship of protein structure to subcellular localisation and adaptive immune responses remains unclear. In this study, we employed several computational prediction algorithms to identify IDPs at the proteome level of six Plasmodium spp. and to investigate the potential impact of protein disorder on adaptive immunity against P. falciparum parasites. IDPs were shown to be particularly enriched within nuclear proteins, apical proteins, exported proteins and proteins localised to the parasitophorous vacuole. Furthermore, several leading vaccine candidates, and proteins with known roles in host-cell invasion, have extensive regions of disorder. Presentation of peptides by MHC molecules plays an important role in adaptive immune responses, and we show that IDP regions are predicted to contain relatively few MHC class I and II binding peptides owing to inherent differences in amino acid composition compared to structured domains. In contrast, linear B-cell epitopes were predicted to be enriched in IDPs. Tandem repeat regions and non-synonymous single nucleotide polymorphisms were found to be strongly associated with regions of disorder. In summary, immune responses against IDPs appear to have characteristics distinct from those against structured protein domains, with increased antibody recognition of linear epitopes but some constraints for MHC presentation and issues of polymorphisms. These findings have major implications for vaccine design, and understanding immunity to malaria.
Collapse
Affiliation(s)
- Andrew J. Guy
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Vashti Irani
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Robin F. Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
- * E-mail: (JSR); (PAR)
| | - Paul A. Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, Australia
- School of Biomedical Sciences, CHIRI Biosciences, Faculty of Health Sciences, Curtin University, Perth, Australia
- * E-mail: (JSR); (PAR)
| |
Collapse
|
26
|
Haasl RJ, Payseur BA. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol Ecol 2015. [PMID: 26224644 DOI: 10.1111/mec.13339] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example F(ST), cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach.
Collapse
Affiliation(s)
- Ryan J Haasl
- Department of Biology, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI, 53818, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI, 53706, USA
| |
Collapse
|
27
|
Golassa L, Kamugisha E, Ishengoma DS, Baraka V, Shayo A, Baliraine FN, Enweji N, Erko B, Aseffa A, Choy A, Swedberg G. Identification of large variation in pfcrt, pfmdr-1 and pfubp-1 markers in Plasmodium falciparum isolates from Ethiopia and Tanzania. Malar J 2015; 14:264. [PMID: 26152336 PMCID: PMC4495614 DOI: 10.1186/s12936-015-0783-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023] Open
Abstract
Background Plasmodium falciparum resistance to anti-malarials is a major drawback in effective malaria control and elimination globally. Artemisinin-combination therapy (ACT) is currently the key first-line treatment for uncomplicated falciparum malaria. Plasmodium falciparum genetic signatures at pfmdr-1, pfcrt, and pfubp-1 loci are known to modulate in vivo and in vitro parasite response to ACT. The objective of this study was to assess the distribution of these resistance gene markers in isolates collected from different malaria transmission intensity in Ethiopia and Tanzania. Methods Plasmodium falciparum clinical isolates were collected from different regions of Ethiopia and Tanzania. Genetic polymorphisms in the genes pfcrt, pfmdr-1 and pfubp-1 were analysed by PCR and sequencing. Frequencies of the different alleles in the three genes were compared within and between regions, and between the two countries. Results The majority of the isolates from Ethiopia were mutant for the pfcrt 76 and wild-type for pfmdr-1 86. In contrast, the majority of the Tanzanian samples were wild-type for both pfcrt and pfmdr-1 loci. Analysis of a variable linker region in pfmdr-1 showed substantial variation in isolates from Tanzania as compared to Ethiopian isolates that had minimal variation. Direct sequencing of the pfubp-1 region showed that 92.8% (26/28) of the Ethiopian isolates had identical genome sequence with the wild type reference P. falciparum strain 3D7. Of 42 isolates from Tanzania, only 13 (30.9%) had identical genome sequences with 3D7. In the Tanzanian samples, 10 variant haplotypes were identified. Conclusion The majority of Ethiopian isolates carried the main marker for chloroquine (CQ) resistance, while the majority of the samples from Tanzania carried markers for CQ susceptibility. Polymorphic genes showed substantially more variation in Tanzanian isolates. The low variability in the polymorphic region of pfmdr-1 in Ethiopia may be a consequence of low transmission intensity as compared to high transmission intensity and large variations in Tanzania.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia. .,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Erasmus Kamugisha
- Department of Biochemistry, Catholic University of Health and Allied Sciences-Bugando, Mwanza, Tanzania.
| | | | - Vito Baraka
- National Institute for Medical Research, Tanga, Tanzania. .,International Health Unit, Department of Epidemiology, University of Antwerp, Antwerp, Belgium.
| | - Alex Shayo
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| | | | - Nizar Enweji
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Angel Choy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Fijarczyk A, Babik W. Detecting balancing selection in genomes: limits and prospects. Mol Ecol 2015; 24:3529-45. [DOI: 10.1111/mec.13226] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Fijarczyk
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Wiesław Babik
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| |
Collapse
|
29
|
Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. INFECTION GENETICS AND EVOLUTION 2015; 33:182-8. [PMID: 25943417 DOI: 10.1016/j.meegid.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
Detecting natural selection signals in Plasmodium parasites antigens might be used for identifying potential new vaccine candidates. Fifty-nine Plasmodium vivax-Sal-I genes encoding proteins having a potential role in invasion were used as query for identifying them in recent P. vivax strain genome sequences and two closely-related Plasmodium species. Several measures of DNA sequence variation were then calculated and selection signatures were detected by using different approaches. Our results may be used for determining which genes expressed during P. vivax merozoite stage could be prioritised for further population genetics or functional studies for designing a P. vivax vaccine which would avoid allele-specific immune responses.
Collapse
|
30
|
Chiu CYH, Hodder AN, Lin CS, Hill DL, Li Wai Suen CSN, Schofield L, Siba PM, Mueller I, Cowman AF, Hansen DS. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria. J Infect Dis 2015; 212:406-15. [PMID: 25646353 DOI: 10.1093/infdis/jiv057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates.
Collapse
Affiliation(s)
- Chris Y H Chiu
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Clara S Lin
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Danika L Hill
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | | | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
| | - Peter M Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Eastern Highlands Province, Goroka
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research Barcelona Center for International Health, University of Barcelona, Spain
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| |
Collapse
|
31
|
The MSPDBL2 codon 591 polymorphism is associated with lumefantrine in vitro drug responses in Plasmodium falciparum isolates from Kilifi, Kenya. Antimicrob Agents Chemother 2014; 59:1770-5. [PMID: 25534732 PMCID: PMC4325780 DOI: 10.1128/aac.03522-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of drug resistance development in the Plasmodium falciparum parasite to lumefantrine (LUM), commonly used in combination with artemisinin, are still unclear. We assessed the polymorphisms of Pfmspdbl2 for associations with LUM activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (P = 0.04). The high frequency of Pfmspdbl2 codon 591S in Kenya may be driven by the widespread use of lumefantrine in artemisinin combination therapy (Coartem).
Collapse
|
32
|
Lin CS, Uboldi AD, Marapana D, Czabotar PE, Epp C, Bujard H, Taylor NL, Perugini MA, Hodder AN, Cowman AF. The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem 2014; 289:25655-69. [PMID: 25074930 DOI: 10.1074/jbc.m114.586495] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum is the causative agent of the most severe form of malaria in humans. The merozoite, an extracellular stage of the parasite lifecycle, invades erythrocytes in which they develop. The most abundant protein on the surface of merozoites is merozoite surface protein 1 (MSP1), which consists of four processed fragments. Studies indicate that MSP1 interacts with other peripheral merozoite surface proteins to form a large complex. Successful invasion of merozoites into host erythrocytes is dependent on this protein complex; however, the identity of all components and its function remain largely unknown. We have shown that the peripheral merozoite surface proteins MSPDBL1 and MSPDBL2 are part of the large MSP1 complex. Using surface plasmon resonance, we determined the binding affinities of MSPDBL1 and MSPDBL2 to MSP1 to be in the range of 2-4 × 10(-7) m. Both proteins bound to three of the four proteolytically cleaved fragments of MSP1 (p42, p38, and p83). In addition, MSPDBL1 and MSPDBL2, but not MSP1, bound directly to human erythrocytes. This demonstrates that the MSP1 complex acts as a platform for display of MSPDBL1 and MSPDBL2 on the merozoite surface for binding to receptors on the erythrocyte and invasion.
Collapse
Affiliation(s)
- Clara S Lin
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Alessandro D Uboldi
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Danushka Marapana
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Peter E Czabotar
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Christian Epp
- Department of Infectious Diseases, Parasitology, Universität Heidelberg, INF 324, D-69120 Heidelberg, Germany
| | - Hermann Bujard
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), INF 282, D-69120 Heidelberg, Germany, and
| | - Nicole L Taylor
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3082, Australia
| | - Matthew A Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3082, Australia
| | - Anthony N Hodder
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia,
| | - Alan F Cowman
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia,
| |
Collapse
|
33
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
34
|
Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Ouattara A, Takala-Harrison S, Berry AA, Doumbo OK, Plowe CV. Variation in the circumsporozoite protein of Plasmodium falciparum: vaccine development implications. PLoS One 2014; 9:e101783. [PMID: 24992338 PMCID: PMC4081809 DOI: 10.1371/journal.pone.0101783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022] Open
Abstract
The malaria vaccine candidate RTS,S/AS01 is based on immunogenic regions of Plasmodium falciparum circumsporozoite protein (CSP) from the 3D7 reference strain and has shown modest efficacy against clinical disease in African children. It remains unclear what aspect(s) of the immune response elicited by this vaccine are protective. The goals of this study were to measure diversity in immunogenic regions of CSP, and to identify associations between polymorphism in CSP and the risk of P. falciparum infection and clinical disease. The present study includes data and samples from a prospective cohort study designed to measure incidence of malaria infection and disease in children in Bandiagara, Mali. A total of 769 parasite-positive blood samples corresponding to both acute clinical malaria episodes and asymptomatic infections experienced by 100 children were included in the study. Non-synonymous SNP data were generated by 454 sequencing for the T-cell epitopes, and repeat length data were generated for the B-cell epitopes of the cs gene. Cox proportional hazards models were used to determine the effect of sequence variation in consecutive infections occurring within individuals on the time to new infection and new clinical malaria episode. Diversity in the T-cell epitope-encoding regions Th2R and Th3R remained stable throughout seasons, between age groups and between clinical and asymptomatic infections with the exception of a higher proportion of 3D7 haplotypes found in the oldest age group. No associations between sequence variation and hazard of infection or clinical malaria were detected. The lack of association between sequence variation and hazard of infection or clinical malaria suggests that naturally acquired immunity to CSP may not be allele-specific.
Collapse
Affiliation(s)
- Kavita Gandhi
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Science, Techniques and Technology, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Science, Techniques and Technology, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Science, Techniques and Technology, Bamako, Mali
| | - Ando B. Guindo
- Malaria Research and Training Center, University of Science, Techniques and Technology, Bamako, Mali
| | - Amed Ouattara
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea A. Berry
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Science, Techniques and Technology, Bamako, Mali
| | - Christopher V. Plowe
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ocholla H, Preston MD, Mipando M, Jensen ATR, Campino S, MacInnis B, Alcock D, Terlouw A, Zongo I, Oudraogo JB, Djimde AA, Assefa S, Doumbo OK, Borrmann S, Nzila A, Marsh K, Fairhurst RM, Nosten F, Anderson TJC, Kwiatkowski DP, Craig A, Clark TG, Montgomery J. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis 2014; 210:1991-2000. [PMID: 24948693 PMCID: PMC4241944 DOI: 10.1093/infdis/jiu349] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. Methods We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used population genetics approaches to investigate genetic diversity and population structure and identify loci under selection. Results High genetic diversity (π = 2.4 × 10−4), moderately high multiplicity of infection (2.7), and low linkage disequilibrium (500-bp) were observed in Chikhwawa District, Malawi, an area of high malaria transmission. Allele frequency–based tests provided evidence of recent population growth in Malawi and detected potential targets of host immunity and candidate vaccine antigens. Comparison of the sequence variation between isolates from Malawi and those from 5 geographically dispersed countries (Kenya, Burkina Faso, Mali, Cambodia, and Thailand) detected population genetic differences between Africa and Asia, within Southeast Asia, and within Africa. Haplotype-based tests of selection to sequence data from all 6 populations identified signals of directional selection at known drug-resistance loci, including pfcrt, pfdhps, pfmdr1, and pfgch1. Conclusions The sequence variations observed at drug-resistance loci reflect differences in each country's historical use of antimalarial drugs and may be useful in formulating local malaria treatment guidelines.
Collapse
Affiliation(s)
- Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Mark D Preston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Mwapatsa Mipando
- Department of Physiology, College of Medicine, University of Malawi, Blantyre
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | | | | | | | - Anja Terlouw
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Sant, Bobo-Dioulasso, Burkina Faso
| | | | - Abdoulaye A Djimde
- Wellcome Trust Sanger Institute, Hinxton Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Mali
| | - Samuel Assefa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Mali
| | | | - Alexis Nzila
- Department of Biology, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Jacqui Montgomery
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| |
Collapse
|
36
|
Mobegi VA, Duffy CW, Amambua-Ngwa A, Loua KM, Laman E, Nwakanma DC, MacInnis B, Aspeling-Jones H, Murray L, Clark TG, Kwiatkowski DP, Conway DJ. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol 2014; 31:1490-9. [PMID: 24644299 PMCID: PMC4032133 DOI: 10.1093/molbev/msu106] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Locally varying selection on pathogens may be due to differences in drug pressure, host immunity, transmission opportunities between hosts, or the intensity of between-genotype competition within hosts. Highly recombining populations of the human malaria parasite Plasmodium falciparum throughout West Africa are closely related, as gene flow is relatively unrestricted in this endemic region, but markedly varying ecology and transmission intensity should cause distinct local selective pressures. Genome-wide analysis of sequence variation was undertaken on a sample of 100 P. falciparum clinical isolates from a highly endemic region of the Republic of Guinea where transmission occurs for most of each year and compared with data from 52 clinical isolates from a previously sampled population from The Gambia, where there is relatively limited seasonal malaria transmission. Paired-end short-read sequences were mapped against the 3D7 P. falciparum reference genome sequence, and data on 136,144 single nucleotide polymorphisms (SNPs) were obtained. Within-population analyses identifying loci showing evidence of recent positive directional selection and balancing selection confirm that antimalarial drugs and host immunity have been major selective agents. Many of the signatures of recent directional selection reflected by standardized integrated haplotype scores were population specific, including differences at drug resistance loci due to historically different antimalarial use between the countries. In contrast, both populations showed a similar set of loci likely to be under balancing selection as indicated by very high Tajima’s D values, including a significant overrepresentation of genes expressed at the merozoite stage that invades erythrocytes and several previously validated targets of acquired immunity. Between-population FST analysis identified exceptional differentiation of allele frequencies at a small number of loci, most markedly for five SNPs covering a 15-kb region within and flanking the gdv1 gene that regulates the early stages of gametocyte development, which is likely related to the extreme differences in mosquito vector abundance and seasonality that determine the transmission opportunities for the sexual stage of the parasite.
Collapse
Affiliation(s)
- Victor A Mobegi
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United KingdomMedical Research Council Unit, Fajara, Banjul, The Gambia
| | - Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Kovana M Loua
- National Institute of Public Health, Conakry, Republic of Guinea
| | - Eugene Laman
- National Institute of Public Health, Conakry, Republic of Guinea
| | | | - Bronwyn MacInnis
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Harvey Aspeling-Jones
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dominic P Kwiatkowski
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United KingdomWellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United KingdomMedical Research Council Unit, Fajara, Banjul, The Gambia
| |
Collapse
|
37
|
Abal-Fabeiro JL, Maside X, Bello X, Llovo J, Bartolomé C. Multilocus patterns of genetic variation across Cryptosporidium species suggest balancing selection at the gp60 locus. Mol Ecol 2013; 22:4723-32. [PMID: 23915002 DOI: 10.1111/mec.12425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/08/2013] [Accepted: 06/18/2013] [Indexed: 11/27/2022]
Abstract
Cryptosporidium is an apicomplexan protozoan that lives in most vertebrates, including humans. Its gp60 gene is functionally involved in its attachment to host cells, and its high level of genetic variation has made it the reference marker for sample typing in epidemiological studies. To understand the origin of such high diversity and to determine the extent to which this classification applies to the rest of the genome, we analysed the patterns of variation at gp60 and nine other nuclear loci in isolates of three Cryptosporidium species. Most loci showed low genetic polymorphism (πS <1%) and similar levels of between-species divergence. Contrastingly, gp60 exhibited very different characteristics: (i) it was nearly ten times more variable than the other loci; (ii) it displayed a significant excess of polymorphisms relative to between-species differences in a maximum-likelihood Hudson-Kreitman-Aguadé test; (iii) gp60 subtypes turned out to be much older than the species they were found in; and (iv) showed a significant excess of polymorphic variants shared across species from random expectations. These observations suggest that this locus evolves under balancing selection and specifically under negative frequency-dependent selection (FDS). Interestingly, genetic variation at the other loci clusters very well within the groups of isolates defined by gp60 subtypes, which may provide new tools to understand the genome-wide patterns of genetic variation of the parasite in the wild. These results suggest that gp60 plays an active and essential role in the life cycle of the parasite and that genetic variation at this locus might be essential for the parasite's long-term success.
Collapse
Affiliation(s)
- J L Abal-Fabeiro
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Xenómica Comparada de Parásitos Humanos, IDIS, 15782, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
38
|
Analysis of antibodies to newly described Plasmodium falciparum merozoite antigens supports MSPDBL2 as a predicted target of naturally acquired immunity. Infect Immun 2013; 81:3835-42. [PMID: 23897617 PMCID: PMC3811751 DOI: 10.1128/iai.00301-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prospective studies continue to identify malaria parasite genes with particular patterns of polymorphism which indicate they may be under immune selection, and the encoded proteins require investigation. Sixteen new recombinant protein reagents were designed to characterize three such polymorphic proteins expressed in Plasmodium falciparum schizonts and merozoites: MSPDBL1 (also termed MSP3.4) and MSPDBL2 (MSP3.8), which possess Duffy binding-like (DBL) domains, and SURFIN4.2, encoded by a member of the surface-associated interspersed (surf) multigene family. After testing the antigenicities of these reagents by murine immunization and parasite immunofluorescence, we analyzed naturally acquired antibody responses to the antigens in two cohorts in coastal Kenya in which the parasite was endemic (Chonyi [n = 497] and Ngerenya [n = 461]). As expected, the prevalence and levels of serum antibodies increased with age. We then investigated correlations with subsequent risk of clinical malaria among children <11 years of age during 6 months follow-up surveillance. Antibodies to the polymorphic central region of MSPDBL2 were associated with reduced risk of malaria in both cohorts, with statistical significance remaining for the 3D7 allelic type after adjustment for individuals' ages in years and antibody reactivity to whole-schizont extract (Chonyi, risk ratio, 0.51, and 95% confidence interval [CI], 0.28 to 0.93; Ngerenya, risk ratio, 0.38, and 95% CI, 0.18 to 0.82). For the MSPDBL1 Palo Alto allelic-type antigen, there was a protective association in one cohort (Ngerenya, risk ratio, 0.53, and 95% CI, 0.32 to 0.89), whereas the other antigens showed no protective associations after adjustment. These findings support the prediction that antibodies to the polymorphic region of MSPDBL2 contribute to protective immunity.
Collapse
|
39
|
Modulation of PF10_0355 (MSPDBL2) alters Plasmodium falciparum response to antimalarial drugs. Antimicrob Agents Chemother 2013; 57:2937-41. [PMID: 23587962 DOI: 10.1128/aac.02574-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria's ability to rapidly adapt to new drugs has allowed it to remain one of the most devastating infectious diseases of humans. Understanding and tracking the genetic basis of these adaptations are critical to the success of treatment and intervention strategies. The novel antimalarial resistance locus PF10_0355 (Pfmspdbl2) was previously associated with the parasite response to halofantrine, and functional validation confirmed that overexpression of this gene lowered parasite sensitivity to both halofantrine and the structurally related antimalarials mefloquine and lumefantrine, predominantly through copy number variation. Here we further characterize the role of Pfmspdbl2 in mediating the antimalarial drug response of Plasmodium falciparum. Knockout of Pfmspdbl2 increased parasite sensitivity to halofantrine, mefloquine, and lumefantrine but not to unrelated antimalarials, further suggesting that this gene mediates the parasite response to a specific class of antimalarial drugs. A single nucleotide polymorphism encoding a C591S mutation within Pfmspdbl2 had the strongest association with halofantrine sensitivity and showed a high derived allele frequency among Senegalese parasites. Transgenic parasites expressing the ancestral Pfmspdbl2 allele were more sensitive to halofantrine and structurally related antimalarials than were parasites expressing the derived allele, revealing an allele-specific effect on drug sensitivity in the absence of copy number effects. Finally, growth competition experiments showed that under drug pressure, parasites expressing the derived allele of Pfmspdbl2 outcompeted parasites expressing the ancestral allele within a few generations. Together, these experiments demonstrate that modulation of Pfmspdbl2 affects malaria parasite responses to antimalarial drugs.
Collapse
|
40
|
Fan YT, Wang Y, Ju C, Zhang T, Xu B, Hu W, Chen JH. Systematic analysis of natural antibody responses to P. falciparum merozoite antigens by protein arrays. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, Cheeseman IH, Newbold CI, Holder AA, Knuepfer E, Janha O, Jallow M, Campino S, MacInnis B, Kwiatkowski DP, Conway DJ. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet 2012; 8:e1002992. [PMID: 23133397 PMCID: PMC3486833 DOI: 10.1371/journal.pgen.1002992] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study.
Collapse
Affiliation(s)
| | - Kevin K. A. Tetteh
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Lindsay B. Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - M. Elizabeth Deerhake
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ian H. Cheeseman
- Medical Research Council Unit, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher I. Newbold
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Omar Janha
- Medical Research Council Unit, Fajara, Banjul, The Gambia
| | | | - Susana Campino
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David J. Conway
- Medical Research Council Unit, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Zhang L, Thomas JC, Didelot X, Robinson DA. Molecular signatures identify a candidate target of balancing selection in an arcD-like gene of Staphylococcus epidermidis. J Mol Evol 2012; 75:43-54. [PMID: 23053194 DOI: 10.1007/s00239-012-9520-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 09/24/2012] [Indexed: 01/19/2023]
Abstract
A comparative population genetics study revealed high levels of nucleotide polymorphism and intermediate-frequency alleles in an arcC gene of Staphylococcus epidermidis, but not in a homologous gene of the more aggressive human pathogen, Staphylococcus aureus. Further investigation showed that the arcC genes used in the multilocus sequence typing schemes of these two species were paralogs. Phylogenetic analyses of arcC-containing loci, including the arginine catabolic mobile element, from both species, suggested that these loci had an eventful history involving gene duplications, rearrangements, deletions, and horizontal transfers. The peak signatures in the polymorphic S. epidermidis locus were traced to an arcD-like gene adjacent to arcC; these signatures consisted of unusually elevated Tajima's D and π/K ratios, which were robust to assumptions about recombination and species divergence time and among the most elevated in the S. epidermidis genome. Amino acid polymorphisms, including one that differed in polarity and hydropathy, were located in the peak signatures and defined two allelic lineages. Recombination events were detected between these allelic lineages and potential donors and recipients of S. epidermidis were identified in each case. By comparison, the orthologous gene of S. aureus showed no unusual signatures. The ArcD-like protein belonged to the unknown ion transporter 3 family and appeared to be unrelated to ArcD from the arginine deiminase pathway. These studies report the first comparative population genetics results for staphylococci and the first statistical evidence for a candidate target of balancing selection in S. epidermidis.
Collapse
Affiliation(s)
- Liangfen Zhang
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
43
|
Preston MD, Manske M, Horner N, Assefa S, Campino S, Auburn S, Zongo I, Ouedraogo JB, Nosten F, Anderson T, Clark TG. VarB: a variation browsing and analysis tool for variants derived from next-generation sequencing data. Bioinformatics 2012; 28:2983-5. [PMID: 22976080 PMCID: PMC3496337 DOI: 10.1093/bioinformatics/bts557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Summary: There is an immediate need for tools to both analyse and visualize in real-time single-nucleotide polymorphisms, insertions and deletions, and other structural variants from new sequence file formats. We have developed VarB software that can be used to visualize variant call format files in real time, as well as identify regions under balancing selection and informative markers to differentiate user-defined groups (e.g. populations). We demonstrate its utility using sequence data from 50 Plasmodium falciparum isolates comprising two different continents and confirm known signals from genomic regions that contain important antigenic and anti-malarial drug-resistance genes. Availability and implementation: The C++-based software VarB and user manual are available from www.pathogenseq.org/varb. Contact:taane.clark@lshtm.ac.uk
Collapse
Affiliation(s)
- Mark D Preston
- Faculties of Epidemiology & Population Health and Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xangsayarath P, Kaewthamasorn M, Yahata K, Nakazawa S, Sattabongkot J, Udomsangpetch R, Kaneko O. Positive diversifying selection on the Plasmodium falciparum surf4.1 gene in Thailand. Trop Med Health 2012; 40:79-89. [PMID: 23264727 PMCID: PMC3521052 DOI: 10.2149/tmh.2012-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum SURFIN4.1 is a type I transmembrane protein thought to locate on the merozoite surface and to be responsible for a reversible adherence to the erythrocyte before invasion. In this study, we evaluated surf4.1 gene segment encoding extracellular region for polymorphism, the signature of positive selection, the degree of linkage disequilibrium, and temporal change in allele frequency distribution in P. falciparum isolates from Thailand in 1988–89, 2003, and 2005. We found that SURFIN4.1 is highly polymorphic, particularly at the C-terminal side of the variable region located just before a predicted transmembrane region. A signature of positive diversifying selection on the variable region was detected by multiple tests and, to a lesser extent, on conserved N-terminally located cysteine-rich domain by Tajima’s D test. Linkage disequilibrium between sites over a long distance (> 1.5 kb) was detected, and multiple SURFIN4.1 haplotype sequences detected in 1988/89 still circulated in 2003. Few of the single amino acid polymorphism allele frequency distributions were significantly different between the 1988/89 and 2003 groups, suggesting that the frequency distribution of SURFIN4.1 extracellular region remained stable over 14 years.
Collapse
Affiliation(s)
- Phonepadith Xangsayarath
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global COE Program, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan ; National Institute of Public Health, Vientiane, Lao PDR
| | | | | | | | | | | | | |
Collapse
|
45
|
Hodder AN, Czabotar PE, Uboldi AD, Clarke OB, Lin CS, Healer J, Smith BJ, Cowman AF. Insights into Duffy binding-like domains through the crystal structure and function of the merozoite surface protein MSPDBL2 from Plasmodium falciparum. J Biol Chem 2012; 287:32922-39. [PMID: 22843685 DOI: 10.1074/jbc.m112.350504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invasion of human red blood cells by Plasmodium falciparum involves interaction of the merozoite form through proteins on the surface coat. The erythrocyte binding-like protein family functions after initial merozoite interaction by binding via the Duffy binding-like (DBL) domain to receptors on the host red blood cell. The merozoite surface proteins DBL1 and -2 (PfMSPDBL1 and PfMSPDBL2) (PF10_0348 and PF10_0355) are extrinsically associated with the merozoite, and both have a DBL domain in each protein. We expressed and refolded recombinant DBL domains for PfMSPDBL1 and -2 and show they are functional. The red cell binding characteristics of these domains were shown to be similar to full-length forms of these proteins isolated from parasite cultures. Futhermore, metal cofactors were found to enhance the binding of both the DBL domains and the parasite-derived full-length proteins to erythrocytes, which has implications for receptor binding of other DBL-containing proteins in Plasmodium spp. We solved the structure of the erythrocyte-binding DBL domain of PfMSPDBL2 to 2.09 Å resolution and modeled that of PfMSPDBL1, revealing a canonical DBL fold consisting of a boomerang shaped α-helical core formed from three subdomains. PfMSPDBL2 is highly polymorphic, and mapping of these mutations shows they are on the surface, predominantly in the first two domains. For both PfMSPDBL proteins, polymorphic variation spares the cleft separating domains 1 and 2 from domain 3, and the groove between the two major helices of domain 3 extends beyond the cleft, indicating these regions are functionally important and are likely to be associated with the binding of a receptor on the red blood cell.
Collapse
Affiliation(s)
- Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Doumbo OK, Takala-Harrison S, Plowe CV. Next generation sequencing to detect variation in the Plasmodium falciparum circumsporozoite protein. Am J Trop Med Hyg 2012; 86:775-81. [PMID: 22556073 DOI: 10.4269/ajtmh.2012.11-0478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The malaria vaccine RTS,S/AS01, based on immunogenic regions of the Plasmodium falciparum circumsporozoite protein (CSP), has partial efficacy against clinical malaria in African children. Understanding how sequence diversity in CSP T- and B-cell epitopes relates to naturally acquired and vaccine-induced immunity may be useful in efforts to improve the efficacy of CSP-based vaccines. However, limitations in sequencing technology have precluded thorough evaluation of diversity in the immunogenic regions of this protein. In this study, 454, a next generation sequencing technology, was evaluated as a method for assessing diversity in these regions. Portions of the circumsporozoite gene (cs) were sequenced both by 454 and Sanger sequencing from samples collected in a study in Bandiagara, Mali. 454 detected more single nucleotide polymorphisms and haplotypes in the T-cell epitopes than Sanger sequencing, and it was better able to resolve genetic diversity in samples with multiple infections; however, it failed to generate sequence for the B-cell epitopes.
Collapse
Affiliation(s)
- Kavita Gandhi
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Malaria is an important human disease and is the target of a global eradication campaign. New technological and informatics advancements in population genomics are being leveraged to identify genetic loci under selection in the malaria parasite and to find variants that are associated with key clinical phenotypes, such as drug resistance. This article provides a timely Review of how population-genetics-based strategies are being applied to Plasmodium falciparum both to identify genetic loci as key targets of interventions and to develop monitoring and surveillance tools that are crucial for the successful elimination and eradication of malaria.
Collapse
|
48
|
Mahamdallie SS, Ready PD. No recent adaptive selection on the apyrase of Mediterranean Phlebotomus: implications for using salivary peptides to vaccinate against canine leishmaniasis. Evol Appl 2012; 5:293-305. [PMID: 25568049 PMCID: PMC3353351 DOI: 10.1111/j.1752-4571.2011.00226.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/02/2011] [Indexed: 12/12/2022] Open
Abstract
Vaccine development is informed by a knowledge of genetic variation among antigen alleles, especially the distribution of positive and balancing selection in populations and species. A combined approach using population genetic and phylogenetic methods to detect selective signatures can therefore be informative for identifying vaccine candidates. Parasitic Leishmania species cause the disease leishmaniasis in humans and mammalian reservoir hosts after inoculation by female phlebotomine sandflies. Like other arthropod vectors of disease agents, sandflies use salivary peptides to counteract host haemostatic and immunomodulatory responses during bloodfeeding, and these peptides are vaccine candidates because they can protect against Leishmania infection. We detected no contemporary adaptive selection on one salivary peptide, apyrase, in 20 populations of Phlebotomus ariasi, a European vector of Leishmania infantum. Maximum likelihood branch models on a gene phylogeny showed apyrase to be a single copy in P. ariasi but an ancient duplication event associated with temporary positive selection was observed in its sister group, which contains most Mediterranean vectors of L. infantum. The absence of contemporary adaptive selection on the apyrase of P. ariasi may result from this sandfly's opportunistic feeding behaviour. Our study illustrates how the molecular population genetics of arthropods can help investigate the potential of salivary peptides for disease control and for understanding geographical variation in vector competence.
Collapse
Affiliation(s)
| | - Paul D Ready
- Department of Entomology, Natural History Museum London, UK
| |
Collapse
|
49
|
Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, Preiser PR, Bozdech Z, Cortés A. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 2012; 22:925-38. [PMID: 22415456 PMCID: PMC3337437 DOI: 10.1101/gr.129692.111] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malaria genetic variation has been extensively characterized, but the level of epigenetic plasticity remains largely unexplored. Here we provide a comprehensive characterization of transcriptional variation in the most lethal malaria parasite, Plasmodium falciparum, based on highly accurate transcriptional analysis of isogenic parasite lines grown under homogeneous conditions. This analysis revealed extensive transcriptional heterogeneity within genetically homogeneous clonal parasite populations. We show that clonally variant expression controlled at the epigenetic level is an intrinsic property of specific genes and gene families, the majority of which participate in host–parasite interactions. Intrinsic transcriptional variability is not restricted to genes involved in immune evasion, but also affects genes linked to lipid metabolism, protein folding, erythrocyte remodeling, or transcriptional regulation, among others, indicating that epigenetic variation results in both antigenic and functional variation. We observed a general association between heterochromatin marks and clonally variant expression, extending previous observations for specific genes to essentially all variantly expressed gene families. These results suggest that phenotypic variation of functionally unrelated P. falciparum gene families is mediated by a common mechanism based on reversible formation of H3K9me3-based heterochromatin. In changing environments, diversity confers fitness to a population. Our results support the idea that P. falciparum uses a bet-hedging strategy, as an alternative to directed transcriptional responses, to adapt to common fluctuations in its environment. Consistent with this idea, we found that transcriptionally different isogenic parasite lines markedly differed in their survival to heat-shock mimicking febrile episodes and adapted to periodic heat-shock with a pattern consistent with natural selection of pre-existing parasites.
Collapse
|
50
|
Kaewthamasorn M, Yahata K, Alexandre JSF, Xangsayarath P, Nakazawa S, Torii M, Sattabongkot J, Udomsangpetch R, Kaneko O. Stable allele frequency distribution of the polymorphic region of SURFIN(4.2) in Plasmodium falciparum isolates from Thailand. Parasitol Int 2011; 61:317-23. [PMID: 22212242 DOI: 10.1016/j.parint.2011.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/17/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Plasmodium falciparum SURFIN₄.₂ (PFD1160w) is a polymorphic protein expressed on the surface of parasite-infected erythrocytes. Such molecules are expected to be under strong host immune pressure, thus we analyzed the nucleotide diversity of the N-terminal extracellular region of SURFIN₄.₂ using P. falciparum isolates obtained from a malaria hypoendemic area of Thailand. The extracellular region of SURFIN₄.₂ was divided into four regions based on the amino acid sequence conservation among SURFIN members and the level of polymorphism among SURFIN₄.₂ sequences; N-terminal segment (Nter), a cysteine-rich domain (CRD), a variable region 1 (Var1), and a variable region 2 (Var2). Comparison between synonymous and non-synonymous substitutions, Tajima's D test, and Fu and Li's D* and F* tests detected signatures of positive selection on Var2 and to a lesser extent Var1, suggesting that these regions were likely under host immune pressure. Strong linkage disequilibrium was detected for nucleotide pairs separated by a distance of more than 1.5 kb, and 7 alleles among 19 alleles detected in 1988-1989 still circulated 14 years later, suggesting low recombination of the analyzed surf₄.₂ sequence region in Thailand. The allele frequency distribution of polymorphic areas in Var2 did not differ between two groups collected in different time points, suggesting the allele frequency distribution of this region was stable for 14 years. The observed allele frequency distribution of SURFIN₄.₂ Var2 may be fixed in Thai P. falciparum population as similar to the observation for P. falciparum merozoite surface protein 1, for which a stable allele frequency distribution was reported.
Collapse
Affiliation(s)
- Morakot Kaewthamasorn
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence Program, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|