1
|
Su H, Wang M, Li X, Duan S, Sun Q, Sun Y, Wang Z, Yang Q, Huang Y, Zhong J, Chen J, Jiang X, Ma J, Yang T, Liu Y, Luo L, Liu Y, Yang J, Chen G, Liu C, Cai Y, He G. Population genetic admixture and evolutionary history in the Shandong Peninsula inferred from integrative modern and ancient genomic resources. BMC Genomics 2024; 25:611. [PMID: 38890579 PMCID: PMC11184692 DOI: 10.1186/s12864-024-10514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Ancient northern East Asians (ANEA) from the Yellow River region, who pioneered millet cultivation, play a crucial role in understanding the origins of ethnolinguistically diverse populations in modern China and the entire landscape of deep genetic structure and variation discovery in modern East Asians. However, the direct links between ANEA and geographically proximate modern populations, as well as the biological adaptive processes involved, remain poorly understood. RESULTS Here, we generated genome-wide SNP data for 264 individuals from geographically different Han populations in Shandong. An integrated genomic resource encompassing both modern and ancient East Asians was compiled to examine fine-scale population admixture scenarios and adaptive traits. The reconstruction of demographic history and hierarchical clustering patterns revealed that individuals from the Shandong Peninsula share a close genetic affinity with ANEA, indicating long-term genetic continuity and mobility in the lower Yellow River basin since the early Neolithic period. Biological adaptive signatures, including those related to immune and metabolic pathways, were identified through analyses of haplotype homozygosity and allele frequency spectra. These signatures are linked to complex traits such as height and body mass index, which may be associated with adaptations to cold environments, dietary practices, and pathogen exposure. Additionally, allele frequency trajectories over time and a haplotype network of two highly differentiated genes, ABCC11 and SLC10A1, were delineated. These genes, which are associated with axillary odor and bilirubin metabolism, respectively, illustrate how local adaptations can influence the diversification of traits in East Asians. CONCLUSIONS Our findings provide a comprehensive genomic dataset that elucidates the fine-scale genetic history and evolutionary trajectory of natural selection signals and disease susceptibility in Han Chinese populations. This study serves as a paradigm for integrating spatiotemporally diverse ancient genomes in the era of population genomic medicine.
Collapse
Affiliation(s)
- Haoran Su
- Genetic and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, Sichuan, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Genetic and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Qingxin Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Xiucheng Jiang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Genetic and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Jinyue Ma
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Genetic and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Ting Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Genetic and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Junbao Yang
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Genetic and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Gang Chen
- Hunan Key Laboratory of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| | - Yan Cai
- Genetic and Prenatal Diagnosis Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, Sichuan, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
2
|
Mo Z, Siepel A. Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data. PLoS Genet 2023; 19:e1011032. [PMID: 37934781 PMCID: PMC10655966 DOI: 10.1371/journal.pgen.1011032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Investigators have recently introduced powerful methods for population genetic inference that rely on supervised machine learning from simulated data. Despite their performance advantages, these methods can fail when the simulated training data does not adequately resemble data from the real world. Here, we show that this "simulation mis-specification" problem can be framed as a "domain adaptation" problem, where a model learned from one data distribution is applied to a dataset drawn from a different distribution. By applying an established domain-adaptation technique based on a gradient reversal layer (GRL), originally introduced for image classification, we show that the effects of simulation mis-specification can be substantially mitigated. We focus our analysis on two state-of-the-art deep-learning population genetic methods-SIA, which infers positive selection from features of the ancestral recombination graph (ARG), and ReLERNN, which infers recombination rates from genotype matrices. In the case of SIA, the domain adaptive framework also compensates for ARG inference error. Using the domain-adaptive SIA (dadaSIA) model, we estimate improved selection coefficients at selected loci in the 1000 Genomes CEU population. We anticipate that domain adaptation will prove to be widely applicable in the growing use of supervised machine learning in population genetics.
Collapse
Affiliation(s)
- Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
3
|
Mo Z, Siepel A. Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.529396. [PMID: 36909514 PMCID: PMC10002701 DOI: 10.1101/2023.03.01.529396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Investigators have recently introduced powerful methods for population genetic inference that rely on supervised machine learning from simulated data. Despite their performance advantages, these methods can fail when the simulated training data does not adequately resemble data from the real world. Here, we show that this "simulation mis-specification" problem can be framed as a "domain adaptation" problem, where a model learned from one data distribution is applied to a dataset drawn from a different distribution. By applying an established domain-adaptation technique based on a gradient reversal layer (GRL), originally introduced for image classification, we show that the effects of simulation mis-specification can be substantially mitigated. We focus our analysis on two state-of-the-art deep-learning population genetic methods-SIA, which infers positive selection from features of the ancestral recombination graph (ARG), and ReLERNN, which infers recombination rates from genotype matrices. In the case of SIA, the domain adaptive framework also compensates for ARG inference error. Using the domain-adaptive SIA (dadaSIA) model, we estimate improved selection coefficients at selected loci in the 1000 Genomes CEU population. We anticipate that domain adaptation will prove to be widely applicable in the growing use of supervised machine learning in population genetics.
Collapse
Affiliation(s)
- Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| |
Collapse
|
4
|
Cheng S, Xu Z, Bian S, Chen X, Shi Y, Li Y, Duan Y, Liu Y, Lin J, Jiang Y, Jing J, Li Z, Wang Y, Meng X, Liu Y, Fang M, Jin X, Xu X, Wang J, Wang C, Li H, Liu S, Wang Y. The STROMICS genome study: deep whole-genome sequencing and analysis of 10K Chinese patients with ischemic stroke reveal complex genetic and phenotypic interplay. Cell Discov 2023; 9:75. [PMID: 37479695 PMCID: PMC10362040 DOI: 10.1038/s41421-023-00582-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Ischemic stroke is a leading cause of global mortality and long-term disability. However, there is a paucity of whole-genome sequencing studies on ischemic stroke, resulting in limited knowledge of the interplay between genomic and phenotypic variations among affected patients. Here, we outline the STROMICS design and present the first whole-genome analysis on ischemic stroke by deeply sequencing and analyzing 10,241 stroke patients from China. We identified 135.59 million variants, > 42% of which were novel. Notable disparities in allele frequency were observed between Chinese and other populations for 89 variants associated with stroke risk and 10 variants linked to response to stroke medications. We investigated the population structure of the participants, generating a map of genetic selection consisting of 31 adaptive signals. The adaption of the MTHFR rs1801133-G allele, which links to genetically evaluated VB9 (folate acid) in southern Chinese patients, suggests a gene-specific folate supplement strategy. Through genome-wide association analysis of 18 stroke-related traits, we discovered 10 novel genetic-phenotypic associations and extensive cross-trait pleiotropy at 6 lipid-trait loci of therapeutic relevance. Additionally, we found that the set of loss-of-function and cysteine-altering variants present in the causal gene NOTCH3 for the autosomal dominant stroke disorder CADASIL displayed a broad neuro-imaging spectrum. These findings deepen our understanding of the relationship between the population and individual genetic layout and clinical phenotype among stroke patients, and provide a foundation for future efforts to utilize human genetic knowledge to investigate mechanisms underlying ischemic stroke outcomes, discover novel therapeutic targets, and advance precision medicine.
Collapse
Affiliation(s)
- Si Cheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Changping Laboratory, Beijing, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shengzhe Bian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xi Chen
- BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Yanfeng Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanran Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Xin Jin
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- James D. Watson Institute of Genome Sciences, Hangzhou, Zhejiang, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China.
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Changping Laboratory, Beijing, China.
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China.
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Nakanishi H, Pereira V, Børsting C, Tvedebrink T, Takada A, Saito K. Development of an Okinawa panel for biogeographic inference of Okinawans. Ann Hum Biol 2023; 50:436-441. [PMID: 37812250 DOI: 10.1080/03014460.2023.2257594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The Precision ID Ancestry Panel with 165 SNP markers was unable to differentiate between mainland Japanese and Okinawa Japanese or to distinguish either of them from other East Asian populations. AIM An Okinawa panel was developed with the aim of further separating Okinawa Japanese individuals from mainland Japanese and other Asian groups. Seventy-five SNPs were selected using the most informative markers from the literature. Further, 22 SNPs were selected to separate Okinawa Japanese at minimum SNPs. SUBJECTS AND METHODS Samples were collected from 48 unrelated individuals from mainland Japan and 46 unrelated residents of the Okinawa prefecture. Data were evaluated by STRUCTURE, principal component, and GenoGeographer analyses. RESULTS The 22 SNP set had similar levels of differentiation in STRUCTURE and PCA analyses as the 75 SNP set. GenoGeographer analysis showed that, out of the 46 Okinawa Japanese individuals, the 75 SNP and 22 SNP sets correctly assigned the Okinawan population as the most likely population of origin for 32 and 31 individuals, respectively. CONCLUSION Neither SNP set could completely differentiate between Okinawa Japanese and other Asian groups, however, these sets should be useful for crime investigation, when the sample, cost and time are limited.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Forensic Medicine, Saitama Medical University, Saitama, Japan
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Tvedebrink
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Aya Takada
- Department of Forensic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Forensic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
6
|
Tang J, Huang M, He S, Zeng J, Zhu H. Uncovering the extensive trade-off between adaptive evolution and disease susceptibility. Cell Rep 2022; 40:111351. [PMID: 36103812 DOI: 10.1016/j.celrep.2022.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Favored mutations in the human genome may make the carriers adapt to changing environments and lifestyles but also susceptible to specific diseases. The scale and details of the trade-off between adaptive evolution and disease susceptibility are unclear because most favored mutations in different populations remain unidentified. As no statistical test can discriminate favored mutations from nearby hitchhiking neutral ones, we report a deep-learning network (DeepFavored) to integrate multiple statistical tests and divide identifying favored mutations into two subtasks. We identify favored mutations in three human populations and analyzed the correlation between favored/hitchhiking mutations and genome-wide association study (GWAS) sites. Both favored and hitchhiking neutral mutations are enriched in GWAS sites with population-specific features, and the enrichment and population specificity are prominent in genes in specific Gene Ontology (GO) terms. These provide evidence for extensive and population-specific trade-offs between adaptive evolution and disease susceptibility. The unveiled scale helps understand and investigate differences and diseases of humans.
Collapse
Affiliation(s)
- Ji Tang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Maosheng Huang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junxiang Zeng
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
The genomic origins of the world's first farmers. Cell 2022; 185:1842-1859.e18. [PMID: 35561686 PMCID: PMC9166250 DOI: 10.1016/j.cell.2022.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/04/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.
Collapse
|
8
|
Cheng JY, Stern AJ, Racimo F, Nielsen R. Detecting Selection in Multiple Populations by Modeling Ancestral Admixture Components. Mol Biol Evol 2022; 39:msab294. [PMID: 34626111 PMCID: PMC8763095 DOI: 10.1093/molbev/msab294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One of the most powerful and commonly used approaches for detecting local adaptation in the genome is the identification of extreme allele frequency differences between populations. In this article, we present a new maximum likelihood method for finding regions under positive selection. It is based on a Gaussian approximation to allele frequency changes and it incorporates admixture between populations. The method can analyze multiple populations simultaneously and retains power to detect selection signatures specific to ancestry components that are not representative of any extant populations. Using simulated data, we compare our method to related approaches, and show that it is orders of magnitude faster than the state-of-the-art, while retaining similar or higher power for most simulation scenarios. We also apply it to human genomic data and identify loci with extreme genetic differentiation between major geographic groups. Many of the genes identified are previously known selected loci relating to hair pigmentation and morphology, skin, and eye pigmentation. We also identify new candidate regions, including various selected loci in the Native American component of admixed Mexican-Americans. These involve diverse biological functions, such as immunity, fat distribution, food intake, vision, and hair development.
Collapse
Affiliation(s)
- Jade Yu Cheng
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron J Stern
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Hejase HA, Mo Z, Campagna L, Siepel A. A Deep-Learning Approach for Inference of Selective Sweeps from the Ancestral Recombination Graph. Mol Biol Evol 2022; 39:msab332. [PMID: 34888675 PMCID: PMC8789311 DOI: 10.1093/molbev/msab332] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Detecting signals of selection from genomic data is a central problem in population genetics. Coupling the rich information in the ancestral recombination graph (ARG) with a powerful and scalable deep-learning framework, we developed a novel method to detect and quantify positive selection: Selection Inference using the Ancestral recombination graph (SIA). Built on a Long Short-Term Memory (LSTM) architecture, a particular type of a Recurrent Neural Network (RNN), SIA can be trained to explicitly infer a full range of selection coefficients, as well as the allele frequency trajectory and time of selection onset. We benchmarked SIA extensively on simulations under a European human demographic model, and found that it performs as well or better as some of the best available methods, including state-of-the-art machine-learning and ARG-based methods. In addition, we used SIA to estimate selection coefficients at several loci associated with human phenotypes of interest. SIA detected novel signals of selection particular to the European (CEU) population at the MC1R and ABCC11 loci. In addition, it recapitulated signals of selection at the LCT locus and several pigmentation-related genes. Finally, we reanalyzed polymorphism data of a collection of recently radiated southern capuchino seedeater taxa in the genus Sporophila to quantify the strength of selection and improved the power of our previous methods to detect partial soft sweeps. Overall, SIA uses deep learning to leverage the ARG and thereby provides new insight into how selective sweeps shape genomic diversity.
Collapse
Affiliation(s)
- Hussein A Hejase
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ziyi Mo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
10
|
Kun Á. Is there still evolution in the human population? Biol Futur 2022; 73:359-374. [PMID: 36592324 PMCID: PMC9806833 DOI: 10.1007/s42977-022-00146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
It is often claimed that humanity has stopped evolving because modern medicine erased all selection on survival. Even if that would be true, and it is not, there would be other mechanisms of evolution which could still led to changes in allelic frequencies. Here I show, by applying basic evolutionary genetics knowledge, that we expect humanity to evolve. The results from genome sequencing projects have repeatedly affirmed that there are still recent signs of selection in our genomes. I give some examples of such adaptation. Then I briefly discuss what our evolutionary future has in store for us.
Collapse
Affiliation(s)
- Ádám Kun
- grid.5591.80000 0001 2294 6276Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary ,Parmenides Center for the Conceptual Foundations of Science, Pöcking, Germany ,grid.481817.3Institute of Evolution, Centre for Ecological Research, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| |
Collapse
|
11
|
Nishikawa Y, Ishida T. Genetic lineage of the Amami islanders inferred from classical genetic markers. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Isshiki M, Naka I, Kimura R, Nishida N, Furusawa T, Natsuhara K, Yamauchi T, Nakazawa M, Ishida T, Inaoka T, Matsumura Y, Ohtsuka R, Ohashi J. Admixture with indigenous people helps local adaptation: admixture-enabled selection in Polynesians. BMC Ecol Evol 2021; 21:179. [PMID: 34551727 PMCID: PMC8456657 DOI: 10.1186/s12862-021-01900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Homo sapiens have experienced admixture many times in the last few thousand years. To examine how admixture affects local adaptation, we investigated genomes of modern Polynesians, who are shaped through admixture between Austronesian-speaking people from Southeast Asia (Asian-related ancestors) and indigenous people in Near Oceania (Papuan-related ancestors). Methods In this study local ancestry was estimated across the genome in Polynesians (23 Tongan subjects) to find the candidate regions of admixture-enabled selection contributed by Papuan-related ancestors. Results The mean proportion of Papuan-related ancestry across the Polynesian genome was estimated as 24.6% (SD = 8.63%), and two genomic regions, the extended major histocompatibility complex (xMHC) region on chromosome 6 and the ATP-binding cassette transporter sub-family C member 11 (ABCC11) gene on chromosome 16, showed proportions of Papuan-related ancestry more than 5 SD greater than the mean (> 67.8%). The coalescent simulation under the assumption of selective neutrality suggested that such signals of Papuan-related ancestry enrichment were caused by positive selection after admixture (false discovery rate = 0.045). The ABCC11 harbors a nonsynonymous SNP, rs17822931, which affects apocrine secretory cell function. The approximate Bayesian computation indicated that, in Polynesian ancestors, a strong positive selection (s = 0.0217) acted on the ancestral allele of rs17822931 derived from Papuan-related ancestors. Conclusions Our results suggest that admixture with Papuan-related ancestors contributed to the rapid local adaptation of Polynesian ancestors. Considering frequent admixture events in human evolution history, the acceleration of local adaptation through admixture should be a common event in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01900-y.
Collapse
Affiliation(s)
- Mariko Isshiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Nao Nishida
- Genome Medical Science Project, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Takuro Furusawa
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazumi Natsuhara
- Department of International Health and Nursing, Faculty of Nursing, Toho University, Tokyo, 143-0015, Japan
| | - Taro Yamauchi
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Minato Nakazawa
- Graduate School of Health Sciences, Kobe University, Kobe, 654-0142, Japan
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tsukasa Inaoka
- Department of Human Ecology, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Yasuhiro Matsumura
- Faculty of Health and Nutrition, Bunkyo University, Chigasaki, 253-8550, Japan
| | | | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
13
|
Hlaváč V, Václavíková R, Brynychová V, Koževnikovová R, Kopečková K, Vrána D, Gatěk J, Souček P. Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response. Int J Mol Sci 2020; 21:ijms21249556. [PMID: 33334016 PMCID: PMC7765380 DOI: 10.3390/ijms21249556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 43 prioritized variants associating with response or survival in the above testing phase were then analyzed by allelic discrimination in the large validation set (n = 802). Variants in ABCA4, ABCA9, ABCA12, ABCB5, ABCC5, ABCC8, ABCC11, and ABCD4 associated with response and variants in ABCA7, ABCA13, ABCC4, and ABCG8 with survival of the patients. No association passed a false discovery rate test, however, the rs17822931 (Gly180Arg) in ABCC11, associating with response, and the synonymous rs17548783 in ABCA13 (survival) have a strong support in the literature and are, thus, interesting for further research. Although replicated associations have not reached robust statistical significance, the role of ABC transporters in breast cancer should not be ruled out. Future research and careful validation of findings will be essential for assessment of genetic variation which was not in the focus of this study, e.g., non-coding sequences, copy numbers, and structural variations together with somatic mutations.
Collapse
Affiliation(s)
- Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Veronika Brynychová
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | | | - Katerina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - David Vrána
- Department of Oncology, Medical School and Teaching Hospital, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Jiří Gatěk
- Department of Surgery, EUC Hospital and University of Tomas Bata in Zlin, 760 01 Zlin, Czech Republic;
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-267-082-711
| |
Collapse
|
14
|
Kim JH, Ajani P, Murray SA, Kim JH, Lim HC, Teng ST, Lim PT, Han MS, Park BS. Sexual reproduction and genetic polymorphism within the cosmopolitan marine diatom Pseudo-nitzschia pungens. Sci Rep 2020; 10:10653. [PMID: 32606343 PMCID: PMC7326933 DOI: 10.1038/s41598-020-67547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
Different clades belonging to the cosmopolitan marine diatom Pseudo-nitzschia pungens appear to be present in different oceanic environments, however, a ‘hybrid zone’, where populations of different clades interbreed, has also been reported. Many studies have investigated the sexual reproduction of P. pungens, focused on morphology and life cycle, rather than the role of sexual reproduction in mixing the genomes of their parents. We carried out crossing experiments to determine the sexual compatibility/incompatibility between different clades of P. pungens, and examined the genetic polymorphism in the ITS2 region. Sexual reproduction did not occur only between clades II and III under any of experimental temperature conditions. Four offspring strains were established between clade I and III successfully. Strains established from offspring were found interbreed with other offspring strains as well as viable with their parental strains. We confirmed the hybrid sequence patterns between clades I and III and found novel sequence types including polymorphic single nucleotide polymorphisms (SNPs) in the offspring strains. Our results implicate that gene exchange and mixing between different clades are still possible, and that sexual reproduction is a significant ecological strategy to maintain the genetic diversity within this diatom species.
Collapse
Affiliation(s)
- Jin Ho Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.,Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea.,DNA Analysis Division, National Forensic Service, Seoul, 158-707, Republic of Korea
| | - Penelope Ajani
- Climate Change Cluster, University of Technology, Sydney, 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology, Sydney, 2007, Australia
| | - Joo-Hwan Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | | | - Sing Tung Teng
- Faculty of Research Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16020, Bachok, Kelantan, Malaysia
| | - Myung-Soo Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Bum Soo Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea. .,Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
| |
Collapse
|
15
|
Dunn RR, Amato KR, Archie EA, Arandjelovic M, Crittenden AN, Nichols LM. The Internal, External and Extended Microbiomes of Hominins. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Refoyo-Martínez A, da Fonseca RR, Halldórsdóttir K, Árnason E, Mailund T, Racimo F. Identifying loci under positive selection in complex population histories. Genome Res 2019; 29:1506-1520. [PMID: 31362936 PMCID: PMC6724678 DOI: 10.1101/gr.246777.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
Abstract
Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history of past divergence and admixture events among any number of populations. The method-called graph-aware retrieval of selective sweeps (GRoSS)-has good power to detect loci in the genome with strong evidence for past selective sweeps and can also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways. We find new candidate genes for important adaptive functions, including immunity and metabolism in understudied human populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.
Collapse
Affiliation(s)
- Alba Refoyo-Martínez
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| | - Rute R da Fonseca
- Centre for Macroecology, Evolution and Climate, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copehnagen 2100, Denmark
| | - Katrín Halldórsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
| | - Einar Árnason
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
17
|
Igoshin AV, Gunbin KV, Yudin NS, Voevoda MI. Searching for Signatures of Cold Climate Adaptation in TRPM8 Gene in Populations of East Asian Ancestry. Front Genet 2019; 10:759. [PMID: 31507633 PMCID: PMC6716346 DOI: 10.3389/fgene.2019.00759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Dispersal of Homo sapiens across the globe during the last 200,000 years was accompanied by adaptation to local climatic conditions, with severe winter temperatures being probably one of the most significant selective forces. The TRPM8 gene codes for a cold-sensing ion channel, and adaptation to low temperatures is the major determinant of its molecular evolution. Here, our aim was to search for signatures of cold climate adaptation in TRPM8 gene using a combined data set of 19 populations of East Asian ancestry from the 1000 Genomes Project and Human Genome Diversity Project. As a result, out of a total of 60 markers under study, none showed significant association with the average winter temperatures at the locations of the studied populations considering the multiple testing thresholds. This might suggest that the principal mode of TRPM8 evolution may be different from widespread models, where adaptive alleles are additive, dominant or recessive, at least in populations with the predominant East Asian component. For example, evolution by means of selectively preferable epistatic interactions among amino acids may have taken place. Despite the lack of strong signals of association, however, a very promising single nucleotide polymorphism (SNP) was found. The SNP rs7577262 is considered the best candidate based on its allelic correlations with winter temperatures, signatures of selective sweep and physiological evidences. The second top SNP, rs17862920, may participate in adaptation as well. Additionally, to assist in interpreting the nominal associations, the other markers reached, we performed SNP prioritization based on functional evidences found in literature and on evolutionary conservativeness.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- Sector of the Genetics of Industrial Microorganisms, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin V. Gunbin
- Center of Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology Novosibirsk State University, Novosibirsk, Russia
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Nikolay S. Yudin
- V. Zelman Institute for Medicine and Psychology Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Livestock Molecular Genetics and Breeding, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail I. Voevoda
- Laboratory of Human Molecular Genetics, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch, The Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Detection and Classification of Hard and Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity. Genetics 2018; 210:1429-1452. [PMID: 30315068 DOI: 10.1534/genetics.118.301502] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
Positive natural selection can lead to a decrease in genomic diversity at the selected site and at linked sites, producing a characteristic signature of elevated expected haplotype homozygosity. These selective sweeps can be hard or soft. In the case of a hard selective sweep, a single adaptive haplotype rises to high population frequency, whereas multiple adaptive haplotypes sweep through the population simultaneously in a soft sweep, producing distinct patterns of genetic variation in the vicinity of the selected site. Measures of expected haplotype homozygosity have previously been used to detect sweeps in multiple study systems. However, these methods are formulated for phased haplotype data, typically unavailable for nonmodel organisms, and some may have reduced power to detect soft sweeps due to their increased genetic diversity relative to hard sweeps. To address these limitations, we applied the H12 and H2/H1 statistics proposed in 2015 by Garud et al., which have power to detect both hard and soft sweeps, to unphased multilocus genotypes, denoting them as G12 and G2/G1. G12 (and the more direct expected homozygosity analog to H12, denoted G123) has comparable power to H12 for detecting both hard and soft sweeps. G2/G1 can be used to classify hard and soft sweeps analogously to H2/H1, conditional on a genomic region having high G12 or G123 values. The reason for this power is that, under random mating, the most frequent haplotypes will yield the most frequent multilocus genotypes. Simulations based on parameters compatible with our recent understanding of human demographic history suggest that expected homozygosity methods are best suited for detecting recent sweeps, and increase in power under recent population expansions. Finally, we find candidates for selective sweeps within the 1000 Genomes CEU, YRI, GIH, and CHB populations, which corroborate and complement existing studies.
Collapse
|
19
|
Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, Fang L, Li Z, Lin L, Liu R, Zhang Y, Xu H, Li S, Zhou Y, Davies RW, Liu Q, Walters RG, Lin K, Ju J, Korneliussen T, Yang MA, Fu Q, Wang J, Zhou L, Krogh A, Zhang H, Wang W, Chen Z, Cai Z, Yin Y, Yang H, Mao M, Shendure J, Wang J, Albrechtsen A, Jin X, Nielsen R, Xu X. Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. Cell 2018; 175:347-359.e14. [DOI: 10.1016/j.cell.2018.08.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/12/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023]
|
20
|
Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics 2018; 12:43. [PMID: 30219098 PMCID: PMC6139121 DOI: 10.1186/s40246-018-0175-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Genetic polymorphisms can contribute to phenotypic differences amongst individuals, including disease risk and drug response. Characterization of genetic polymorphisms that modulate gene expression and/or protein function may facilitate the identification of the causal variants. Here, we present the architecture of genetic polymorphisms in the human genome focusing on those predicted to be potentially functional/under natural selection and the pathways that they reside. Results In the human genome, polymorphisms that directly affect protein sequences and potentially affect function are the most constrained variants with the lowest single-nucleotide variant (SNV) density, least population differentiation and most significant enrichment of rare alleles. SNVs which potentially alter various regulatory sites, e.g. splicing regulatory elements, are also generally under negative selection. Interestingly, genes that regulate the expression of transcription/splicing factors and histones are conserved as a higher proportion of these genes is non-polymorphic, contain ultra-conserved elements (UCEs) and/or has no non-synonymous SNVs (nsSNVs)/coding INDELs. On the other hand, major histocompatibility complex (MHC) genes are the most polymorphic with SNVs potentially affecting the binding of transcription/splicing factors and microRNAs (miRNA) exhibiting recent positive selection (RPS). The drug transporter genes carry the most number of potentially deleterious nsSNVs and exhibit signatures of RPS and/or population differentiation. These observations suggest that genes that interact with the environment are highly polymorphic and targeted by RPS. Conclusions In conclusion, selective constraints are observed in coding regions, master regulator genes, and potentially functional SNVs. In contrast, genes that modulate response to the environment are highly polymorphic and under positive selection. Electronic supplementary material The online version of this article (10.1186/s40246-018-0175-1) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Akbari A, Vitti JJ, Iranmehr A, Bakhtiari M, Sabeti PC, Mirarab S, Bafna V. Identifying the favored mutation in a positive selective sweep. Nat Methods 2018; 15:279-282. [PMID: 29457793 PMCID: PMC6231406 DOI: 10.1038/nmeth.4606] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023]
Abstract
Most approaches that capture signatures of selective sweeps in population genomics data do not identify the specific mutation favored by selection. We present iSAFE (for "integrated selection of allele favored by evolution"), a method that enables researchers to accurately pinpoint the favored mutation in a large region (∼5 Mbp) by using a statistic derived solely from population genetics signals. iSAFE does not require knowledge of demography, the phenotype under selection, or functional annotations of mutations.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Electrical & Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - Joseph J Vitti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Arya Iranmehr
- Department of Electrical & Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - Mehrdad Bakhtiari
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, California, USA
| | - Pardis C Sabeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Siavash Mirarab
- Department of Electrical & Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Rudman SM, Barbour MA, Csilléry K, Gienapp P, Guillaume F, Hairston Jr NG, Hendry AP, Lasky JR, Rafajlović M, Räsänen K, Schmidt PS, Seehausen O, Therkildsen NO, Turcotte MM, Levine JM. What genomic data can reveal about eco-evolutionary dynamics. Nat Ecol Evol 2017; 2:9-15. [DOI: 10.1038/s41559-017-0385-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023]
|
23
|
Takeuchi F, Katsuya T, Kimura R, Nabika T, Isomura M, Ohkubo T, Tabara Y, Yamamoto K, Yokota M, Liu X, Saw WY, Mamatyusupu D, Yang W, Xu S, Teo YY, Kato N. The fine-scale genetic structure and evolution of the Japanese population. PLoS One 2017; 12:e0185487. [PMID: 29091727 PMCID: PMC5665431 DOI: 10.1371/journal.pone.0185487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail: (FT); (NK)
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Minoru Isomura
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Xuanyao Liu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Wenjun Yang
- Key Laboratory of Reproduction and Heredity of Ningxia Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | | | - Yik-Ying Teo
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail: (FT); (NK)
| |
Collapse
|
24
|
Smith SD, Kawash JK, Karaiskos S, Biluck I, Grigoriev A. Evolutionary adaptation revealed by comparative genome analysis of woolly mammoths and elephants. DNA Res 2017; 24:359-369. [PMID: 28369217 PMCID: PMC5737375 DOI: 10.1093/dnares/dsx007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Comparative genomics studies typically limit their focus to single nucleotide variants (SNVs) and that was the case for previous comparisons of woolly mammoth genomes. We extended the analysis to systematically identify not only SNVs but also larger structural variants (SVs) and indels and found multiple mammoth-specific deletions and duplications affecting exons or even complete genes. The most prominent SV found was an amplification of RNase L (with different copy numbers in different mammoth genomes, up to 9-fold), involved in antiviral defense and inflammasome function. This amplification was accompanied by mutations affecting several domains of the protein including the active site and produced different sets of RNase L paralogs in four mammoth genomes likely contributing to adaptations to environmental threats. In addition to immunity and defense, we found many other unique genetic changes in woolly mammoths that suggest adaptations to life in harsh Arctic conditions, including variants involving lipid metabolism, circadian rhythms, and skeletal and body features. Together, these variants paint a complex picture of evolution of the mammoth species and may be relevant in the studies of their population history and extinction.
Collapse
Affiliation(s)
- Sean D Smith
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Joseph K Kawash
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Spyros Karaiskos
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ian Biluck
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
25
|
Ren Y, Liu W, Chen J, Wang J, Wang K, Zhou J, Cai S, Zheng M, Liu J, Liu L, Xue D. A missense variant of the ABCC11 gene is associated with Axillary Osmidrosis susceptibility and clinical phenotypes in the Chinese Han Population. Sci Rep 2017; 7:46335. [PMID: 28485377 PMCID: PMC5423033 DOI: 10.1038/srep46335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/15/2017] [Indexed: 11/30/2022] Open
Abstract
Axillary osmidrosis (AO) is a common condition characterized by an offensive odor arising from apocrine gland secretions in the axillae that socially and psychologically impairs affected individuals. The exact aetiology of AO is still not fully understood, but genetic factors have been suggested to play an important role. Recently, a single nucleotide polymorphism (SNP) rs17822931 in the ABCC11 gene located on human chromosome 16q12.1 has been shown to be associated with AO. In this study, we genotyped rs17822931 in two independent samples of Chinese Hans including 93 AO individuals vs 95 controls and 81 AO individuals vs 106 controls by using SNaPshot Multiplex Kit. We confirmed the association for ABCC11 gene, showing that rs17822931-G was significantly associated with increased risk for AO (Pcombined = 1.42E-21, OR = 83.94, 95% CI = 83.03–84.85). We also found rs17822931 was associated with subphenotypes of AO. AO individuals carrying the risk allele G are more likely to show wet earwax (P = 2.40E-05), higher frequency of family history (P = 1.04E-02) and early age of onset (P = 3.81E-02). Our study concluded that the association of rs17822931 in the ABCC11 gene with AO was replicated in Chinese Han population.
Collapse
Affiliation(s)
- Yunqing Ren
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenting Liu
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Jisu Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianyou Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiong Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suiqing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Lunfei Liu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Dermatology, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Xue
- Department of Plastic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
|
27
|
Cho O, Sugita T. Comprehensive Analysis of the Fungal Microbiota of the Human External Auditory Canal Using Pyrosequencing. Med Mycol J 2017; 58:E1-E4. [DOI: 10.3314/mmj.16-00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Otomi Cho
- Department of Microbiology, Meiji Pharmaceutical University
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
28
|
Thurman TJ, Barrett RDH. The genetic consequences of selection in natural populations. Mol Ecol 2016; 25:1429-48. [DOI: 10.1111/mec.13559] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/21/2015] [Accepted: 01/27/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Timothy J. Thurman
- Redpath Museum and Department of Biology; McGill University; Sherbrooke Street West Montreal Quebec Canada H3A 1B1 Canada
- Smithsonian Tropical Research Institute; Panamá Panamá
| | - Rowan D. H. Barrett
- Redpath Museum and Department of Biology; McGill University; Sherbrooke Street West Montreal Quebec Canada H3A 1B1 Canada
| |
Collapse
|
29
|
Pierron D, Razafindrazaka H, Rocher C, Letellier T, Grossman LI. Human testis-specific genes are under relaxed negative selection. Mol Genet Genomics 2013; 289:37-45. [PMID: 24202551 DOI: 10.1007/s00438-013-0787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 12/15/2022]
Abstract
Recent studies have suggested that selective forces and constraints acting on genes varied during human evolution depending on the organ in which they are expressed. To gain insight into the evolution of organ determined negative selection forces, we compared the non-synonymous SNP diversity of genes expressed in different organs. Based on a HAPMAP dataset, we determined for each SNP its frequency in 11 human populations and, in each case, predicted whether or not the change it produces is deleterious. We have shown that, for all organs under study, SNPs predicted to be deleterious are present at a significantly lower frequency than SNPs predicted to be tolerated. However, testis-specific genes contain a higher proportion of deleterious SNPs than other organs. This study shows that negative selection is acting on the whole human genome, but that the action of negative selection is relaxed on testis-specific genes. This result adds to and expands the hypothesis of a recent evolutionary change in the human male reproductive system and its behavior.
Collapse
Affiliation(s)
- Denis Pierron
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | | | | | | | |
Collapse
|
30
|
Qian W, Deng L, Lu D, Xu S. Genome-wide landscapes of human local adaptation in Asia. PLoS One 2013; 8:e54224. [PMID: 23349834 PMCID: PMC3551950 DOI: 10.1371/journal.pone.0054224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 12/11/2012] [Indexed: 01/30/2023] Open
Abstract
Genetic studies of human local adaptation have been facilitated greatly by recent advances in high-throughput genotyping and sequencing technologies. However, few studies have investigated local adaptation in Asian populations on a genome-wide scale and with a high geographic resolution. In this study, taking advantage of the dense population coverage in Southeast Asia, which is the part of the world least studied in term of natural selection, we depicted genome-wide landscapes of local adaptations in 63 Asian populations representing the majority of linguistic and ethnic groups in Asia. Using genome-wide data analysis, we discovered many genes showing signs of local adaptation or natural selection. Notable examples, such as FOXQ1, MAST2, and CDH4, were found to play a role in hair follicle development and human cancer, signal transduction, and tumor repression, respectively. These showed strong indications of natural selection in Philippine Negritos, a group of aboriginal hunter-gatherers living in the Philippines. MTTP, which has associations with metabolic syndrome, body mass index, and insulin regulation, showed a strong signature of selection in Southeast Asians, including Indonesians. Functional annotation analysis revealed that genes and genetic variants underlying natural selections were generally enriched in the functional category of alternative splicing. Specifically, many genes showing significant difference with respect to allele frequency between northern and southern Asian populations were found to be associated with human height and growth and various immune pathways. In summary, this study contributes to the overall understanding of human local adaptation in Asia and has identified both known and novel signatures of natural selection in the human genome.
Collapse
Affiliation(s)
- Wei Qian
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lian Deng
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongsheng Lu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Ishikawa T, Toyoda Y, Yoshiura KI, Niikawa N. Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion. Front Genet 2013; 3:306. [PMID: 23316210 PMCID: PMC3539816 DOI: 10.3389/fgene.2012.00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/11/2012] [Indexed: 11/13/2022] Open
Abstract
Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body. Apocrine secretion occurs when the secretory process is accomplished with a partial loss of cell cytoplasm. The secretory materials are contained within secretory vesicles and are released during secretion as cytoplasmic fragments into the glandular lumen or interstitial space. The recent finding that the non-synonymous single nucleotide polymorphisms (SNP) 538G > A (rs17822931; Gly180Arg) in the ABCC11 gene determines the type of earwax in humans has shed light on the novel function of this ABC (ATP-binding cassette) transporter in apocrine glands. The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy. Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy. The aim of this review article is to provide an overview on the discovery and characterization of genetic polymorphisms in the human ABCC11 gene and to explain the impact of ABCC11 538G > A on the apocrine phenotype as well as the anthropological aspect of this SNP in the ABCC11 gene and patients’ response to nucleoside-based chemotherapy.
Collapse
Affiliation(s)
- Toshihisa Ishikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; Omics Science Center, RIKEN Yokohama Institute Yokohama, Japan
| | | | | | | |
Collapse
|
32
|
Kawashima M, Ohashi J, Nishida N, Tokunaga K. Evolutionary analysis of classical HLA class I and II genes suggests that recent positive selection acted on DPB1*04:01 in Japanese population. PLoS One 2012; 7:e46806. [PMID: 23056460 PMCID: PMC3463557 DOI: 10.1371/journal.pone.0046806] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023] Open
Abstract
The human leukocyte antigen (HLA) genes exhibit the highest degree of polymorphism in the human genome. This high degree of variation at classical HLA class I and class II loci has been maintained by balancing selection for a long evolutionary time. However, little is known about recent positive selection acting on specific HLA alleles in a local population. To detect the signature of recent positive selection, we genotyped six HLA loci, HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1 in 418 Japanese subjects, and then assessed the haplotype homozygosity (HH) of each HLA allele. There were 120 HLA alleles across the six loci. Among the 80 HLA alleles with frequencies of more than 1%, DPB1*04∶01, which had a frequency of 6.1%, showed exceptionally high HH (0.53). This finding raises the possibility that recent positive selection has acted on DPB1*04∶01. The DPB1*04∶01 allele, which was present in the most common 6-locus HLA haplotype (4.4%), A*33∶03-C*14∶03-B*44∶03-DRB1*13∶02-DQB1*06∶04-DPB1*04∶01, seems to have flowed from the Korean peninsula to the Japanese archipelago in the Yayoi period. A stochastic simulation approach indicated that the strong linkage disequilibrium between DQB1*06∶04 and DPB1*04∶01 observed in Japanese cannot be explained without positive selection favoring DPB1*04∶01. The selection coefficient of DPB1*04∶01 was estimated as 0.041 (95% credible interval 0.021–0.077). Our results suggest that DPB1*04∶01 has recently undergone strong positive selection in Japanese population.
Collapse
Affiliation(s)
- Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail: (MK); (JO)
| | - Jun Ohashi
- Molecular and Genetic Epidemiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- * E-mail: (MK); (JO)
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Naka I, Nishida N, Ohashi J. No evidence for strong recent positive selection favoring the 7 repeat allele of VNTR in the DRD4 gene. PLoS One 2011; 6:e24410. [PMID: 21909391 PMCID: PMC3164202 DOI: 10.1371/journal.pone.0024410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
The human dopamine receptor D4 (DRD4) gene contains a 48-bp variable number of tandem repeat (VNTR) in exon 3, encoding the third intracellular loop of this dopamine receptor. The DRD4 7R allele, which seems to have a single origin, is commonly observed in various human populations and the nucleotide diversity of the DRD4 7R haplotype at the DRD4 locus is reduced compared to the most common DRD4 4R haplotype. Based on these observations, previous studies have hypothesized that positive selection has acted on the DRD4 7R allele. However, the degrees of linkage disequilibrium (LD) of the DRD4 7R allele with single nucleotide polymorphisms (SNPs) outside the DRD4 locus have not been evaluated. In this study, to re-examine the possibility of recent positive selection favoring the DRD4 7R allele, we genotyped HapMap subjects for DRD4 VNTR, and conducted several neutrality tests including long range haplotype test and iHS test based on the extended haplotype homozygosity. Our results indicated that LD of the DRD4 7R allele was not extended compared to SNP alleles with the similar frequency. Thus, we conclude that the DRD4 7R allele has not been subjected to strong recent positive selection.
Collapse
Affiliation(s)
- Izumi Naka
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Research Center for Hepatitis and Immunology, International Medical Center of Japan Konodai Hospital, Ichikawa, Chiba, Japan
| | - Jun Ohashi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|