1
|
Sharma T, Jomphe RY, Zhang D, Magalhaes AC, Loewen MC. Fusarium graminearum Ste2 and Ste3 receptors undergo peroxidase-induced heterodimerization when expressed heterologously in Saccharomyces cerevisiae. Biochem Cell Biol 2024. [PMID: 39437438 DOI: 10.1139/bcb-2024-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Fusarium graminearum FgSte2 and FgSte3 are G-protein-coupled receptors (GPCRs) shown to play roles in hyphal chemotropism and fungal plant pathogenesis in response to activity arising from host-secreted peroxidases. Here, we follow up on the observation that chemotropism is dependent on both FgSte2 and FgSte3 being present; testing the possibility that this might be due to formation of an FgSte2-FgSte3 heterodimer. Bioluminescence resonance energy transfer (BRET) analyses were conducted in Saccharomyces cerevisiae, where the addition of horse radish peroxidase (HRP) was found to increase the transfer of energy from the inducibly expressed FgSte3-Nano luciferase donor, to the constitutively expressed FgSte2-yellow fluorescent protein (YFP) acceptor, compared to controls. A partial response was also detected when an HRP-derived ligand-containing extract was enriched from F. graminearum spores and applied instead of HRP. In contrast, substitution with pheromones or an unrelated bovine GPCR, rhodopsin-YFP used as acceptor, eliminated all BRET responses. Interaction results were validated by affinity pulldown and receptor expression was validated by confocal immunofluorescence microscopy. Taken together these findings demonstrate the formation of HRP and HRP-derived ligand stimulated heterodimers between FgSte2 and FgSte3. Outcomes are discussed from the context of the roles of ligands and reactive oxygen species in GPCR dimerization.
Collapse
Affiliation(s)
- Tanya Sharma
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
| | - Robert Y Jomphe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - Dongling Zhang
- Human Health Therapeutics Research Center, National Research Council of Canada, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
| | - Ana C Magalhaes
- Human Health Therapeutics Research Center, National Research Council of Canada, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
| | - Michele C Loewen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
| |
Collapse
|
2
|
Ramaswe JB, Steenkamp ET, De Vos L, Fru FF, Adegeye OO, Wingfield BD. Sex Pheromone Receptor Ste2 Orchestrates Chemotropic Growth towards Pine Root Extracts in the Pitch Canker Pathogen Fusarium circinatum. Pathogens 2024; 13:425. [PMID: 38787277 PMCID: PMC11124031 DOI: 10.3390/pathogens13050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In ascomycetous fungi, sexual mate recognition requires interaction of the Ste2 receptor protein produced by one partner with the α-factor peptide pheromone produced by the other partner. In some fungi, Ste2 is further needed for chemotropism towards plant roots to allow for subsequent infection and colonization. Here, we investigated whether this is also true for the pine pitch canker fungus, Fusarium circinatum, which is a devastating pathogen of pine globally. Ste2 knockout mutants were generated for two opposite mating-type isolates, after which all strains were subjected to chemotropism assays involving exudates from pine seedling roots and synthetic α-factor pheromone, as well as a range of other compounds for comparison. Our data show that Ste2 is not required for chemotropism towards any of these other compounds, but, in both wild-type strains, Ste2 deletion resulted in the loss of chemotropism towards pine root exudate. Also, irrespective of mating type, both wild-type strains displayed positive chemotropism towards α-factor pheromone, which was substantially reduced in the deletion mutants and not the complementation mutants. Taken together, these findings suggest that Ste2 likely has a key role during the infection of pine roots in production nurseries. Our study also provides a strong foundation for exploring the role of self-produced and mate-produced α-factor pheromone in the growth and overall biology of the pitch canker pathogen.
Collapse
Affiliation(s)
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (J.B.R.); (L.D.V.); (F.F.F.); (O.O.A.); (B.D.W.)
| | | | | | | | | |
Collapse
|
3
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
4
|
Wu L, Bian W, Abubakar YS, Lin J, Yan H, Zhang H, Wang Z, Wu C, Shim W, Lu GD. FvKex2 is required for development, virulence, and mycotoxin production in Fusarium verticillioides. Appl Microbiol Biotechnol 2024; 108:228. [PMID: 38386129 PMCID: PMC10884074 DOI: 10.1007/s00253-024-13022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.
Collapse
Affiliation(s)
- Limin Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - Wenyin Bian
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Yakubu Saddeeq Abubakar
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
- Department of Biochemistry, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Jiayi Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Zonghua Wang
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Changbiao Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - WonBo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| | - Guo-Dong Lu
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Wilson AM, Coetzee MPA, Wingfield MJ, Wingfield BD. Needles in fungal haystacks: Discovery of a putative a-factor pheromone and a unique mating strategy in the Leotiomycetes. PLoS One 2023; 18:e0292619. [PMID: 37824487 PMCID: PMC10569646 DOI: 10.1371/journal.pone.0292619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The Leotiomycetes is a hugely diverse group of fungi, accommodating a wide variety of important plant and animal pathogens, ericoid mycorrhizal fungi, as well as producers of antibiotics. Despite their importance, the genetics of these fungi remain relatively understudied, particularly as they don't include model taxa. For example, sexual reproduction and the genetic mechanisms that underly this process are poorly understood in the Leotiomycetes. We exploited publicly available genomic and transcriptomic resources to identify genes of the mating-type locus and pheromone response pathway in an effort to characterize the mating strategies and behaviors of 124 Leotiomycete species. Our analyses identified a putative a-factor mating pheromone in these species. This significant finding represents the first identification of this gene in Pezizomycotina species outside of the Sordariomycetes. A unique mating strategy was also discovered in Lachnellula species that appear to have lost the need for the primary MAT1-1-1 protein. Ancestral state reconstruction enabled the identification of numerous transitions between homothallism and heterothallism in the Leotiomycetes and suggests a heterothallic ancestor for this group. This comprehensive catalog of mating-related genes from such a large group of fungi provides a rich resource from which in-depth, functional studies can be conducted in these economically and ecologically important species.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Srikant S, Gaudet R, Murray AW. Extending the reach of homology by using successive computational filters to find yeast pheromone genes. Curr Biol 2023; 33:4098-4110.e3. [PMID: 37699395 PMCID: PMC10592104 DOI: 10.1016/j.cub.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
The mating of fungi depends on pheromones that mediate communication between two mating types. Most species use short peptides as pheromones, which are either unmodified (e.g., α-factor in Saccharomyces cerevisiae) or C-terminally farnesylated (e.g., a-factor in S. cerevisiae). Peptide pheromones have been found by genetics or biochemistry in a small number of fungi, but their short sequences and modest conservation make it impossible to detect homologous sequences in most species. To overcome this problem, we used a four-step computational pipeline to identify candidate a-factor genes in sequenced genomes of the Saccharomycotina, the fungal clade that contains most of the yeasts: we require that candidate genes have a C-terminal prenylation motif, are shorter than 100 amino acids long, and contain a proteolytic-processing motif upstream of the potential mature pheromone sequence and that closely related species contain highly conserved homologs of the potential mature pheromone sequence. Additional manual curation exploits the observation that many species carry more than one a-factor gene, encoding identical or nearly identical pheromones. From 332 Saccharomycotina genomes, we identified strong candidate pheromone genes in 241 genomes, covering 13 clades that are each separated from each other by at least 100 million years, the time required for evolution to remove detectable sequence homology among small pheromone genes. For one small clade, the Yarrowia, we demonstrated that our algorithm found the a-factor genes: deleting all four related genes in the a-mating type of Yarrowia lipolytica prevents mating.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Yao L, Kong Y, Yang W, Tian H, Meng X, Zhao X, Zhang R, Sun G, Rollins JA, Liang X. Two Putative Pheromone Receptors, but Not Their Cognate Pheromones, Regulate Female Fertility in the Atypical Mating Fungus Colletotrichum fructicola. PHYTOPATHOLOGY 2023; 113:1934-1945. [PMID: 37141175 DOI: 10.1094/phyto-11-22-0436-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Colletotrichum fungi are a group of damaging phytopathogens with atypical mating type loci (harboring only MAT1-2-1 but not MAT1-1-1) and complex sexual behaviors. Sex pheromones and their cognate G-protein-coupled receptors are conserved regulators of fungal mating. These genes, however, lose function frequently among Colletotrichum species, indicating a possibility that pheromone signaling is dispensable for Colletotrichum sexual reproduction. We have identified two putative pheromone-receptor pairs (PPG1:PRE2, PPG2:PRE1) in C. fructicola, a species that exhibits plus-to-minus mating type switching and plus-minus-mediated mating line development. Here, we report the generation and characterization of gene-deletion mutants for all four genes in both plus and minus strain backgrounds. Single-gene deletion of pre1 or pre2 had no effect on sexual development, whereas their double deletion caused self-sterility in both the plus and minus strains. Moreover, double deletion of pre1 and pre2 caused female sterility in plus-minus outcrossing. Double deletion of pre1 and pre2, however, did not inhibit perithecial differentiation or plus-minus-mediated enhancement of perithecial differentiation. Contrary to the results with pre1 and pre2, double deletion of ppg1 and ppg2 had no effect on sexual compatibility, development, or fecundity. We concluded that pre1 and pre2 coordinately regulate C. fructicola mating by recognizing novel signal molecule(s) distinct from canonical Ascomycota pheromones. The contrasting importance between pheromone receptors and their cognate pheromones highlights the complicated nature of sex regulation in Colletotrichum fungi.
Collapse
Affiliation(s)
- Liqiang Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuanyuan Kong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wenrui Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Huanhuan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiangchen Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xuemei Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
8
|
Lynch M. Mutation pressure, drift, and the pace of molecular coevolution. Proc Natl Acad Sci U S A 2023; 120:e2306741120. [PMID: 37364099 PMCID: PMC10319038 DOI: 10.1073/pnas.2306741120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Most aspects of the molecular biology of cells involve tightly coordinated intermolecular interactions requiring specific recognition at the nucleotide and/or amino acid levels. This has led to long-standing interest in the degree to which constraints on interacting molecules result in conserved vs. accelerated rates of sequence evolution, with arguments commonly being made that molecular coevolution can proceed at rates exceeding the neutral expectation. Here, a fairly general model is introduced to evaluate the degree to which the rate of evolution at functionally interacting sites is influenced by effective population sizes (Ne), mutation rates, strength of selection, and the magnitude of recombination between sites. This theory is of particular relevance to matters associated with interactions between organelle- and nuclear-encoded proteins, as the two genomic environments often exhibit dramatic differences in the power of mutation and drift. Although genes within low Ne environments can drive the rate of evolution of partner genes experiencing higher Ne, rates exceeding the neutral expectation require that the former also have an elevated mutation rate. Testable predictions, some counterintuitive, are presented on how patterns of coevolutionary rates should depend on the relative intensities of drift, selection, and mutation.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ85287
| |
Collapse
|
9
|
Wilson AM, Wingfield MJ, Wingfield BD. Structure and number of mating pheromone genes is closely linked to sexual reproductive strategy in Huntiella. BMC Genomics 2023; 24:261. [PMID: 37179314 PMCID: PMC10182648 DOI: 10.1186/s12864-023-09355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Huntiella resides in the Ceratocystidaceae, a family of fungi that accommodates important plant pathogens and insect-associated saprotrophs. Species in the genus have either heterothallic or unisexual (a form of homothallism) mating systems, providing an opportunity to investigate the genetic mechanisms that enable transitions between reproductive strategies in related species. Two newly sequenced Huntiella genomes are introduced in this study and comparative genomics and transcriptomics tools are used to investigate the differences between heterothallism and unisexuality across the genus. RESULTS Heterothallic species harbored up to seven copies of the a-factor pheromone, each of which possessed numerous mature peptide repeats. In comparison, unisexual Huntiella species had only two or three copies of this gene, each with fewer repeats. Similarly, while the heterothallic species expressed up to 12 copies of the mature α-factor pheromone, unisexual species had up to six copies. These significant differences imply that unisexual Huntiella species do not rely on a mating partner recognition system in the same way that heterothallic fungi do. CONCLUSION While it is suspected that mating type-independent pheromone expression is the mechanism allowing for unisexual reproduction in Huntiella species, our results suggest that the transition to unisexuality may also have been associated with changes in the genes governing the pheromone pathway. While these results are specifically related to Huntiella, they provide clues leading to a better understanding of sexual reproduction and the fluidity of mating strategies in fungi more broadly.
Collapse
Affiliation(s)
- Andi M Wilson
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa.
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
10
|
Liu L, Huang Y, Song H, Luo M, Dong Z. α-Pheromone Precursor Protein Foc4-PP1 Is Essential for the Full Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4. J Fungi (Basel) 2023; 9:jof9030365. [PMID: 36983533 PMCID: PMC10057649 DOI: 10.3390/jof9030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt of bananas, is considered one of the most destructive fungal pathogens of banana crops worldwide. During infection, Foc secretes many different proteins which promote its colonization of plant tissues. Although F. oxysporum has no sexual cycle, it has been reported to secrete an α-pheromone, which acts as a growth regulator, chemoattractant, and quorum-sensing signaling molecule; and to encode a putative protein with the hallmarks of fungal α-pheromone precursors. In this study, we identified an ortholog of the α-pheromone precursor gene, Foc4-PP1, in Foc tropical race 4 (TR4), and showed that it was necessary for the growth and virulence of Foc TR4. Foc4-PP1 deletion from the Foc TR4 genome resulted in decreased fungal growth, increased sensitivity to oxidative stress and cell-wall-damaging agents, and attenuation of pathogen virulence towards banana plantlets. Subcellular localization analysis revealed that Foc4-PP1 was concentrated in the nuclei and cytoplasm of Nicotiana benthamiana cells, where it could suppress BAX-induced programmed cell death. In conclusion, these findings suggest that Foc4-PP1 contributes to Foc TR4 virulence by promoting hyphal growth and abiotic stress resistance and inhibiting the immune defense responses of host plants.
Collapse
Affiliation(s)
- Lu Liu
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yinghua Huang
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Agribusiness Tropical Crop Science Institute, Maoming 525100, China
| | - Handa Song
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (H.S.); (Z.D.); Tel.: +86-02089003192 (H.S. & Z.D.)
| | - Mei Luo
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (H.S.); (Z.D.); Tel.: +86-02089003192 (H.S. & Z.D.)
| |
Collapse
|
11
|
Tran C, Khadkikar S, Porollo A. Survey of Protein Sequence Embedding Models. Int J Mol Sci 2023; 24:3775. [PMID: 36835188 PMCID: PMC9963412 DOI: 10.3390/ijms24043775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Derived from the natural language processing (NLP) algorithms, protein language models enable the encoding of protein sequences, which are widely diverse in length and amino acid composition, in fixed-size numerical vectors (embeddings). We surveyed representative embedding models such as Esm, Esm1b, ProtT5, and SeqVec, along with their derivatives (GoPredSim and PLAST), to conduct the following tasks in computational biology: embedding the Saccharomyces cerevisiae proteome, gene ontology (GO) annotation of the uncharacterized proteins of this organism, relating variants of human proteins to disease status, correlating mutants of beta-lactamase TEM-1 from Escherichia coli with experimentally measured antimicrobial resistance, and analyzing diverse fungal mating factors. We discuss the advances and shortcomings, differences, and concordance of the models. Of note, all of the models revealed that the uncharacterized proteins in yeast tend to be less than 200 amino acids long, contain fewer aspartates and glutamates, and are enriched for cysteine. Less than half of these proteins can be annotated with GO terms with high confidence. The distribution of the cosine similarity scores of benign and pathogenic mutations to the reference human proteins shows a statistically significant difference. The differences in embeddings of the reference TEM-1 and mutants have low to no correlation with minimal inhibitory concentrations (MIC).
Collapse
Affiliation(s)
- Chau Tran
- Department of Computer Science, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Siddharth Khadkikar
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
12
|
Seike T, Niki H. Pheromone Response and Mating Behavior in Fission Yeast. Microbiol Mol Biol Rev 2022; 86:e0013022. [PMID: 36468849 PMCID: PMC9769774 DOI: 10.1128/mmbr.00130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the "asymmetric" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.
Collapse
Affiliation(s)
- Taisuke Seike
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
13
|
Sharma T, Sridhar PS, Blackman C, Foote SJ, Allingham JS, Subramaniam R, Loewen MC. Fusarium graminearum Ste3 G-Protein Coupled Receptor: A Mediator of Hyphal Chemotropism and Pathogenesis. mSphere 2022; 7:e0045622. [PMID: 36377914 PMCID: PMC9769807 DOI: 10.1128/msphere.00456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Previous studies on Fusarium species have highlighted the involvement of the Ste2 G-protein-coupled receptor (GPCR) in mediating polarized hyphal growth toward host-released peroxidase. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to Fusarium graminearum chemotropism and pathogenicity. Fgste3Δ deletion strains were found to be compromised in the chemotropic response toward peroxidase, development of lesions on germinating wheat, and infection of Arabidopsis thaliana leaves. In the absence of FgSte3 or FgSte2, F. graminearum cells exposed to peroxidase showed no phosphorylation of the cell-wall integrity, mitogen-activated protein kinase pathway component Mgv1. In addition, transcriptomic gene expression profiling yielded a list of genes involved in cellular reorganization, cell wall remodeling, and infection-mediated responses that were differentially modulated by peroxidase when FgSte3 was present. Deletion of FgSte3 yielded the downregulation of genes associated with mycotoxin biosynthesis and appressorium development, compared to the wild-type strain, both in the presence of peroxidase. Together, these findings contribute to our understanding of the mechanism underlying fungal chemotropism and pathogenesis while raising the novel hypothesis that FgSte2 and FgSte3 are interdependent on each other for the mediation of the redirection of hyphal growth in response to host-derived peroxidase. IMPORTANCE Fusarium head blight of wheat, caused by the filamentous fungus Fusarium graminearum, leads to devastating global food shortages and economic losses. Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to F. graminearum chemotropism and pathogenicity. These findings contribute to our understanding of the mechanisms underlying fungal chemotropism and pathogenesis.
Collapse
Affiliation(s)
- Tanya Sharma
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Pooja S. Sridhar
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Christopher Blackman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Simon J. Foote
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Rajagopal Subramaniam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Michele C. Loewen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Peris D, Lu DS, Kinneberg VB, Methlie IS, Dahl MS, James TY, Kauserud H, Skrede I. Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet 2022; 18:e1010097. [PMID: 35358178 PMCID: PMC8970355 DOI: 10.1371/journal.pgen.1010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.
Collapse
Affiliation(s)
- David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University (VIU), Valencia, Spain
| | - Dabao Sun Lu
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vilde Bruhn Kinneberg
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ine-Susanne Methlie
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Malin Stapnes Dahl
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Genetic Variability of the Mating Recognition Gene in Populations of Brachionus plicatilis. DIVERSITY 2022. [DOI: 10.3390/d14030155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of reproductive barriers promotes within-species divergence and is a requisite for speciation to occur. Mate recognition in the rotifer B. plicatilis is mediated through a surface glycoprotein called Mating Recognition Protein (MRP). Here we investigate the genetic variation of the mmr-b, MRP coding, gene in different natural populations of B. plicatilis from the Iberian Peninsula, that present different degree of population differentiation, with known adaptive divergence in some cases. The MRP gene consists of several nearly identical tandem repeats. We found a relatively high diversity within and among populations both in the number of repeats, as well as in the nucleotide sequence. Despite that most changes are neutral, variation that can potentially affect the protein function was found in two polymorphic sites within a repeat in some of these populations. Although being mostly subject to stabilizing selection, we have found a noticeable pattern of increasing mmr-b gene diversification correlated to increasing differences in environmental factors. The interplay between genetic differentiation, local adaptation and differentiation of the mating recognition system can lead to speciation events in nearly sympatric populations.
Collapse
|
16
|
Seike T, Sakata N, Shimoda C, Niki H, Furusawa C. The sixth transmembrane region of a pheromone G-protein coupled receptor, Map3, is implicated in discrimination of closely related pheromones in Schizosaccharomyces pombe. Genetics 2021; 219:6371190. [PMID: 34849842 DOI: 10.1093/genetics/iyab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
Most sexually reproducing organisms have the ability to recognize individuals of the same species. In ascomycete fungi including yeasts, mating between cells of opposite mating type depends on the molecular recognition of two peptidyl mating pheromones by their corresponding G-protein coupled receptors (GPCRs). Although such pheromone/receptor systems are likely to function in both mate choice and prezygotic isolation, very few studies have focused on the stringency of pheromone receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). Here, we investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor, in fission yeast. First, we switched GPCRs between S. pombe and the closely related species Schizosaccharomyces octosporus, which showed that SoMam2 (Mam2 of S. octosporus) is partially functional in S. pombe, whereas SoMap3 (Map3 of S. octosporus) is not interchangeable. Next, we swapped individual domains of Mam2 and Map3 with the respective domains in SoMam2 and SoMap3, which revealed differences between the receptors both in the intracellular regions that regulate the downstream signaling of pheromones and in the activation by the pheromone. In particular, we demonstrated that two amino acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors. Thus, the differences in these two GPCRs might reflect the significantly distinct stringency/flexibility of their respective pheromone/receptor systems; nevertheless, species-specific pheromone recognition remains incomplete.
Collapse
Affiliation(s)
- Taisuke Seike
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan
| | - Natsue Sakata
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Hironori Niki
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Wilson AM, Lelwala RV, Taylor PWJ, Wingfield MJ, Wingfield BD. Unique patterns of mating pheromone presence and absence could result in the ambiguous sexual behaviors of Colletotrichum species. G3 (BETHESDA, MD.) 2021; 11:jkab187. [PMID: 34544120 PMCID: PMC8661429 DOI: 10.1093/g3journal/jkab187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/18/2021] [Indexed: 11/14/2022]
Abstract
Colletotrichum species are known to engage in unique sexual behaviors that differ significantly from the mating strategies of other filamentous ascomycete species. For example, most ascomycete fungi require the expression of both the MAT1-1-1 and MAT1-2-1 genes to induce sexual reproduction. In contrast, all isolates of Colletotrichum harbor only the MAT1-2-1 gene and yet, are capable of recognizing suitable mating partners and producing sexual progeny. The molecular mechanisms contributing to mating types and behaviors in Colletotrichum are, however, unknown. A comparative genomics approach analyzing 35 genomes, representing 31 Colletotrichum species and two Verticillium species, was used to elucidate a putative molecular mechanism underlying the unique sexual behaviors observed in Colletotrichum species. The existence of only the MAT1-2 idiomorph was confirmed across all species included in this study. Comparisons of the loci harboring the two mating pheromones and their cognate receptors revealed interesting patterns of gene presence and absence. The results showed that these genes have been lost multiple, independent times over the evolutionary history of this genus. These losses indicate that the pheromone pathway no longer plays an active role in mating type determination, suggesting an undiscovered mechanism by which mating partner recognition is controlled in these species. This further suggests that there has been a redirection of the underlying genetic mechanisms that regulate sexual development in Colletotrichum species. This research thus provides a foundation from which further interrogation of this topic can take place.
Collapse
Affiliation(s)
- Andi M Wilson
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Ruvini V Lelwala
- School of Agriculture and Food, Faculty of Veterinary and Agriculture Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul W J Taylor
- School of Agriculture and Food, Faculty of Veterinary and Agriculture Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| |
Collapse
|
18
|
Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
van Leeuwe TM, Arentshorst M, Forn-Cuní G, Geoffrion N, Tsang A, Delvigne F, Meijer AH, Ram AFJ, Punt PJ. Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content. Microorganisms 2020; 8:E1918. [PMID: 33276589 PMCID: PMC7761569 DOI: 10.3390/microorganisms8121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be used for post-fermentation cell wall harvesting, we turned to an Aspergillus niger strain in which the kexB gene was deleted. Previous work has shown that the deletion of kexB causes hyper-branching and thicker cell walls, traits that may be beneficial for the reduction in fermentation viscosity and lysis. Hyper-branching of ∆kexB was previously found to be pH-dependent on solid medium at pH 6.0, but was absent at pH 5.0. This phenotype was reported to be less pronounced during submerged growth. Here, we show a series of controlled batch cultivations at a pH range of 5, 5.5, and 6 to examine the pellet phenotype of ΔkexB in liquid medium. Morphological analysis showed that ΔkexB formed wild type-like pellets at pH 5.0, whereas the hyper-branching ΔkexB phenotype was found at pH 6.0. The transition of phenotypic plasticity was found in cultivations at pH 5.5, seen as an intermediate phenotype. Analyzing the cell walls of ΔkexB from these controlled pH-conditions showed an increase in chitin content compared to the wild type across all three pH values. Surprisingly, the increase in chitin content was found to be irrespective of the hyper-branching morphology. Evidence for alterations in cell wall make-up are corroborated by transcriptional analysis that showed a significant cell wall stress response in addition to the upregulation of genes encoding other unrelated cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, 5030 Gembloux, Belgium;
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Peter J. Punt
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Aframian N, Eldar A. A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annu Rev Microbiol 2020; 74:587-606. [PMID: 32680450 DOI: 10.1146/annurev-micro-012220-063740] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing is a process in which bacteria secrete and sense a diffusible molecule, thereby enabling bacterial groups to coordinate their behavior in a density-dependent manner. Quorum sensing has evolved multiple times independently, utilizing different molecular pathways and signaling molecules. A common theme among many quorum-sensing families is their wide range of signaling diversity-different variants within a family code for different signal molecules with a cognate receptor specific to each variant. This pattern of vast allelic polymorphism raises several questions-How do different signaling variants interact with one another? How is this diversity maintained? And how did it come to exist in the first place? Here we argue that social interactions between signaling variants can explain the emergence and persistence of signaling diversity throughout evolution. Finally, we extend the discussion to include cases where multiple diverse systems work in concert in a single bacterium.
Collapse
Affiliation(s)
- Nitzan Aframian
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| | - Avigdor Eldar
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| |
Collapse
|
21
|
Seike T, Maekawa H, Nakamura T, Shimoda C. The asymmetric chemical structures of two mating pheromones reflect their differential roles in mating of fission yeast. J Cell Sci 2019; 132:jcs.230722. [PMID: 31186279 DOI: 10.1242/jcs.230722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 02/01/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, the mating reaction is controlled by two mating pheromones, M-factor and P-factor, secreted by M- and P-type cells, respectively. M-factor is a C-terminally farnesylated lipid peptide, whereas P-factor is a simple peptide. To examine whether this chemical asymmetry in the two pheromones is essential for conjugation, we constructed a mating system in which either pheromone can stimulate both M- and P-cells, and examined whether the resulting autocrine strains can mate. Autocrine M-cells responding to M-factor successfully mated with P-factor-lacking P-cells, indicating that P-factor is not essential for conjugation; by contrast, autocrine P-cells responding to P-factor were unable to mate with M-factor-lacking M-cells. The sterility of the autocrine P-cells was completely restored by expressing the M-factor receptor. These observations indicate that the different chemical characteristics of the two types of pheromone, a lipid and a simple peptide, are not essential; however, a lipid peptide might be required for successful mating. Our findings allow us to propose a model of the differential roles of M-factor and P-factor in conjugation of S. pombeThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Taisuke Seike
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hiromi Maekawa
- Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
22
|
It's All in the Genes: The Regulatory Pathways of Sexual Reproduction in Filamentous Ascomycetes. Genes (Basel) 2019; 10:genes10050330. [PMID: 31052334 PMCID: PMC6562746 DOI: 10.3390/genes10050330] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Sexual reproduction in filamentous ascomycete fungi results in the production of highly specialized sexual tissues, which arise from relatively simple, vegetative mycelia. This conversion takes place after the recognition of and response to a variety of exogenous and endogenous cues, and relies on very strictly regulated gene, protein, and metabolite pathways. This makes studying sexual development in fungi an interesting tool in which to study gene-gene, gene-protein, and protein-metabolite interactions. This review provides an overview of some of the most important genes involved in this process; from those involved in the conversion of mycelia into sexually-competent tissue, to those involved in the development of the ascomata, the asci, and ultimately, the ascospores.
Collapse
|
23
|
Seike T. The evolution of peptide mating pheromones in fission yeast. Curr Genet 2019; 65:1107-1111. [DOI: 10.1007/s00294-019-00968-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022]
|
24
|
Le Marquer M, San Clemente H, Roux C, Savelli B, Frei Dit Frey N. Identification of new signalling peptides through a genome-wide survey of 250 fungal secretomes. BMC Genomics 2019; 20:64. [PMID: 30658568 PMCID: PMC6339444 DOI: 10.1186/s12864-018-5414-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022] Open
Abstract
Background Many small peptides regulate eukaryotic cell biology. In fungi, some of these peptides are produced after KEX2 protease activity on proteins displaying repetitions of identical or nearly identical motifs. Following this endoprotease activity, peptides are released in the extracellular space. This type of protein maturation is involved in the production of the α-type sexual pheromone in Ascomycota. In other cases, this processing allows the production of secreted peptides regulating fungal cell wall structure or acting as mycotoxins. In this work, we report for the first time a genome-wide search of KEX2-processed repeat proteins that we call KEPs. We screened the secreted proteins of 250 fungal species to compare their KEP repertoires with regard to their lifestyle, morphology or lineage. Results Our analysis points out that nearly all fungi display putative KEPs, suggesting an ancestral origin common to all opisthokonts. As expected, our pipeline identifies mycotoxins but also α-type sexual pheromones in Ascomycota that have not been explored so far, and unravels KEP-derived secreted peptides of unknown functions. Some species display an expansion of this class of proteins. Interestingly, we identified conserved KEPs in pathogenic fungi, suggesting a role in virulence. We also identified KEPs in Basidiomycota with striking similarities to Ascomycota α-type sexual pheromones, suggesting they may also play alternative roles in unknown signalling processes. Conclusions We identified putative, new, unexpected secreted peptides that fall into different functional categories: mycotoxins, hormones, sexual pheromones, or effectors that promote colonization during host-microbe interactions. This wide survey will open new avenues in the field of small-secreted peptides in fungi that are critical regulators of their intimate biology and modulators of their interaction with the environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-5414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France.
| |
Collapse
|
25
|
Billerbeck S, Brisbois J, Agmon N, Jimenez M, Temple J, Shen M, Boeke JD, Cornish VW. A scalable peptide-GPCR language for engineering multicellular communication. Nat Commun 2018; 9:5057. [PMID: 30498215 PMCID: PMC6265332 DOI: 10.1038/s41467-018-07610-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
Engineering multicellularity is one of the next breakthroughs for Synthetic Biology. A key bottleneck to building multicellular systems is the lack of a scalable signaling language with a large number of interfaces that can be used simultaneously. Here, we present a modular, scalable, intercellular signaling language in yeast based on fungal mating peptide/G-protein-coupled receptor (GPCR) pairs harnessed from nature. First, through genome-mining, we assemble 32 functional peptide-GPCR signaling interfaces with a range of dose-response characteristics. Next, we demonstrate that these interfaces can be combined into two-cell communication links, which serve as assembly units for higher-order communication topologies. Finally, we show 56 functional, two-cell links, which we use to assemble three- to six-member communication topologies and a three-member interdependent community. Importantly, our peptide-GPCR language is scalable and tunable by genetic encoding, requires minimal component engineering, and should be massively scalable by further application of our genome mining pipeline or directed evolution.
Collapse
Affiliation(s)
- Sonja Billerbeck
- Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - James Brisbois
- Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Miguel Jimenez
- Department of Chemistry, Columbia University, New York, New York, 10027, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jasmine Temple
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Michael Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, New York, New York, 10027, USA.
- Department of Systems Biology, Columbia University, New York, New York, 10032, USA.
| |
Collapse
|
26
|
Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat Microbiol 2018; 3:402-414. [DOI: 10.1038/s41564-018-0127-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
|
27
|
Wilson AM, van der Nest MA, Wilken PM, Wingfield MJ, Wingfield BD. Pheromone expression reveals putative mechanism of unisexuality in a saprobic ascomycete fungus. PLoS One 2018; 13:e0192517. [PMID: 29505565 PMCID: PMC5837088 DOI: 10.1371/journal.pone.0192517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Homothallism (self-fertility) describes a wide variety of sexual strategies that enable a fungus to reproduce in the absence of a mating partner. Unisexual reproduction, a form of homothallism, is a process whereby a fungus can progress through sexual reproduction in the absence of mating genes previously considered essential for self-fertility. In this study, we consider the molecular mechanisms that allow for this unique sexual behaviour in the saprotrophic ascomycete; Huntiella moniliformis. These molecular mechanisms are also compared to the underlying mechanisms that control sex in Huntiella omanensis, a closely related, but self-sterile, species. The main finding was that H. omanensis displayed mating-type dependent expression of the a- and α-pheromones. This was in contrast to H. moniliformis where both pheromones were co-expressed during vegetative growth and sexual development. Furthermore, H. moniliformis also expressed the receptors of both pheromones. Consequently, this fungus is likely able to recognize and respond to the endogenously produced pheromones, allowing for self-fertility in the absence of other key mating genes. Overall, these results are concomitant with those reported for other unisexual species, but represent the first detailed study considering the unisexual behaviour of a filamentous fungus.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- * E-mail:
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Rogers DW, McConnell E, Miller EL, Greig D. Diminishing Returns on Intragenic Repeat Number Expansion in the Production of Signaling Peptides. Mol Biol Evol 2017; 34:3176-3185. [PMID: 28961820 PMCID: PMC5850478 DOI: 10.1093/molbev/msx243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling peptides enable communication between cells, both within and between individuals, and are therefore key to the control of complex physiological and behavioral responses. Since their small sizes prevent direct transmission to secretory pathways, these peptides are often produced as part of a larger polyprotein comprising precursors for multiple related or identical peptides; the physiological and behavioral consequences of this unusual gene structure are not understood. Here, we show that the number of mature-pheromone-encoding repeats in the yeast α-mating-factor gene MFα1 varies considerably between closely related isolates of both Saccharomyces cerevisiae and its sister species Saccharomyces paradoxus. Variation in repeat number has important phenotypic consequences: Increasing repeat number caused higher pheromone production and greater competitive mating success. However, the magnitude of the improvement decreased with increasing repeat number such that repeat amplification beyond that observed in natural isolates failed to generate more pheromone, and could actually reduce sexual fitness. We investigate multiple explanations for this pattern of diminishing returns and find that our results are most consistent with a translational trade-off: Increasing the number of encoded repeats results in more mature pheromone per translation event, but also generates longer transcripts thereby reducing the rate of translation—a phenomenon known as length-dependent translation. Length-dependent translation may be a powerful constraint on the evolution of genes encoding repetitive or modular proteins, with important physiological and behavioral consequences across eukaryotes.
Collapse
Affiliation(s)
- David W Rogers
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ellen McConnell
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eric L Miller
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, United Kingdom
| | - Duncan Greig
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
29
|
The directed evolution of ligand specificity in a GPCR and the unequal contributions of efficacy and affinity. Sci Rep 2017; 7:16012. [PMID: 29167562 PMCID: PMC5700115 DOI: 10.1038/s41598-017-16332-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 11/26/2022] Open
Abstract
G protein-coupled receptors (GPCRs) must discriminate between hundreds of related signal molecules. In order to better understand how GPCR specificity can arise from a common promiscuous ancestor, we used laboratory evolution to invert the specificity of the Saccharomyces cerevisiae mating receptor Ste2. This GPCR normally responds weakly to the pheromone of the related species Kluyveromyces lactis, though we previously showed that mutation N216S is sufficient to make this receptor promiscuous. Here, we found that three additional substitutions, A265T, Y266F and P290Q, can act together to confer a novel specificity for K. lactis pheromone. Unlike wild-type Ste2, this new variant does not rely on differences in binding affinity to discriminate against its non-preferred ligand. Instead, the mutation P290Q is critical for suppressing the efficacy of the native pheromone. These two alternative methods of ligand discrimination were mapped to specific amino acid positions on the peptide pheromones. Our work demonstrates that changes in ligand efficacy can drive changes in GPCR specificity, thus obviating the need for extensive binding pocket re-modeling.
Collapse
|
30
|
Ostrov N, Jimenez M, Billerbeck S, Brisbois J, Matragrano J, Ager A, Cornish VW. A modular yeast biosensor for low-cost point-of-care pathogen detection. SCIENCE ADVANCES 2017; 3:e1603221. [PMID: 28782007 PMCID: PMC5489263 DOI: 10.1126/sciadv.1603221] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/15/2017] [Indexed: 05/16/2023]
Abstract
The availability of simple, specific, and inexpensive on-site detection methods is of key importance for deployment of pathogen surveillance networks. We developed a nontechnical and highly specific colorimetric assay for detection of pathogen-derived peptides based on Saccharomyces cerevisiae-a genetically tractable model organism and household product. Integrating G protein-coupled receptors with a visible, reagent-free lycopene readout, we demonstrate differential detection of major human, plant, and food fungal pathogens with nanomolar sensitivity. We further optimized a one-step rapid dipstick prototype that can be used in complex samples, including blood, urine, and soil. This modular biosensor can be economically produced at large scale, is not reliant on cold-chain storage, can be detected without additional equipment, and is thus a compelling platform scalable to global surveillance of pathogens.
Collapse
Affiliation(s)
- Nili Ostrov
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Miguel Jimenez
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Sonja Billerbeck
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - James Brisbois
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Joseph Matragrano
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Alastair Ager
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Institute for Global Health and Development, Queen Margaret University, Edinburgh, UK
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Corresponding author.
| |
Collapse
|
31
|
Vitale S, Partida-Hanon A, Serrano S, Martínez-Del-Pozo Á, Di Pietro A, Turrà D, Bruix M. Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum. J Biol Chem 2017; 292:3591-3602. [PMID: 28100777 PMCID: PMC5339745 DOI: 10.1074/jbc.m116.766311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae, a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly6-Gln7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp1-Cys2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division.
Collapse
Affiliation(s)
- Stefania Vitale
- From the Department of Genetics, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Angélica Partida-Hanon
- the Department of Biological Physical Chemistry, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain, and
| | - Soraya Serrano
- the Department of Biological Physical Chemistry, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain, and
| | - Álvaro Martínez-Del-Pozo
- the Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Antonio Di Pietro
- From the Department of Genetics, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - David Turrà
- From the Department of Genetics, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain,
| | - Marta Bruix
- the Department of Biological Physical Chemistry, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain, and
| |
Collapse
|
32
|
Transient Duplication-Dependent Divergence and Horizontal Transfer Underlie the Evolutionary Dynamics of Bacterial Cell-Cell Signaling. PLoS Biol 2016; 14:e2000330. [PMID: 28033323 PMCID: PMC5199041 DOI: 10.1371/journal.pbio.2000330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Evolutionary expansion of signaling pathway families often underlies the evolution of regulatory complexity. Expansion requires the acquisition of a novel homologous pathway and the diversification of pathway specificity. Acquisition can occur either vertically, by duplication, or through horizontal transfer, while divergence of specificity is thought to occur through a promiscuous protein intermediate. The way by which these mechanisms shape the evolution of rapidly diverging signaling families is unclear. Here, we examine this question using the highly diversified Rap-Phr cell-cell signaling system, which has undergone massive expansion in the genus Bacillus. To this end, genomic sequence analysis of >300 Bacilli genomes was combined with experimental analysis of the interaction of Rap receptors with Phr autoinducers and downstream targets. Rap-Phr expansion is shown to have occurred independently in multiple Bacillus lineages, with >80 different putative rap-phr alleles evolving in the Bacillius subtilis group alone. The specificity of many rap-phr alleles and the rapid gain and loss of Rap targets are experimentally demonstrated. Strikingly, both horizontal and vertical processes were shown to participate in this expansion, each with a distinct role. Horizontal gene transfer governs the acquisition of already diverged rap-phr alleles, while intralocus duplication and divergence of the phr gene create the promiscuous intermediate required for the divergence of Rap-Phr specificity. Our results suggest a novel role for transient gene duplication and divergence during evolutionary shifts in specificity.
Collapse
|
33
|
Díaz-Sánchez V, Limón MC, Schaub P, Al-Babili S, Avalos J. A RALDH-like enzyme involved in Fusarium verticillioides development. Fungal Genet Biol 2015; 86:20-32. [PMID: 26688466 DOI: 10.1016/j.fgb.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 01/30/2023]
Abstract
Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β-carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lackof CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.
Collapse
Affiliation(s)
- Violeta Díaz-Sánchez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - M Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Patrick Schaub
- Faculty of Biology, Albert-Ludwigs University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Salim Al-Babili
- Center for Desert Agriculture, BESE Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain.
| |
Collapse
|
34
|
Xu L, Petit E, Hood ME. Variation in mate-recognition pheromones of the fungal genus Microbotryum. Heredity (Edinb) 2015; 116:44-51. [PMID: 26306729 PMCID: PMC4675872 DOI: 10.1038/hdy.2015.68] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/05/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022] Open
Abstract
Mate recognition is an essential life-cycle stage that exhibits strong conservation in function, whereas diversification of mating signals can contribute directly to the integrity of species boundaries through assortative mating. Fungi are simple models, where compatibility is based on the recognition of pheromone peptides by corresponding receptor proteins, but clear patterns of diversification have not emerged from the species examined, which are few compared with mate signaling studies in plant and animal systems. In this study, candidate loci from Microbotryum species were used to characterize putative pheromones that were synthesized and found to be functional across multiple species in triggering a mating response in vitro. There is no significant correlation between the strength of a species' response and its genetic distance from the pheromone sequence source genome. Instead, evidence suggests that species may be strong or weak responders, influenced by environmental conditions or developmental differences. Gene sequence comparisons reveals very strong purifying selection on the a1 pheromone peptide and corresponding receptor, but significantly less purifying selection on the a2 pheromone peptide that corresponds with more variation across species in the receptor. This represents an exceptional case of a reciprocally interacting mate-recognition system in which the two mating types are under different levels of purifying selection.
Collapse
Affiliation(s)
- L Xu
- Department of Biology, Amherst College, Amherst, MA, USA
| | - E Petit
- Department of Biology, Amherst College, Amherst, MA, USA
| | - M E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| |
Collapse
|
35
|
Asexual propagation of a virulent clone complex in a human and feline outbreak of sporotrichosis. EUKARYOTIC CELL 2014; 14:158-69. [PMID: 25480940 DOI: 10.1128/ec.00153-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sporotrichosis is one of the most frequent subcutaneous fungal infections in humans and animals caused by members of the plant-associated, dimorphic genus Sporothrix. Three of the four medically important Sporothrix species found in Brazil have been considered asexual as no sexual stage has ever been reported in Sporothrix schenckii, Sporothrix brasiliensis, or Sporothrix globosa. We have identified the mating type (MAT) loci in the S. schenckii (strain 1099-18/ATCC MYA-4821) and S. brasiliensis (strain 5110/ATCC MYA-4823) genomes by using comparative genomic approaches to determine the mating type ratio in these pathogen populations. Our analysis revealed the presence of a MAT1-1 locus in S. schenckii while a MAT1-2 locus was found in S. brasiliensis representing genomic synteny to other Sordariomycetes. Furthermore, the components of the mitogen-activated protein kinase (MAPK)-pheromone pathway, pheromone processing enzymes, and meiotic regulators have also been identified in the two pathogens, suggesting the potential for sexual reproduction. The ratio of MAT1-1 to MAT1-2 was not significantly different from 1:1 for all three Sporothrix species, but the population of S. brasiliensis in the outbreaks originated from a single mating type. We also explored the population genetic structure of these pathogens using sequence data of two loci to improve our knowledge of the pattern of geographic distribution, genetic variation, and virulence phenotypes. Population genetics data showed significant population differentiation and clonality with a low level of haplotype diversity in S. brasiliensis isolates from different regions of sporotrichosis outbreaks in Brazil. In contrast, S. schenckii isolates demonstrated a high degree of genetic variability without significant geographic differentiation, indicating the presence of recombination. This study demonstrated that two species causing the same disease have contrasting reproductive strategies and genetic variability patterns.
Collapse
|
36
|
Belfiori B, Riccioni C, Paolocci F, Rubini A. Mating type locus of Chinese black truffles reveals heterothallism and the presence of cryptic species within the T. indicum species complex. PLoS One 2013; 8:e82353. [PMID: 24358175 PMCID: PMC3864998 DOI: 10.1371/journal.pone.0082353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/30/2013] [Indexed: 01/20/2023] Open
Abstract
Tuber spp. are filamentous ascomycetes which establish symbiosis with the roots of trees and shrub species. By virtue of this symbiosis they produce hypogeous ascocarps, known as truffles. Filamentous ascomycetes can reproduce by homothallism or heterothallism depending on the structure and organization of their mating type locus. The first mating type locus in a truffle species has been recently characterized in Tuber melanosporum and it has been shown that this fungus, endemic in Europe, is heterothallic. The availability of sequence information for T. melanosporum mating type genes is seminal to cloning their orthologs from other Tuber species and assessing their reproductive mode. Here we report on the organization of the mating type region in T. indicum, the black truffle species present in Asia, which is the closest relative to T. melanosporum and is characterized by an high level of morphological and genetic variability. The present study shows that T. indicum is also heterothallic. Examination of Asiatic black truffles belonging to different genetic classes, sorted according to the sequence polymorphism of the internal transcribed spacer rDNA region, has revealed sequence variations and rearrangements in both coding and non-coding regions of the mating type locus, to suggest the existence of cryptic species within the T. indicum complex. The presence of transposable elements within or linked to the mating type region suggests a role of these elements in generating the genotypic diversity present among T. indicum strains. Overall, comparative analyses of the mating type locus have thus allowed us to tackle taxonomical and phylogenetic issues within black truffles and make inferences about the evolution of T. melanosporum-T. indicum lineage. Our results are not only of fundamental but also of applied relevance as T. indicum produces edible fruit bodies that are imported also into Europe and thus may represent a biological threat for T. melanosporum.
Collapse
Affiliation(s)
- Beatrice Belfiori
- Institute of Biosciences and BioResources - Perugia Division, National Research Council, Perugia, Italy
| | - Claudia Riccioni
- Institute of Biosciences and BioResources - Perugia Division, National Research Council, Perugia, Italy
| | - Francesco Paolocci
- Institute of Biosciences and BioResources - Perugia Division, National Research Council, Perugia, Italy
| | - Andrea Rubini
- Institute of Biosciences and BioResources - Perugia Division, National Research Council, Perugia, Italy
- * E-mail:
| |
Collapse
|
37
|
|
38
|
Nygren K, Wallberg A, Samils N, Stajich JE, Townsend JP, Karlsson M, Johannesson H. Analyses of expressed sequence tags in Neurospora reveal rapid evolution of genes associated with the early stages of sexual reproduction in fungi. BMC Evol Biol 2012. [PMID: 23186325 PMCID: PMC3571971 DOI: 10.1186/1471-2148-12-229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background The broadly accepted pattern of rapid evolution of reproductive genes is primarily based on studies of animal systems, although several examples of rapidly evolving genes involved in reproduction are found in diverse additional taxa. In fungi, genes involved in mate recognition have been found to evolve rapidly. However, the examples are too few to draw conclusions on a genome scale. Results In this study, we performed microarray hybridizations between RNA from sexual and vegetative tissues of two strains of the heterothallic (self-sterile) filamentous ascomycete Neurospora intermedia, to identify a set of sex-associated genes in this species. We aligned Expressed Sequence Tags (ESTs) from sexual and vegetative tissue of N. intermedia to orthologs from three closely related species: N. crassa, N. discreta and N. tetrasperma. The resulting four-species alignments provided a dataset for molecular evolutionary analyses. Our results confirm a general pattern of rapid evolution of fungal sex-associated genes, compared to control genes with constitutive expression or a high relative expression during vegetative growth. Among the rapidly evolving sex-associated genes, we identified candidates that could be of importance for mating or fruiting-body development. Analyses of five of these candidate genes from additional species of heterothallic Neurospora revealed that three of them evolve under positive selection. Conclusions Taken together, our study represents a novel finding of a genome-wide pattern of rapid evolution of sex-associated genes in the fungal kingdom, and provides a list of candidate genes important for reproductive isolation in Neurospora.
Collapse
Affiliation(s)
- Kristiina Nygren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Gomes-Rezende JA, Gomes-Alves AG, Menino JF, Coelho MA, Ludovico P, Gonçalves P, Sturme MHJ, Rodrigues F. Functionality of the Paracoccidioides mating α-pheromone-receptor system. PLoS One 2012; 7:e47033. [PMID: 23056569 PMCID: PMC3464258 DOI: 10.1371/journal.pone.0047033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that Paracoccidioides species have the potential to undergo sexual reproduction, although no sexual cycle has been identified either in nature or under laboratory conditions. In the present work we detected low expression levels of the heterothallic MAT loci genes MAT1-1 and MAT1-2, the α-pheromone (PBα) gene, and the α- and a-pheromone receptor (PREB and PREA) genes in yeast and mycelia forms of several Paracoccidioides isolates. None of the genes were expressed in a mating type dependent manner. Stimulation of P. brasiliensis MAT1-2 strains with the synthetic α-pheromone peptide failed to elicit transcriptional activation of MAT1-2, PREB or STE12, suggesting that the strains tested are insensitive to α-pheromone. In order to further evaluate the biological functionality of the pair α-pheromone and its receptor, we took advantage of the heterologous expression of these Paracoccidioides genes in the corresponding S. cerevisiae null mutants. We show that S. cerevisiae strains heterologously expressing PREB respond to Pbα pheromone either isolated from Paracoccidioides culture supernatants or in its synthetic form, both by shmoo formation and by growth and cell cycle arrests. This allowed us to conclude that Paracoccidioides species secrete an active α-pheromone into the culture medium that is able to activate its cognate receptor. Moreover, expression of PREB or PBα in the corresponding null mutants of S. cerevisiae restored mating in these non-fertile strains. Taken together, our data demonstrate pheromone signaling activation by the Paracoccidioides α-pheromone through its receptor in this yeast model, which provides novel evidence for the existence of a functional mating signaling system in Paracoccidioides.
Collapse
Affiliation(s)
- Jéssica A. Gomes-Rezende
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana G. Gomes-Alves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Menino
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marco A. Coelho
- Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula Gonçalves
- Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mark H. J. Sturme
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
40
|
Nygren K, Strandberg R, Gioti A, Karlsson M, Johannesson H. Deciphering the Relationship between Mating System and the Molecular Evolution of the Pheromone and Receptor Genes in Neurospora. Mol Biol Evol 2012; 29:3827-42. [DOI: 10.1093/molbev/mss193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Gribble KE, Mark Welch DB. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex. BMC Evol Biol 2012; 12:134. [PMID: 22852831 PMCID: PMC3495898 DOI: 10.1186/1471-2148-12-134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/23/2012] [Indexed: 12/15/2022] Open
Abstract
Background Chemically mediated prezygotic barriers to reproduction likely play an important role in speciation. In facultatively sexual monogonont rotifers from the Brachionus plicatilis cryptic species complex, mate recognition of females by males is mediated by the Mate Recognition Protein (MRP), a globular glycoprotein on the surface of females, encoded by the mmr-b gene family. In this study, we sequenced mmr-b copies from 27 isolates representing 11 phylotypes of the B. plicatilis species complex, examined the mode of evolution and selection of mmr-b, and determined the relationship between mmr-b genetic distance and mate recognition among isolates. Results Isolates of the B. plicatilis species complex have 1–4 copies of mmr-b, each composed of 2–9 nearly identical tandem repeats. The repeats within a gene copy are generally more similar than are gene copies among phylotypes, suggesting concerted evolution. Compared to housekeeping genes from the same isolates, mmr-b has accumulated only half as many synonymous differences but twice as many non-synonymous differences. Most of the amino acid differences between repeats appear to occur on the outer face of the protein, and these often result in changes in predicted patterns of phosphorylation. However, we found no evidence of positive selection driving these differences. Isolates with the most divergent copies were unable to mate with other isolates and rarely self-crossed. Overall the degree of mate recognition was significantly correlated with the genetic distance of mmr-b. Conclusions Discrimination of compatible mates in the B. plicatilis species complex is determined by proteins encoded by closely related copies of a single gene, mmr-b. While concerted evolution of the tandem repeats in mmr-b may function to maintain identity, it can also lead to the rapid spread of a mutation through all copies in the genome and thus to reproductive isolation. The mmr-b gene is evolving rapidly, and novel alleles may be maintained and increase in frequency via asexual reproduction. Our analyses indicate that mate recognition, controlled by MMR-B, may drive reproductive isolation and allow saltational sympatric speciation within the B. plicatilis cryptic species complex, and that this process may be largely neutral.
Collapse
Affiliation(s)
- Kristin E Gribble
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | | |
Collapse
|
42
|
Seike T, Yamagishi Y, Iio H, Nakamura T, Shimoda C. Remarkably simple sequence requirement of the M-factor pheromone of Schizosaccharomyces pombe. Genetics 2012; 191:815-25. [PMID: 22542965 PMCID: PMC3389977 DOI: 10.1534/genetics.112.140483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/16/2012] [Indexed: 11/18/2022] Open
Abstract
The mating reaction is triggered by specific pheromones in a wide variety of organisms. Small peptides are used as mating pheromones in yeasts and fungi. In the fission yeast Schizosaccharomyces pombe, M-factor is a C terminally farnesylated nonapeptide secreted from M-cells, and its counterpart, P-factor, is a simple peptide composed of 23 amino acids. The primary structure requirements for the biological activity of pheromone peptides remain to be elucidated. Here, we conducted comprehensive substitution of each of the amino acids in M-factor peptide and inspected the mating ability of these missense mutants. Thirty-five sterile mutants were found among an array of 152 mutants with single amino acid substitutions. Mapping of the mutation sites clearly indicated that the sterile mutants were associated exclusively with four amino acid residues (VPYM) in the carboxyl-terminal half. In contrast, the substitution of four amino-terminal residues (YTPK) with any amino acid had no or only a slightly deleterious effect on mating. Furthermore, deletion of the three N-terminal residues caused no sterility, although truncation of a fourth residue had a marked effect. We conclude that a farnesylated hexapeptide (KVPYMC(Far)-OCH(3)) is the minimal M-factor that retains pheromone activity. At least 15 nonfunctional peptides were found to be secreted, suggesting that these mutant M-factor peptides are no longer recognized by the cognate receptor.
Collapse
Affiliation(s)
| | - Yoshikazu Yamagishi
- Department of Material Science and Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideo Iio
- Department of Material Science and Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | |
Collapse
|
43
|
Wiemann P, Albermann S, Niehaus EM, Studt L, von Bargen KW, Brock NL, Humpf HU, Dickschat JS, Tudzynski B. The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity. PLoS One 2012; 7:e37519. [PMID: 22662164 PMCID: PMC3360786 DOI: 10.1371/journal.pone.0037519] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/20/2012] [Indexed: 11/24/2022] Open
Abstract
The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g. moniliformin. The key enzymes needed for their production belong to the family of polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs) that are generally known to be post-translationally modified by a Sfp-type 4′phosphopantetheinyl transferase (PPTase). In this study we provide evidence that the F. fujikuroi Sfp-type PPTase FfPpt1 is essentially involved in lysine biosynthesis and production of bikaverins, fusarubins and fusarins, but not moniliformin as shown by analytical methods. Concomitantly, targeted Ffppt1 deletion mutants reveal an enhancement of terpene-derived metabolites like GAs and volatile substances such as α-acorenol. Pathogenicity assays on rice roots using fluorescent labeled wild-type and Ffppt1 mutant strains indicate that lysine biosynthesis and iron acquisition but not PKS and NRPS metabolism is essential for establishment of primary infections of F. fujikuroi. Additionally, FfPpt1 is involved in conidiation and sexual mating recognition possibly by activating PKS- and/or NRPS-derived metabolites that could act as diffusible signals. Furthermore, the effect on iron acquisition of Ffppt1 mutants led us to identify a previously uncharacterized putative third reductive iron uptake system (FfFtr3/FfFet3) that is closely related to the FtrA/FetC system of A. fumigatus. Functional characterization provides evidence that both proteins are involved in iron acquisition and are liable to transcriptional repression of the homolog of the Aspergillus GATA-type transcription factor SreA under iron-replete conditions. Targeted deletion of the first Fusarium homolog of this GATA-type transcription factor-encoding gene, Ffsre1, strongly indicates its involvement in regulation of iron homeostasis and oxidative stress resistance.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, Münster, Germany
| | - Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, Münster, Germany
| | - Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, Münster, Germany
| | - Lena Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, Münster, Germany
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Katharina W. von Bargen
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Nelson L. Brock
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig, Germany
| | - Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Jeroen S. Dickschat
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, Münster, Germany
- * E-mail:
| |
Collapse
|