1
|
Kulik T, van Diepeningen AD, Hausner G. Editorial: The significance of mitogenomics in mycology, volume II. Front Microbiol 2023; 14:1344877. [PMID: 38192293 PMCID: PMC10773717 DOI: 10.3389/fmicb.2023.1344877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne D. van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Mukhopadhyay J, Wai A, Hausner G. The mitogenomes of Leptographium aureum, Leptographium sp., and Grosmannia fruticeta: expansion by introns. Front Microbiol 2023; 14:1240407. [PMID: 37637121 PMCID: PMC10448965 DOI: 10.3389/fmicb.2023.1240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Many members of the Ophiostomatales are of economic importance as they are bark-beetle associates and causative agents for blue stain on timber and in some instances contribute towards tree mortality. The taxonomy of these fungi has been challenging due to the convergent evolution of many traits associated with insect dispersal and a limited number of morphological characters that happen to be highly pleomorphic. This study examines the mitochondrial genomes for three members of Leptographium sensu lato [Leptographium aureum (also known as Grosmannia aurea), Grosmannia fruticeta (also known as Leptographium fruticetum), and Leptographium sp. WIN(M)1376)]. Methods Illumina sequencing combined with gene and intron annotations and phylogenetic analysis were performed. Results Sequence analysis showed that gene content and gene synteny are conserved but mitochondrial genome sizes were variable: G. fruticeta at 63,821 bp, Leptographium sp. WIN(M)1376 at 81,823 bp and L. aureum at 104,547 bp. The variation in size is due to the number of introns and intron-associated open reading frames. Phylogenetic analysis of currently available mitochondrial genomes for members of the Ophiostomatales supports currently accepted generic arrangements within this order and specifically supports the separation of members with Leptographium-like conidiophores into two genera, with L. aureum grouping with Leptographium and G. fruticeta aligning with Grosmannia. Discussion Mitochondrial genomes are promising sequences for resolving evolutionary relationships within the Ophiostomatales.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Kabala AM, Binko K, Godard F, Charles C, Dautant A, Baranowska E, Skoczen N, Gombeau K, Bouhier M, Becker HD, Ackerman SH, Steinmetz LM, Tribouillard-Tanvier D, Kucharczyk R, di Rago JP. Assembly-dependent translation of subunits 6 (Atp6) and 9 (Atp9) of ATP synthase in yeast mitochondria. Genetics 2022; 220:iyac007. [PMID: 35100419 PMCID: PMC8893259 DOI: 10.1093/genetics/iyac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.
Collapse
Affiliation(s)
- Anna M Kabala
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krystyna Binko
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - François Godard
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Camille Charles
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Natalia Skoczen
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kewin Gombeau
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Hubert D Becker
- UPR ‘Architecture et Réactivité de l’ARN’, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg Cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Jean-Paul di Rago
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| |
Collapse
|
4
|
Tagirdzhanova G, McCutcheon JP, Spribille T. Lichen fungi do not depend on the alga for ATP production: A comment on Pogoda et al. (2018). Mol Ecol 2021; 30:4155-4159. [PMID: 34232528 DOI: 10.1111/mec.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022]
Abstract
Lichen fungi live in a symbiotic association with unicellular phototrophs and most have no known aposymbiotic stage. A recent study in Molecular Ecology postulated that some of them have lost mitochondrial oxidative phosphorylation and rely on their algal partners for ATP. This claim originated from an apparent lack of ATP9, a gene encoding one subunit of ATP synthase, from a few mitochondrial genomes. Here, we show that while these fungi indeed have lost the mitochondrial ATP9, each retain a nuclear copy of this gene. Our analysis reaffirms that lichen fungi produce their own ATP.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - John P McCutcheon
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
5
|
The mitochondrial genome of the grape powdery mildew pathogen Erysiphe necator is intron rich and exhibits a distinct gene organization. Sci Rep 2021; 11:13924. [PMID: 34230575 PMCID: PMC8260586 DOI: 10.1038/s41598-021-93481-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Powdery mildews are notorious fungal plant pathogens but only limited information exists on their genomes. Here we present the mitochondrial genome of the grape powdery mildew fungus Erysiphe necator and a high-quality mitochondrial gene annotation generated through cloning and Sanger sequencing of full-length cDNA clones. The E. necator mitochondrial genome consists of a circular DNA sequence of 188,577 bp that harbors a core set of 14 protein-coding genes that are typically present in fungal mitochondrial genomes, along with genes encoding the small and large ribosomal subunits, a ribosomal protein S3, and 25 mitochondrial-encoded transfer RNAs (mt-tRNAs). Interestingly, it also exhibits a distinct gene organization with atypical bicistronic-like expression of the nad4L/nad5 and atp6/nad3 gene pairs, and contains a large number of 70 introns, making it one of the richest in introns mitochondrial genomes among fungi. Sixty-four intronic ORFs were also found, most of which encoded homing endonucleases of the LAGLIDADG or GIY-YIG families. Further comparative analysis of five E. necator isolates revealed 203 polymorphic sites, but only five were located within exons of the core mitochondrial genes. These results provide insights into the organization of mitochondrial genomes of powdery mildews and represent valuable resources for population genetic and evolutionary studies.
Collapse
|
6
|
Mao X, Yang L, Liu Y, Ma C, Ma T, Yu Q, Li M. Vacuole and Mitochondria Patch (vCLAMP) Protein Vam6 Is Involved in Maintenance of Mitochondrial and Vacuolar Functions under Oxidative Stress in Candida albicans. Antioxidants (Basel) 2021; 10:antiox10010136. [PMID: 33478009 PMCID: PMC7835768 DOI: 10.3390/antiox10010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Candida albicans is one of the most common opportunistic fungal pathogens in human beings. When infecting host cells, C. albicans is often exposed to oxidative stress from the host immune defense system. Maintenance of mitochondrial and vacuolar functions is crucial for its resistance to oxidative stress. However, the role of vacuole and mitochondria patchs (vCLAMPs) in cellular oxidative stress resistance and in the maintenance of organelle functions remains to be elucidated. Herein, the function of the vCLAMP protein Vam6 in response to oxidative stress was explored. The results showed that the vam6∆/∆ mutant exhibited obvious mitochondrial swelling, mtDNA damage, reduced activity of antioxidant enzymes, and abnormal vacuolar morphology under H2O2 treatment, indicating its important role in maintaining the structures and functions of both mitochondria and vacuoles under oxidative stress. Further studies showed that deletion of VAM6 attenuated hyphal development under oxidative stress. Moreover, loss of Vam6 obviously affected host tissue invasion and virulence of C. albicans. Taken together, this paper reveals the critical role of vCLAMPs in response to oxidative stress in C. albicans.
Collapse
|
7
|
Bahri H, Buratto J, Rojo M, Dompierre JP, Salin B, Blancard C, Cuvellier S, Rose M, Ben Ammar Elgaaied A, Tetaud E, di Rago JP, Devin A, Duvezin-Caubet S. TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118942. [PMID: 33359711 DOI: 10.1016/j.bbamcr.2020.118942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023]
Abstract
Mitochondrial ATP-synthesis is catalyzed by a F1Fo-ATP synthase, an enzyme of dual genetic origin enriched at the edge of cristae where it plays a key role in their structure/stability. The enzyme's biogenesis remains poorly understood, both from a mechanistic and a compartmentalization point of view. The present study provides novel molecular insights into this process through investigations on a human protein called TMEM70 with an unclear role in the assembly of ATP synthase. A recent study has revealed the existence of physical interactions between TMEM70 and the subunit c (Su.c), a protein present in 8 identical copies forming a transmembrane oligomeric ring (c-ring) within the ATP synthase proton translocating domain (Fo). Herein we analyzed the ATP-synthase assembly in cells lacking TMEM70, mitochondrial DNA or F1 subunits and observe a direct correlation between TMEM70 and Su.c levels, regardless of the status of other ATP synthase subunits or of mitochondrial bioenergetics. Immunoprecipitation, two-dimensional blue-native/SDS-PAGE, and pulse-chase experiments reveal that TMEM70 forms large oligomers that interact with Su.c not yet incorporated into ATP synthase complexes. Moreover, discrete TMEM70-Su.c complexes with increasing Su.c contents can be detected, suggesting a role for TMEM70 oligomers in the gradual assembly of the c-ring. Furthermore, we demonstrate using expansion super-resolution microscopy the specific localization of TMEM70 at the inner cristae membrane, distinct from the MICOS component MIC60. Taken together, our results show that TMEM70 oligomers provide a scaffold for c-ring assembly and that mammalian ATP synthase is assembled within inner cristae membranes.
Collapse
Affiliation(s)
- Hela Bahri
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France; Laboratoire de génétique, Immunologie et Pathologie Humaine, Faculté des sciences de Tunis, Université Tunis-El Manar FST, Tunis, Tunisie
| | - Jeremie Buratto
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France; Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Manuel Rojo
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Jim Paul Dompierre
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Bénédicte Salin
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Corinne Blancard
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Sylvain Cuvellier
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marie Rose
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Amel Ben Ammar Elgaaied
- Laboratoire de génétique, Immunologie et Pathologie Humaine, Faculté des sciences de Tunis, Université Tunis-El Manar FST, Tunis, Tunisie
| | - Emmanuel Tetaud
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France; Laboratoire de Microbiologie Fondamentale et Pathogénicité UMR-CNRS 5234, 146 rue Léo Saignat, CEDEX F-33076 Bordeaux, France
| | - Jean-Paul di Rago
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Anne Devin
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Stéphane Duvezin-Caubet
- Université Bordeaux, IBGC, UMR 5095, F-33000 Bordeaux, France; CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
8
|
Navarro-Espíndola R, Takano-Rojas H, Suaste-Olmos F, Peraza-Reyes L. Distinct Contributions of the Peroxisome-Mitochondria Fission Machinery During Sexual Development of the Fungus Podospora anserina. Front Microbiol 2020; 11:640. [PMID: 32351478 PMCID: PMC7175800 DOI: 10.3389/fmicb.2020.00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and peroxisomes are organelles whose activity is intimately associated and that play fundamental roles in development. In the model fungus Podospora anserina, peroxisomes and mitochondria are required for different stages of sexual development, and evidence indicates that their activity in this process is interrelated. Additionally, sexual development involves precise regulation of peroxisome assembly and dynamics. Peroxisomes and mitochondria share the proteins mediating their division. The dynamin-related protein Dnm1 (Drp1) along with its membrane receptors, like Fis1, drives this process. Here we demonstrate that peroxisome and mitochondrial fission in P. anserina depends on FIS1 and DNM1. We show that FIS1 and DNM1 elimination affects the dynamics of both organelles throughout sexual development in a developmental stage-dependent manner. Moreover, we discovered that the segregation of peroxisomes, but not mitochondria, is affected upon elimination of FIS1 or DNM1 during the division of somatic hyphae and at two central stages of sexual development—the differentiation of meiocytes (asci) and of meiotic-derived spores (ascospores). Furthermore, we found that FIS1 and DNM1 elimination results in delayed karyogamy and defective ascospore differentiation. Our findings reveal that sexual development relies on complex remodeling of peroxisomes and mitochondria, which is driven by their common fission machinery.
Collapse
Affiliation(s)
- Raful Navarro-Espíndola
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Harumi Takano-Rojas
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Suaste-Olmos
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S, Pedersen C, Spanu PD, Maekawa T, Schulze-Lefert P, Panstruga R. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 2018; 19:381. [PMID: 29788921 PMCID: PMC5964911 DOI: 10.1186/s12864-018-4750-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
Background Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare). Results The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome. Conclusions The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a “one-speed” genome that differs in its architecture and (co-)evolutionary pattern from the “two-speed” genomes reported for several other filamentous phytopathogens. Electronic supplementary material The online version of this article (10.1186/s12864-018-4750-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamprinos Frantzeskakis
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Barbara Kracher
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Stefan Kusch
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Makoto Yoshikawa-Maekawa
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Saskia Bauer
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Pietro D Spanu
- Imperial College, Department of Life Sciences, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Takaki Maekawa
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| |
Collapse
|
10
|
Pogoda CS, Keepers KG, Lendemer JC, Kane NC, Tripp EA. Reductions in complexity of mitochondrial genomes in lichen-forming fungi shed light on genome architecture of obligate symbioses. Mol Ecol 2018; 27:1155-1169. [DOI: 10.1111/mec.14519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/21/2017] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
|
11
|
Mosbach A, Edel D, Farmer AD, Widdison S, Barchietto T, Dietrich RA, Corran A, Scalliet G. Anilinopyrimidine Resistance in Botrytis cinerea Is Linked to Mitochondrial Function. Front Microbiol 2017; 8:2361. [PMID: 29250050 PMCID: PMC5714876 DOI: 10.3389/fmicb.2017.02361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Crop protection anilinopyrimidine (AP) fungicides were introduced more than 20 years ago for the control of a range of diseases caused by ascomycete plant pathogens, and in particular for the control of gray mold caused by Botrytis cinerea. Although early mode of action studies suggested an inhibition of methionine biosynthesis, the molecular target of this class of fungicides was never fully clarified. Despite AP-specific resistance having been described in B. cinerea field isolates and in multiple other targeted species, the underlying resistance mechanisms were unknown. It was therefore expected that the genetic characterization of resistance mechanisms would permit the identification of the molecular target of these fungicides. In order to explore the widest range of possible resistance mechanisms, AP-resistant B. cinerea UV laboratory mutants were generated and the mutations conferring resistance were determined by combining whole-genome sequencing and reverse genetics. Genetic mapping from a cross between a resistant field isolate and a sensitive reference isolate was used in parallel and led to the identification of an additional molecular determinant not found from the characterized UV mutant collection. Together, these two approaches enabled the characterization of an unrivaled diversity of resistance mechanisms. In total, we report the elucidation of resistance-conferring mutations within nine individual genes, two of which are responsible for almost all instances of AP resistance in the field. All identified resistance-conferring genes encode proteins that are involved in mitochondrial processes, suggesting that APs primarily target the mitochondria. The functions of these genes and their possible interactions are discussed in the context of the potential mode of action for this important class of fungicides.
Collapse
Affiliation(s)
| | | | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, NM, United States
- Syngenta Biotechnology Inc., Research Triangle Park, NC, United States
| | - Stephanie Widdison
- Syngenta Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | | | | | - Andy Corran
- Syngenta Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | | |
Collapse
|
12
|
Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase. PLoS Genet 2016; 12:e1006161. [PMID: 27442014 PMCID: PMC4956034 DOI: 10.1371/journal.pgen.1006161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/10/2016] [Indexed: 01/24/2023] Open
Abstract
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8–15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before. In mitochondria, the ATP synthase (also referred to as complex V) catalyzes the late steps of oxidative phosphorylation (OXPHOS), which is a process that provides aerobic eukaryotes with most of their energy requirements by generating adenosine triphosphate (ATP) molecules. While the structure and mechanism of ATP synthase are mostly well established, much remains to be learned about how cells and tissues modulate the production and activity of this enzyme. Herein we report the existence in the filamentous fungus Podospora anserina of a two-pronged energy regulatory mechanism that involves two nuclear genes (Atp9-5 and Atp9-7) that encode structurally different c-subunits of ATP synthase. This system enables a proper production of ATP synthase and optimizes the rate of ATP synthesis in mitochondria along the rather complex life cycle of this fungus.
Collapse
|
13
|
Chandramouli KH, Reish D, Zhang H, Qian PY, Ravasi T. Proteomic Changes Associated with Successive Reproductive Periods in Male Polychaetous Neanthes arenaceodentata. Sci Rep 2015; 5:13561. [PMID: 26337980 PMCID: PMC4559745 DOI: 10.1038/srep13561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/30/2015] [Indexed: 01/22/2023] Open
Abstract
The polychaetous annelid Neanthes acuminata complex has a widespread distribution, with the California population referred to as N. arenaceodentata. The reproductive pattern in this complex is unique, in that the female reproduces once and then dies, whereas the male can reproduce up to nine times. The male incubates the embryos until the larvae leave the male's tube 21-28 days later and commences feeding. Reproductive success and protein expression patterns were measured over the nine reproductive periods. The percent success of the male in producing juveniles increased during the first three reproductive periods and then decreased, but the number of juveniles produced was similar through all nine periods. iTRAQ based quantitative proteomics were used to analyze the dynamics of protein expression patterns. The expression patterns of several proteins were found to be altered. The abundant expression of muscular and contractile proteins may have affected body weight and reproductive success. Sperm have never been observed; fertilization occurs within the parent's tube. Proteins associated with sperm maturation and fertilization were identified, including ATPase, clathrin, peroxiredoxins and enolase, which may provide clues to the molecular mechanisms enabling males to reproduce multiple times.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, Division of Applied Mathematics and Computer Sciences. King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
| | - Donald Reish
- Department of Biological Sciences, California State University, Long Beach, California, United States
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, Division of Applied Mathematics and Computer Sciences. King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Abstract
Mitochondria are energy-producing organelles in eukaryotic cells considered to be of bacterial origin. The mitochondrial genome has evolved under selection for minimization of gene content, yet it is not known why not all mitochondrial genes have been transferred to the nuclear genome. Here, we predict that hydrophobic membrane proteins encoded by the mitochondrial genomes would be recognized by the signal recognition particle and targeted to the endoplasmic reticulum if they were nuclear-encoded and translated in the cytoplasm. Expression of the mitochondrially encoded proteins Cytochrome oxidase subunit 1, Apocytochrome b, and ATP synthase subunit 6 in the cytoplasm of HeLa cells confirms export to the endoplasmic reticulum. To examine the extent to which the mitochondrial proteome is driven by selective constraints within the eukaryotic cell, we investigated the occurrence of mitochondrial protein domains in bacteria and eukaryotes. The accessory protein domains of the oxidative phosphorylation system are unique to mitochondria, indicating the evolution of new protein folds. Most of the identified domains in the accessory proteins of the ribosome are also found in eukaryotic proteins of other functions and locations. Overall, one-third of the protein domains identified in mitochondrial proteins are only rarely found in bacteria. We conclude that the mitochondrial genome has been maintained to ensure the correct localization of highly hydrophobic membrane proteins. Taken together, the results suggest that selective constraints on the eukaryotic cell have played a major role in modulating the evolution of the mitochondrial genome and proteome.
Collapse
|
15
|
Atluri S, Rampersad SN, Bonen L. Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years. Mol Genet Genomics 2015; 290:2325-33. [DOI: 10.1007/s00438-015-1087-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
|
16
|
Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One 2014; 9:e93560. [PMID: 24714189 PMCID: PMC3979922 DOI: 10.1371/journal.pone.0093560] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/07/2014] [Indexed: 12/27/2022] Open
Abstract
Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model.
Collapse
|
17
|
Torriani SF, Penselin D, Knogge W, Felder M, Taudien S, Platzer M, McDonald BA, Brunner PC. Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genet Biol 2014; 62:34-42. [DOI: 10.1016/j.fgb.2013.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 01/07/2023]
|
18
|
Li L, Hu X, Xia Y, Xiao G, Zheng P, Wang C. Linkage of oxidative stress and mitochondrial dysfunctions to spontaneous culture degeneration in Aspergillus nidulans. Mol Cell Proteomics 2013; 13:449-61. [PMID: 24345786 DOI: 10.1074/mcp.m113.028480] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi including mushrooms frequently and spontaneously degenerate during subsequent culture maintenance on artificial media, which shows the loss or reduction abilities of asexual sporulation, sexuality, fruiting, and production of secondary metabolites, thus leading to economic losses during mass production. To better understand the underlying mechanisms of fungal degeneration, the model fungus Aspergillus nidulans was employed in this study for comprehensive analyses. First, linkage of oxidative stress to culture degeneration was evident in A. nidulans. Taken together with the verifications of cell biology and biochemical data, a comparative mitochondrial proteome analysis revealed that, unlike the healthy wild type, a spontaneous fluffy sector culture of A. nidulans demonstrated the characteristics of mitochondrial dysfunctions. Relative to the wild type, the features of cytochrome c release, calcium overload and up-regulation of apoptosis inducing factors evident in sector mitochondria suggested a linkage of fungal degeneration to cell apoptosis. However, the sector culture could still be maintained for generations without the signs of growth arrest. Up-regulation of the heat shock protein chaperones, anti-apoptotic factors and DNA repair proteins in the sector could account for the compromise in cell death. The results of this study not only shed new lights on the mechanisms of spontaneous degeneration of fungal cultures but will also provide alternative biomarkers to monitor fungal culture degeneration.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
19
|
Bietenhader M, Martos A, Tetaud E, Aiyar RS, Sellem CH, Kucharczyk R, Clauder-Münster S, Giraud MF, Godard F, Salin B, Sagot I, Gagneur J, Déquard-Chablat M, Contamine V, Denmat SHL, Sainsard-Chanet A, Steinmetz LM, di Rago JP. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet 2012; 8:e1002876. [PMID: 22916027 PMCID: PMC3420929 DOI: 10.1371/journal.pgen.1002876] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023] Open
Abstract
Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Maïlis Bietenhader
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Alexandre Martos
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Raeka S. Aiyar
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carole H. Sellem
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Roza Kucharczyk
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | | | - Marie-France Giraud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - François Godard
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Bénédicte Salin
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Isabelle Sagot
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Julien Gagneur
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michelle Déquard-Chablat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Véronique Contamine
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Sylvie Hermann-Le Denmat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Ecole Normale Supérieure, Paris, France
| | - Annie Sainsard-Chanet
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail: (J-PdR); (LMS)
| | - Jean-Paul di Rago
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
- * E-mail: (J-PdR); (LMS)
| |
Collapse
|
20
|
Adam C, Picard M, Déquard-Chablat M, Sellem CH, Denmat SHL, Contamine V. Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. PLoS One 2012; 7:e38138. [PMID: 22693589 PMCID: PMC3364969 DOI: 10.1371/journal.pone.0038138] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 01/14/2023] Open
Abstract
Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control. Under normal physiological conditions, the PaLon1 deletion is viable but decreases life span. PaLon1 deletion also leads to defects in two steps during development, ascospore germination and sexual reproduction, which suggests that PaLON1 ensures important regulatory functions during fungal development. Mitochondrial Lon proteases are composed of a central ATPase domain flanked by a large non-catalytic N-domain and a C-terminal protease domain. We found that three mutations in the N-domain of PaLON1 affected fungal life cycle, PaLON1 protein expression and mitochondrial proteolytic activity, which reveals the functional importance of the N-domain of the mitochondrial Lon protease. All PaLon1 mutations affected the C-terminal part of the N-domain. Considering that the C-terminal part is predicted to have an α helical arrangement in which the number, length and position of the helices are conserved with the solved structure of its bacterial homologs, we propose that this all-helical structure participates in Lon substrate interaction.
Collapse
Affiliation(s)
- Céline Adam
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Marguerite Picard
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Michelle Déquard-Chablat
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Carole H. Sellem
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
| | - Sylvie Hermann-Le Denmat
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Ecole Normale Supérieure, Paris, France
- * E-mail: (SHLD); (VC)
| | - Véronique Contamine
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- * E-mail: (SHLD); (VC)
| |
Collapse
|